
Fabio Mascarenhas de Queiroz

Optimized Compilation of a
Dynamic Language to a Managed

Runtime Environment

PhD Dissertation

DEPARTMENT OF COMPUTER SCIENCE

Graduate Program in Computer Science

Rio de Janeiro
September 2009

Fabio Mascarenhas de Queiroz

Optimized Compilation of a Dynamic Language
to a Managed Runtime Environment

PhD Dissertation

Dissertation presented to the Graduate Program in Computer
Science of Departamento de Informática, PUC–Rio as partial
fulfillment of the requirements for the degree of Doctor in
Philosophy in Computer Science

Advisor: Prof. Roberto Ierusalimschy

Rio de Janeiro
September 2009

Fabio Mascarenhas de Queiroz

Optimized Compilation of a Dynamic Language
to a Managed Runtime Environment

Dissertation presented to the graduate program in Computer
Science of Departamento de Informática, PUC–Rio as partial
fulfillment of the requirements for the degree of Doctor in
Philosophy in Computer Science. Approved by the following
commission:

Prof. Roberto Ierusalimschy
Advisor

Departmento de Informática — PUC–Rio

Prof. Noemi de La Rocque Rodriguez
Departamento de Informática — PUC–Rio

Prof. Edward Hermann Haeusler
Departamento de Informática — PUC–Rio

Prof. Sandro Rigo
Instituto de Computação – UNICAMP

Prof. Claudio Luis de Amorim
COPPE — UFRJ

Prof. José Eugenio Leal
Head of the Science and Engineering Center — PUC–Rio

Rio de Janeiro — September 4, 2009

All rights reserved.

Fabio Mascarenhas de Queiroz

Fabio Mascarenhas de Queiroz graduated from the Universi-
dade Federal da Bahia (Salvador, Bahia) in Computer Science.
He then obtained a Master degree at PUC–Rio in program-
ming languages, and has now finished his Ph. D. at PUC–Rio,
also in programming languages.

Bibliographic data
Queiroz, Fabio Mascarenhas de

Optimized Compilation of a Dynamic Language to a Man-
aged Runtime Environment / Fabio Mascarenhas de Queiroz;
orientador: Roberto Ierusalimschy. — Rio de Janeiro : PUC–
Rio, Departamento de Informática, 2009.

v.,

97 f: il. ; 29,7 cm

1. Tese de Doutorado - Pontif́ıcia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia.

1. Informática – Dissertação. 2. Linguagens de Pro-
gramação. 3. Compiladores. 4. Inferência de Tipos. 5. Am-
bientes de Execução Gerenciada. 6. Desempenho. 7. Lingua-
gens Dinâmicas. 8. Lua. I. Ierusalimschy, Roberto. II. Pon-
tif́ıcia Universidade Católica do Rio de Janeiro. Departamento
de Informática. III. T́ıtulo.

CDD: 004

Acknowledgments

I would like to thank my advisor, Professor Roberto Ierusalimschy, for

his advice and insights in crucial moments of this work, and for the many

intellectually stimulating, and entertaining, conversations that we had through

these almost seven years that I have been his student, both Master’s and Ph.

D.’s.

I also would like to thank my friends and colleagues at Lablua, Sérgio

Medeiros and Hisham Muhammad, for providing a productive and fun work

environment.

I also thank my friends, my family, and specially Cristina, for the constant

encouragement, prodding, and for enduring me in when I was my most stressed

and least social.

Finally, I would like ot thank CNPq and FAPERJ for their financial

support in respectively the first and second half of my doctorate, without

which this work could not have been done.

Abstract

Queiroz, Fabio Mascarenhas de; Ierusalimschy, Roberto. Opti-
mized Compilation of a Dynamic Language to a Managed
Runtime Environment. Rio de Janeiro, 2009.

97p. PhD Dis-
sertation — Departamento de Informática, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Managed runtime environments have become popular targets for compil-

ers of high-level programming languages. They provide a high-level type

system with enforced runtime safety, as well as facilities such as garbage

collection, possibly sandboxed access to services of the underlying platform,

multithreading, and a rich library of data structures and algorithms. But

managed runtime environments lack a clear performance model, which hin-

ders attempts at optimizing the compilation of any language that does not

have a direct mapping to the runtime environments’ semantics. This is ag-

gravated if the language is dynamically typed.

We assert that it is possible to build a compiler for a dynamic language

that targets a managed runtime environment so that it rivals a compiler

that targets machine code directly in efficiency of the code it generates.

This dissertation presents such a compiler, describing the optimizations that

were needed to build it, and benchmarks that validate these optimizations.

Our optimizations do not depend on runtime code generation, only on

information that is statically available from the source program. We use a

novel type inference analysis to increase the amount of information available.

Keywords
Programming Languages. Compilers. Type Inference. Managed

Runtime Environments. Benchmarking. Dynamic Languages. Common

Language Runtime. Lua.

Resumo

Queiroz, Fabio Mascarenhas de; Ierusalimschy, Roberto. Com-
pilação Otimizada de uma Linguagem Dinâmica para um
Ambiente de Execução Gerenciada. Rio de Janeiro, 2009.

97p.
Tese de Doutorado — Departamento de Informática, Pontif́ıcia Uni-
versidade Católica do Rio de Janeiro.

Ambientes de Execução Gerenciada tornaram-se alvos populares para com-

piladores de linguagens de programação de alto ńıvel. Eles provêem um sis-

tema tipos de alto ńıvel com segurança de memória garantida, assim como

facilidades como coleta de lixo, acesso a serviços da plataforma subjacente

(possivelmente através de uma sandbox), multithreading, e uma rica bib-

lioteca de estruturas de dados e algorithmos, mas não possuem um modelo

de desempenho claro, o que atrapalha tentativas de otimização de qualquer

linguagem que não tenha um mapeamento direto na semântica do ambiente

de execução, especialmente se a linguagem é dinamicamente tipada.

Nós afirmamos que é posśıvel construir um compilador para uma linguagem

dinâmica que tem como alvo um ambiente de execução gerenciada que

rivaliza um compilador que tem como alvo linguagem de máquina na

eficiência do código que ele gera. Essa tese apresenta um compilador com tal

caracteŕıstica, descrevendo as otimizações necessárias para sua construção,

e testes de desempenho que validam essas otimizações. Nossas otimizações

não dependem de geração de código em tempo de execução, apenas em

informação estaticamente dispońıvel no código fonte. Nós usamos uma nova

análise de inferência de tipos para aumentar a quantidade de informação

dispońıvel.

Palavras–chave
Linguagens de Programação. Compiladores. Inferência de Tipos.

Ambientes de Execução Gerenciada. Desempenho. Linguagens Dinâmicas.

Lua.

Contents

1 Introduction 10

1.1 A Lua Primer 13

1.2 The Common Language Runtime 15

2 “Naive” Compilation 17

2.1 Basic Compiler 18

2.2 Variations of the Basic Compiler 22

2.3 Related Work 27

3 Type Inference and Optimization 31

3.1 Type Inference For Lua 31

3.2 Compiling Types 55

3.3 Related Work 57

4 Benchmarks 62

4.1 Benchmark Programs 62

4.2 Benchmarking the Variations 64

4.3 Other Benchmarks 69

5 Conclusions 73

A Operational Semantics 83

A.1 Semantic Rules 83

B Typing Rules 89

C Collected Benchmark Results 95

List of Figures

3.1 Type Language 38

3.2 Coercion Relation 39

3.3 Abstract Syntax 41

4.1 .NET 3.5 SP1 Comparison 65

4.2 .NET 3.5 SP1 Comparison, Richards benchmarks 66

4.3 .NET 4.0 Beta 1 Comparison 67

4.4 .NET 4.0 Beta 1 Comparison, Richards benchmarks 68

4.5 Mono 2.4 Comparison 69

4.6 Mono 2.4 Comparison, Richards benchmarks 70

4.7 Comparison with Lua 5.1.4 71

4.8 Comparison with Lua 5.1.4, Richards benchmarks 72

4.9 Comparison with IronPython 72

List of Tables

2.1 Compiler names 18

4.1 First benchmark suite 63

4.2 Second benchmark suite 64

C.1 Benchmark running times for Mono 2.4, in seconds 95

C.2 Benchmark running times for .NET 3.5 SP1, in seconds 96

C.3 Benchmark running times for .NET 4.0 Beta 1, in seconds 96

C.4 Benchmark running times for Lua 5.1.4 and LuaJIT 1.1.5, in seconds 97

C.5 Benchmark running times for IronPython 2.0, in seconds 97

1
Introduction

Managed runtime environments have become popular targets for com-

pilers of high-level programming languages. Reasons for adoption of these

runtimes include a safe execution environment for foreign code, easier inter-

operability, and their existing libraries. These managed runtimes provide a

high-level type system with enforced runtime safety, as well as facilities such

as garbage collection, possibly sandboxed access to services of the underlying

platform, multithreading, and a rich library of data structures and algorithms.

Examples of managed runtimes include Microsoft’s Common Language Run-

time [

Microsoft,

2005], the Java Virtual Machine [

Lindholm and Yellin,

1999],

and more recently the JavaScript runtimes present in web browsers [

ECMA,

1999,

Manolescu et al.,

2008].

As these runtimes are higher level than the usual compiler targets such

as machine languages and intermediate languages close to the hardware, they

inevitably lead to an impedance mismatch between the semantics of the

language that is being compiled and the semantics of the target runtime, which

translates to inefficiency in the generated code, changes in the language, or

both. The lack of a clear performance model for these runtimes, which can have

great variation even among different implementations of a particular runtime,

also hinder attempts at optimizing the generated code of any language that

does not have a direct mapping to the semantics of the runtime. Writing

an optimizing compiler for these runtimes has to involve guesswork and

experimentation.

The problem of efficient compilation is worse when compiling

dynamically-typed languages to statically typed runtimes, such as the CLR

and JVM. In this case, all of the operations of the language have to be

compiled using runtime type checks or using the virtual dispatch mechanism

of the runtime. If the language is object-oriented then it cannot use the

native method dispatch mechanism of the runtime, and has to implement its

own. Implementing arithmetic operations is particularly troublesome, as the

runtimes usually do not have tagged unions value types, so numbers have to

be boxed inside heap-allocated objects and treated as references.

Chapter 1. Introduction 11

Compiling to a dynamically-typed runtime is also problematic unless

the semantics of the types and operations of the source language exactly

match the semantics of corresponding types and operations of the target.

This kind of semantic match is very rare among high-level languages. In

practice, some form of wrapping and runtime checking, or even more radical

program transformations, such as trampolines for tail call optimization, are

still necessary.

Compiling dynamically-typed languages to machine language or low-

level languages also needs runtime type checks and dynamic dispatch, but

the low-level nature of the target language means these operations are more

efficient than their equivalent on managed runtimes and their performance

characteristics are better understood. When compiling to a machine language

you have a performance model, the performance model of the target processor,

that is missing in the intermediate languages of the managed runtimes.

Nevertheless, we assert that it is possible to generate efficient code from

a dynamically-typed source language to a managed runtime. By efficient we

mean at least as fast as the same code executed by a good native interpreter for

the source language and, in a modern managed runtime with a good optimizing

JIT compiler, matching or exceeding the performance of code generated by a

good optimizing compiler for the source language. We support our assertion

by implementing an optimizing compiler for the Lua programming language

that targets the Microsoft Common Language Runtime and benchmarking this

compiler against the Lua interpreter and an optimizing Lua JIT compiler.

Lua is a dynamically-typed language that has relatively simple semantics

and a very efficient

1 interpreter implemented in C [

Ierusalimschy,

2006]. Lua

has some advanced features such as extensible semantics, anonymous functions

with full lexical scoping (similar to the lexical scoping present in the Scheme

language), tail call optimization, and full asymmetric coroutines [

Ierusalimschy

et al.,

2007,

de Moura et al.,

2004]. It has a simple type system: nil, floating

point numbers, immutable strings, booleans, functions, and tables (associative

arrays), the latter having syntactical and semantic support for use as numeric

arrays, as user-defined data types, and as a way to implement object orientation

using prototypes or classes. Section

1.1 is a brief primer on the language.

Our approach for creating a compiler for the Lua programming language

was to start with a very simple compiler, and a suite of small to medium

length benchmarks that include Lua idioms used by actual programs. We

then built variations of this first compiler, validating optimizations against

this benchmark suite. This is a continuation of previous work we published

1

Compared to other interpreters for dynamically-typed languages.

Chapter 1. Introduction 12

in

Mascarenhas and Ierusalimschy [

2008].

Benchmarking was an essential part of our approach; the CLR interme-

diate code that our compilers generate passes through the CLR optimizers on

conversion to native code, and we could not know beforehand how a particular

piece of CLR code would perform. This makes it very difficult to accurately as-

sess the impact of even simple changes in the compiler. In the worst case, what

we can think is an optimization may in fact make real programs run slower.

Benchmarks helped assess the impact of our changes, and anomalies found in

the results of some of the benchmarks are evidence of the unpredictability in-

troduced by the lack of a performance model. A benchmark suite is also useful

for programmers, being a source of tips on how to write efficient code for the

compiler.

Our simplest compilers did not use static program analysis, so the scope

of optimizations they implemented was limited to what was possible with

extremely local information. The compilers had different mappings of Lua

types to CLR types, such as using value types versus using boxing and reference

types and interning strings. The compilers also had different ways to implement

the return of multiple values from a function call.

Our more advanced compilers used type inference to extract more static

information out of Lua programs. Having more information let us generate

better code. For example, if we can statically determine the runtime types of

each variable and parameter then we can avoid boxing and type checking

for every variable that we are certain can only hold numbers. Sufficiently

precise type information let the compiler synthesize CLR classes for Lua tables,

transforming what was a hash lookup in the simpler compilers to a simple

address lookup.

We did both local and interprocedural type inference. The local inference

does not cross function boundaries and is much simpler to implement, but

the information it obtains is very imprecise. Languages that use local type

inference use explicit type annotation of function arguments to get more precise

results. Interprocedural type inference was harder to specify and implement,

but yielded much better results in our benchmarks. The basic problem of

an interprocedural type inference of Lua programs is the same as of other

languages with first-class functions: which functions are callable at each call

site is initially unknown, and has to be found during inference. To know which

function is callable at a call site you need the type of the variable referencing

the function, or the expression that yields it.

Type inference is a complex algorithm that can subtly alter the behavior

of a program if specified and implemented incorrectly. We did a formal

Chapter 1. Introduction 13

specification of our typing rules and inference algorithm with regards to an

operational semantics of a subset of Lua to make the specification of our type

inference more precise and easier to understand. The actual inference algorithm

works on the full Lua language, but leaves parts of a program outside of this

subset dynamically typed.

Related work on implementing compilers for dynamic typed languages

that target managed runtimes uses approaches that are based on runtime op-

timization using the code generation and dynamic code loading facilities of

the managed runtimes. These approaches adapt the concept of polymorphic

inline caches [

Deutsch and Schiffman,

1984,

Hölzle and Ungar,

1994], while our

approach uses compile-time optimization via static analysis. Examples of the

former include Microsoft’s Dynamic Language Runtime for the CLR [

Chiles

and Turner,

2009] and the invokedynamic opcode for the JVM [

Sun Microsys-

tems,

2008]. The implementation of approaches such as the DLR and invoke-

dynamic is very complex, and their performance characteristics are even more

opaque than the performance characteristics of the underlying runtime, due to

the extra level of indirection in the compilation.

The following sections are a small primer on the Lua language and the

CLR. The rest of the dissertation is organized as follows: Chapter 2 presents our

basic Lua compiler and the variations that do not depend on interprocedural

type inference. Chapter 3 is a presentation of our type inference algorithm

for the Lua language, and how we used it in our Lua compiler; Chapters 2

and 3 also discuss related work. Chapter 4 presents our benchmark suite, our

benchmark results and the analysis of these results. Finally, Chapter 5 states

our conclusions and outlines possible future work.

1.1
A Lua Primer

Lua [

Ierusalimschy,

2006] is a scripting language designed to be easily

embedded in applications, and used as a configuration and extension language.

Lua has a simple syntax, and combines common characteristics of imperative

languages, such as loops, assignment, and mutable data structures, with

features such as associative arrays, first-class functions, lexical scoping, and

coroutines.

Lua is dynamically typed, and has eight types: nil, number, string,

boolean, table, function, userdata, and thread. The nil type has a single value,

nil, and represents an uninitialized or invalid reference; values of type string

are immutable character strings; the boolean type has two values, true and

false, but every value except false and nil has a true boolean value for the

Chapter 1. Introduction 14

purposes of tests in the language; values of type table are associative arrays;

the userdata type is the type of external values from the application that is

embedding Lua, and thread is the type of coroutines.

Table indexes can be any value except nil. Lua also has syntactic sugar

for using tables as records and objects. The expression tab.field is syntactic

sugar for tab["field"]. Lua functions are first-class values; storing functions

in tables is the base of Lua’s support for object-oriented programming. The

expression tab:method(x) is a method call and is syntactical sugar for

tab.method(tab, x). This syntactic sugar also works for defining methods,

as in the fragment below:

function tab:method(x)

-- method body

end

The fragment above is the same as the following one:

tab.method = function (self, x)

-- method body

end

The behavior of Lua values can be extended using metatables. A metat-

able is a table with functions that modify the behavior of the table or the type

it is attached to. Each table can have an attached metatable, but for the other

types there can only be one metatable per type. A common use of metatables

is to implement single inheritance for objects, as in the following fragment:

local obj = setmetatable({ a = 0 },

{ __index = parent })

function parent:method(x)

self.a = self.a + x

end

obj:method(2)

print(obj.a) -- 2

In the fragment above, whenever the code tries to read a field from

obj and this field does not exist, Lua looks it up in the index field of the

metatable, so the value of this field works as the parent object. Other metatable

fields modify operations such as assignment to a field, arithmetic operations,

and comparisons.

First-class functions, lexical scoping, and imperative assignment interact

in the same way as they do in Scheme [

Steele,

1978,

Adams et al.,

1998].

Chapter 1. Introduction 15

The following fragment creates a counter and returns two functions, one to

increment and one to decrement the counter. Both functions share the same

variable in the enclosing lexical scope, and each pair of functions returned by

make counter shares a counter variable distinct from the one of the other

pairs:

function make_counter()

local counter = 0

return function ()

counter = counter + 1

return counter

end,

function ()

counter = counter - 1

return counter

end

end

The fragment above also shows how Lua functions can return more than

one value. In most function calls Lua just takes the first returned value and

discards the others, but if the function call is part of a multiple assignment,

as in inc, dec = make_counter(), or if you are composing functions, as in

use_counter(make_counter()), then Lua will use the extra values.

A function call that has more or less arguments the the arity of the

function is legal in Lua. Extra arguments are simply ignored, and missing

arguments have the value nil.

1.2
The Common Language Runtime

The CLR [

Microsoft,

2005] is a managed runtime created to be a common

target platform for different programming languages, with the goal to make it

easier for those languages to interoperate. It has an intermediate language and

shared execution environment with resources such as a garbage-collected heap,

threading, a library of common data structures, and a security system with

code signing. The CLR also has an object-oriented type system augmented

with parametric types with support for reflection and tagging of types with

metadata [

Yu et al.,

2004].

CLR types can be value types or reference types. Value types are the

primitive types (numbers and booleans) and structures; assignment of value

types copies the value. Reference types are classes, interfaces, delegates, and

Chapter 1. Introduction 16

arrays. Assignment of reference types copies the reference to the value, and

the value is kept in the heap. The CLR has a single-inheritance object system,

rooted in the object type, but classes can implement interfaces which are

types that only have abstract methods. Delegates are typed function pointers.

Each value type has a corresponding reference type, used for boxing the value

type in the heap.

The CLR execution engine is a stack-based intermediate language with

about 200 opcodes, called Common Intermediate Language, abbreviated as

CIL or just IL. The basic unit of execution is the method; each method has

an activation record kept in an execution stack. The activation record has the

local variables and arguments of the method being executed, metadata about

the method, and the evaluation stack of the execution engine. IL opcodes

implement operations such as transferring values between local variables,

arguments, or fields and the evaluation stack, creation of new objects, method

calls, arithmetic, and branching.

2
“Naive” Compilation

This chapter presents our basic approach for compiling Lua programs

to the CLR, along with a series of variations of the basic approach that

try to improve performance of generated code without having to perform

non-trivial static analysis on the source code (type inference or data-flow

based optimizations). We focus on different ways of mapping Lua’s values and

operations to the Common Language Runtime. Evaluation on the effectiveness

of our choices is deferred to Chapter 4, where we present our benchmarks.

Although benchmarking was intertwined with the process of coming up with

the compilers in this chapter, and has informed this process, we believe that

presenting the benchmarks and discussion about them separately leads to a

better exposition.

The lack of static analysis and data-flow optimizations results in rela-

tively naive code generation. But the code we generate still has to interact

with the CLR’s optimizer and JIT compiler, and this interaction is hard to

predict even for relatively naive code. The CLR specification [

Microsoft,

2005]

has no performance model for its intermediate language, and even the per-

formance of a particular implementation depends on the architecture of the

machine where it is executing [

Blajian et al.,

2006,

Morrison,

2008a]. The Java

Virtual Machine, another managed runtime environment, has the same lack of

a clear performance model [

Gu et al.,

2006,

Georges et al.,

2007]. We believe

that the preferred approach with this lack of performance models is to gener-

ate straightforward code and then experiment to discover the impact of any

changes, instead of trying to generate optimized code from what we think will

be the behavior of the runtime.

Section 2.1 presents the basic compiler and how it is implemented.

Section 2.2 presents several variations on this basic compiler, detailing their

changes an the rationale for them. Section 2.3 reviews related work on

compilation of Lua programs and on compilation of other dynamic languages

to managed runtime environments.

Each compiler has a short name that we use to refer to it throughout

this chapter and the rest of the dissertation. Table

2.1 lists the names for

Chapter 2. “Naive” Compilation 18

each compiler along with its defining characteristic and the section where the

compiler is described. References to these names in the text are quoted.

Name Description
base Basic Compiler, Section

2.1
single Single Return Values, Section

2.2.1
box Boxed Numbers, Section

2.2.2
intern Interned Strings, Section

2.2.3
prop Local Type Propagation, Section

2.2.4
infer Type Inference, Section

3.2

Table 2.1:

Compiler names

2.1
Basic Compiler

The basic LuaCLR compiler directly generates CLR Intermediate Lan-

guage code from an annotated (and desugared) Lua abstract syntax tree. There

is no separate intermediate language between Lua and IL, so describing the

compiler is a matter of describing the representation of Lua’s types by CLR

types and of describing the IL code for Lua’s operations. We present the rep-

resentation of Lua values in the next section, and Section

2.1.2 covers how the

operations are implemented.

2.1.1
Representing Lua Values

Lua is a dynamically typed language, so values of any of its types can be

operands to its operations, and Lua will raise a runtime error if the operands

are incompatible. This means that Lua types need an uniform representation

and this representation must carry type information that is checked at runtime.

Having to use an uniform representation automatically precludes directly using

the CLR’s primitive types (several types of numbers, and booleans), but still

leaves several approaches for representing Lua types.

The approach we use in the basic compiler is essentially the same as

the representation we used in Lua2IL [

Mascarenhas and Ierusalimschy,

2005],

and is similar to the representation the Lua interpreter uses [

Ierusalimschy

et al.,

2005]. The Lua interpreter uses a C struct with a type tag and a C

union with the actual value. The value itself may be a double precision floating

point number, a boolean, an external pointer, or a GC-managed pointer. Other

types of structs and unions represent values of the GC-managed types, such

as functions and tables.

Chapter 2. “Naive” Compilation 19

The CLR does not have unions, just structures and classes. We use a

Lua.Value structure as our uniform representation for all Lua values. A field

of this structure is a reference to an instance of a subclass of the abstract

Lua.Reference class. The other field of this structure is a double precision

floating point number (CLR type double). The first field acts as a tag that

identifies if the value is a number or not; if the first field is null then the value

is a number, with the number stored in the second field.

Each of the other Lua types is represented by a subclass of

Lua.Reference. The nil type is the singleton class Lua.Nil, so the sole

instance of this class is the representation of the value nil. The Lua.Bool

class represents booleans, with a single instance for true and a single instance

for false. Strings are represented by instances of the Lua.String class,

which encapsulates CLR strings, as both Lua and CLR strings are immutable.

An important difference between our representation and the Lua interpreter

representation is that it is possible to have several instances of the same string

with our representation, while the Lua interpreter interns strings so there is

only one instance of each string. Our representation makes string creation

more efficient, at the cost of slower equality testing (and consequently slower

table lookups).

We represent tables with instances of the Lua.Table class. The internal

implementation of this class is similar to the representation used by the Lua

interpreter, which has separate hash table and array parts to optimize some ac-

cesses using integer indexes. A description of the algorithm is in

Ierusalimschy

et al. [

2005], and implementing it for the CLR is straightforward.

Each function in the program source is represented by its own subclass

of Lua.Reference. Instances of the function’s class are the closures created

during execution of the program. Lua functions are first class values that can

reference and modify variables in their enclosing lexical scopes, so the closures

we create have instance variables that hold references to variables in enclosing

scopes that the function uses. In the next section we will cover the internals

of closures in greater depth. Each closure also has an instance variable to hold

the environment table, used to look up the value of global variables.

An important characteristic of our chosen representations is that Lua

code never manipulates “native” CLR objects directly, only instances of the

Lua.Value type. We will see in the next section that this leads to simpler

code generation and more efficient generated code. The drawback is that it

makes it harder to interface Lua with other CLR code. To interface with other

code we can wrap CLR values in a subclass of Lua.Reference that delegates

operations to the actual CLR type of the value (using reflection, for example).

Chapter 2. “Naive” Compilation 20

Any Lua values passed to CLR functions can also be converted to equivalent

primitive CLR values. This wrapping can be made transparent to the user,

and we have already used this wrapping both in Lua2IL and in a bridge from

the Lua interpreter to the CLR [

Mascarenhas and Ierusalimschy,

2005,

2004].

2.1.2
Code Generation

The code the “base” compiler generates for most operations is similar:

there is code to test if both operands are numbers, then code that does the

operation inline if both operands are numbers, and finally a call to a function

in the runtime library that does the operation if one of the operands is not a

number. These functions of the runtime library are all virtual methods of the

base Lua.Reference class. So each operation involves a type check and then

either the inlined operation or a virtual dispatch to a method that implements

the operation.

We inline arithmetic and relational operations on numbers because

they are just a single IL instruction. Instead of generating tests and inlined

operations we could just compile each operation to a call to a runtime library

function that would do the checks, and rely on the CLR JIT’s inliner to inline

this code. But the type checks and inlined operations are straightforward to

generate.

Lua functions are first-class values with lexical scoping, as we saw in

Section

1.1. Distinct functions that use the same variable share the same

memory location for the variable, instead of each having a distinct memory

location that receives a copy of the variable’s value at the moment the function

is defined, like lexically scoped variables in Python [

Mertz,

2001] and the “final”

restriction of Java’s inner classes [

Gosling et al.,

2005].

The “base” compiler uses the CLR stack for local variables and argument

passing, but the CLR denies access to local variables outside of the current

stack frame, and also does not allow references to local variable locations that

escape the function where the local variable is defined. To get around these

limitations we have to allocate in the heap all local variables that are used

outside the function that defines them, and keep just references to these heap

cells in the stack. Each closure also has a kind of display [

Aho et al.,

1986,

Friedman et al.,

2001] that holds references to heap cells of all variables in

enclosing scopes that it uses. The basic compiler implements the display as

fields in the function’s type, so they are instance variables of the closures.

When instantiating the function at runtime (at the point in the program where

the function is defined) the closure’s constructor takes one argument for each

Chapter 2. “Naive” Compilation 21

field in its display, and sets the fields in the newly created instance.

For example, take this fragment:

local w

function f(x)

return function (y)

return function (z) return w + x + y + z end

end

end

The class of the innermost function has fields for variables w, x, and y.

The class of its enclosing function has fields for variables w and x, and the

class of the outermost function has a field for variable w. All these fields hold

a cell for a single Lua value. When instantiating the innermost closure, we

emit code to call its constructor passing the value of the w and x fields of

the enclosing closure, as well as the value of the y stack slot, which is also a

reference to a heap cell holding the value of y. Using references to these heap

cells allows two closures to share the same variable. The type of these heap

cells is Lua.UpValue.

Lua does not have arity errors when calling functions; extra arguments

are simply ignored, and missing arguments have value nil. Function calls

in the basic LuaCLR compiler are compiled to a call to a virtual method

of Lua.Reference called Invoke. Invoke is overloaded; Lua.Reference has

different versions of Invoke for different numbers of arguments in the call site,

from zero arguments to a maximum fixed by the compiler, plus a version of

Invoke that takes an array of arguments. The version of Invoke that takes

an array is used in call sites with more arguments than the maximum or with

call sites where the number of arguments is unknown at compile-time. The

latter case may happen because Lua functions can return a variable number

of values, and when a function call is the last argument to another function

call all the values returned by the first call get passed to other call (like when

composing functions).

Each function always has a version of Invoke that matches the arity of

the function, and this version has the code generated from the function body.

Other versions of Invoke delegate to it, adjusting the number of arguments as

necessary. This means that calling a function with a small number of arguments

translates to a single CLR virtual call if the number of arguments matches the

arity of function. If there is a mismatch there is an adjustment, but then the

adjusted call to Invoke is a statically dispatched call, not another virtual call.

Chapter 2. “Naive” Compilation 22

The classes of all three functions in the example shown in the previous

page have Invoke methods similar to the ones shown in the fragment of C#

code below

1:

Lua.Value[] Invoke() {

return this.Invoke(Lua.Nil.Instance);

}

Lua.Value[] Invoke(Lua.Value v1) {

... code that implements the function ...

}

Lua.Value[] Invoke(Lua.Value v1, Lua.value v2) {

return this.Invoke(v1);

}

... versions of Invoke with more parameters ...

Lua.Value[] Invoke(Lua.Value[] vs) {

if(vs.Length > 0)

return this.Invoke(vs[0]);

else

return this.Invoke(Lua.Nil.Instance);

}

2.2
Variations of the Basic Compiler

There are several changes that we can make in how we represent Lua

types and generate code for operations on these types that trade complexity

in the implementation of the compiler for faster programs. In the following

sections we present variations of the “base” compiler and the rationale for

these variations.

2.2.1
Single Return Values

Lua functions can return any number of values, so all functions in the

“base” compiler return an array of Lua.Value, even if they only return a

single value or the function call needs just the first one. This means that every

function call has to allocate an array on the heap to store the return values of

the call.

There are several situations where the compiler can be sure that it only

needs the first return value, or none at all. Some of these situations are when

1

We use C# code just to make the fragment shorter, the compiler actually generates IL
directly.

Chapter 2. “Naive” Compilation 23

a function call is on the right side of an assignment, as in x = f(), when

a function call is used as a statement, when a function call is not the last

argument of another function call, as in g(f(), x), and when a function call

is used in a binary operation.

Our first variation of the basic compiler exploits this property by com-

piling each function twice; one version returns an array, just like in “base”,

while the other returns a single Lua.Value (possibly nil). So instead of a

Invoke method the functions have a InvokeM method, for multiple values,

and a InvokeS method, for single values. They are overloaded to take different

number of arguments, as in the basic compiler. In the code for f’s InvokeS,

the code generated for all return statements returns the first expression in

the statement and just evaluates and discards the others, while in the code

for f’s InvokeM a return statement allocates an array, stores the values of its

expressions in this array, and then returns it.

For example, in the function call g(f(), f()) the compiler emits a call

to a InvokeS method in the first call to f, and a call to a InvokeM method in

the second call to f, as all values returned by the second call have to be passed

as arguments to the call to g.

2.2.2
Boxed Numbers

The previous compiler still uses a Lua.Value structure as a uniform

representation for Lua values. This structure has two fields: one is used if

the value is a number, and the other is a pointer to other types of values,

which are all instances of subclasses of the Lua.Reference abstract class.

This arrangement tries to mimic the representation used by the Lua interpreter

(which uses a union instead of a structure), and avoids having to store numbers

in the heap.

We will see in Section

2.3 that other compilers for dynamic languages on

the CLR choose to represent all values as pointers to objects in the heap, with

most compilers using the CLR base object type as the common denominator

for the values of the language. We follow a similar approach in the variation

we present in this section.

Instead of having a Lua.Value structure we will use object as the type of

Lua values; all values are now pointers to either a boxed double in the heap, in

case the value is a number, or a pointer to an instance of one of the subclasses

of Lua.Reference, for all other types of values. The representation of these

other types remain unchanged, except for trivial changes in the signatures of

methods and the internal representation of tables to deal with object instead

Chapter 2. “Naive” Compilation 24

of Lua.Value.

All operations involving numbers in the “base” and “single” compilers

first check if the value is a number by checking if the Lua.Reference field

of the Lua.Value structure is null, and then unpack the number from the

structure, by loading the double field. In the “box” compiler these operations

become a type test, to see if the value is of type double, and an unboxing

operation if it is. These are the following fragment in the CLR intermediate

language:

isinst double

brfalse notnum

unbox double

After doing the operation, the “base” and “single” compilers had to store

null in the Lua.Reference field and the number that is the result of the

primitive operation in the double field of the Lua.Reference structure that

holds the result of the operation. The “box” compiler just does a box double

IL operation that takes the result and boxes it.

In operations that do not involve numbers, the “base” and “single”

compilers had to unpack the operand by loading the Lua.Reference field from

the Lua.Value structure and then invoking the correct virtual method. In the

“box” compiler this becomes a cast to Lua.Reference followed by the virtual

dispatch.

This variation presents a case where the high-level nature of the interme-

diate language of a managed runtime environment and a lack of information

on how the optimizer of this runtime translates this intermediate language to

machine code makes it hard to assess if a particular change improves or not

the execution time of compiled programs.

The number of intermediate language instructions to do each operation

in the “base”, “single”, and “box” compilers is roughly the same, but the cost

of these instructions is unpredictable. We have to use benchmarks to evaluate

how each approach performs. The change of unboxed to boxed representations

can have wildly different performance characteristics depending on how the

runtime’s heap allocator and garbage collector work, and even whether the

runtime optimizes boxing and unboxing of some numbers. For example, one

possible optimization a runtime can do is to pre-allocate a range of boxed

numbers, like small integers, and keep reusing them instead of allocating new

objects in the heap.

Chapter 2. “Naive” Compilation 25

2.2.3
Interned Strings

The Lua interpreter interns all strings so each string has only one copy.

This lets the test of whether two strings are equal be a simple test of pointer

equality, instead of a test of the strings’ contents. Tests of string equality

are always used when indexing tables with string keys, so interning strings

makes indexing using string keys faster. Indexing operations with string keys

are a common operation in Lua, specially in OO-style code, as field accesses

(obj.field) and method calls (obj:method()) get desugared to indexing

operations with string keys.

Our previous compilers represent Lua strings with the Lua.String sub-

class of Lua.Reference, and the internal representation is just a CLR string.

Like Lua strings, CLR strings are immutable, but the CLR specification does

not dictate how strings should be implemented, so implementations are free

to intern strings or not. Not interning is a better choice when string creation

(as a result of concatenation, for example, or slicing) is more common than

testing equality. In this section we present a variation of the “box” compiler

that tries to optimize equality tests, and benchmarking this variation against

“box” tells whether a particular CLR implementation is interning its strings

or not.

One optimization we can do is to implement the equality test between

two Lua.String objects as a pointer equality test first, with the CLR string

equality test done only when the pointer test fails. We then make sure all

string literals in the program, including desugared field and method names,

have only one instance. This completely avoids regular string comparison in

indexing operations if the particular Lua.String key is already in the table

and there are no hash collisions.

The optimization we actually do in the “intern” compiler is applicable to

a greater number of indexing operations; we add a new type for interned strings

that we call symbols, the type Lua.Symbol. This is a subtype of Lua.String,

the only difference being that symbols are interned in a global hashtable, so

two symbols can safely be tested for equality by pointer equality. All string

literals are symbols, and tables intern all strings that are used as keys, so

all internal equality tests in a hash lookup are done between symbols. Any

indexing operation that has a symbol key only needs pointer equality, even in

the case of collisions or if the key is not in the hash. This includes all indexing

operations caused by Lua’s OO syntactical sugar.

Operations that create new strings still create instances of Lua.String

instead of Lua.Symbol, so they do not have to pay the cost of interning strings.

Chapter 2. “Naive” Compilation 26

If the CLR implementation does not intern strings then this variation should

speed up OO-style code without slowing down code that does string processing.

2.2.4
Local Type Propagation

Working with boxed numbers can have a big performance impact on

code that does a lot of arithmetic, even if the runtime tries to optimize

boxing and unboxing operations and has a good memory allocator and garbage

collector. The Lua.Value representation of the “base” and “single” compilers

avoids boxing and unboxing, but wastes memory and uses a runtime feature,

structured value types allocated in the stack, that also relies on optimizations

by the runtime. If we statically know that we are only dealing with numbers

we can avoid both boxing and structures and use the native double type of

the CLR directly.

In Chapter 3 we present a way of extracting this information with type

inference, and show how it can have other uses besides just avoiding boxing

of numbers. In this section we present a much simplified, and local, version

of type inference. It is local because it does not try to infer types across

function call boundaries. It types variables and expressions in a function as

one of seven simple types: nil, boolean, number, string, function, table, and

the type any, which means that the variable (or expression) can have any type.

There are no structural types: having a type “function” or “table” just means

that operations can be dispatched to methods of Lua.Function or Lua.Table

without doing type checks; all functions have type “function” and all tables

have type “table”. Function calls and indexing operations always have type

“any”, and “any” is also the type of the parameters of a function.

The typing rules are straightforward. For assignment there are three

cases, which depends on the types of the lvalue (the left side of the assignment)

and the rvalue (the right side of the assignment):

1. If the lvalue does not have a type yet, then it gets the type of the rvalue;

2. if the lvalue has the same type as the rvalue, then nothing changes;

3. if the lvalue and rvalue have different types, then the lvalue now has type

“any”.

The rules for binary arithmetic operations are that the type of the

operation is “number” if the type of both operands is “number”, otherwise it is

“any”. In Lua, as a consequence of the metatables we mentioned in Section

1.1,

binary arithmetic operations are dispatched to user-defined operations if one

Chapter 2. “Naive” Compilation 27

of the operands is not a number, and our type inference has to assume that

these operations can return anything.

The representation that the “prop” compiler uses for most types is the

same as the one the “intern” compiler uses. The only type that has a different

representation is “number”, which uses the double type of the CLR. The

type “any” is an object pointer to either a boxed double or an instance of

a subclass of Lua.Reference, and other types continue to be represented as

subclasses of Lua.Reference.

We implement the type inference as an iterated traversal of each the

abstract syntax tree of each function. The inference stops when the types

converge. All the typing rules have the invariant that if the type of a term is

“any” it cannot change, and if the type of a term is not “any” then it can

either stay the same or change to “any”, so convergence is guaranteed.

Changes to the code generator are straightforward, with simpler code

for arithmetic expressions when the operands are numbers, and elimination of

type checks prior to calls to methods of Lua.Reference whenever possible.

2.3
Related Work

In this section we review previous work on compiling dynamic languages

to managed runtime environments. We focus on compilers targeting the Com-

mon Language Runtime first, as it was the first managed runtime specifically

created as a shared runtime for different high-level languages, with emphasis

on interoperation among these languages [

Hamilton,

2003].

In 1999 and 2000 Microsoft sponsored the development of a compiler

for the Python scripting language, written by Mark Hammond and Greg

Stein. The compiler supported most of the Python language and allowed

Python programs to interface with CLR code, but the authors judged the

performance to be “so low as to render the current implementation useless

for anything beyond demonstration purposes” [

Hammond,

2000]. This poor

performance was for “both the compiler itself, and the code generated by the

compiler” [

Hammond,

2000]. The authors abandoned the effort in 2002.

Python for .NET used a type mapping similar to the one we used on

our basic compiler, with a CLR structure representing Python values, but

the authors noted that “simple arithmetic expressions could take hundreds

or thousands of Intermediate Language instructions”, so the operations were

inefficient. All the operations were dispatched to the Python for .NET runtime,

as the compiler did not do any inlining.

Common Larceny [

Clinger,

2005] was an early Scheme compiler for the

Chapter 2. “Naive” Compilation 28

CLR that compiled MacScheme assembly code, used as an intermediate lan-

guage in the Larceny family of Scheme compilers [

Clinger and Hansen,

1994],

to CIL instructions. It used instances of a SchemeObject class to represent

Scheme values, so all values were pointers to objects in the heap; Com-

mon Larceny preallocated booleans, characters, and small integers. Common

Larceny used its own stack for both values and control information, to make the

implementation of Scheme’s first-class continuations easier. The performance

of the compiled Scheme code was found to be similar to the performance of

the code running on the MzScheme interpreter [

Clinger,

2005].

Bigloo.NET [

Bres et al.,

2004] was a later Scheme compiler for the CLR

which, like Common Larceny, was part of a family of Scheme compilers that

targeted different platforms (the Bigloo family [

Serrano and Weis,

1995]).

Bigloo.NET was heavily derived from the BiglooJVM compiler [

Serpette and

Serrano,

2002]. Its usual representation for Scheme values was a pointer (of

object type) to a value in the heap that could be a boxed number, a byte

array (for strings), or instances of classes that represented other Scheme

types. Bigloo.NET could also use an interprocedural flow analysis [

Serrano and

Feeley,

1996] augmented with type annotations to use unboxed representations

for scalar values.

In contrast to Common Larceny, Bigloo.NET used the CLR’s stack for

control-flow, argument passing, and local variable storage, and did not have a

complete implementation of Scheme continuations. Bigloo.NET implemented

all closures in the same Scheme module as instances of the same class derived

from bigloo.procedure, with an index that identified the specific closure’s

entry point plus an array for the closure’s display. The code for all the functions

in a module was compiled to different entry points in the same CLR method,

indexed by a switch statement, because the authors claimed this was better

than having each closure be a separate subclass of bigloo.procedure for code

that makes heavy use of closures. Performance of Bigloo.NET was found to

be two to six times slower than the performance of BiglooC, a compiler of the

Bigloo family that compiles Scheme to C code, and about twice as slow as

BiglooJVM.

Lua2IL was another project for running Lua code inside the CLR, and

worked by translating Lua 5.0 bytecodes to CIL instructions, with the help

of a support runtime [

Mascarenhas and Ierusalimschy,

2005]. Lua2IL used the

same mapping from Lua types to CLR types as our “base” compiler, with a

structure holding either a Lua number of a reference to other Lua types, and

the other types represented by CLR classes with a common subclass. Lua2IL

also inlined operations on numbers.

Chapter 2. “Naive” Compilation 29

Where Lua2IL differs form our “base” compiler is on the treatment of

local variables, function arguments and upvalues. Lua2IL kept a parallel stack

for Lua values in the CLR heap and threaded this stack through the compiled

Lua code, but still used the CLR stack for control. Code generated by Lua2IL

had performance similar to the same code when executed by the Lua 5.0.2

interpreter.

The research prototype of IronPython, another Python compiler for the

CLR, showed that Python could have good performance in the CLR if the

compiler was designed with careful consideration to performance [

Hugunin,

2004]. IronPython boxed numbers and cast other types to object, like our

“boxed numbers” compiler, and also inlined common operations.

Later versions of IronPython have focused on generalizing its runtime

to other dynamic languages, building a Dynamic Language Runtime on top

of the CLR [

Hugunin,

2008,

Chiles and Turner,

2009]. The DLR uses a

generalization of inline caches [

Deutsch and Schiffman,

1984,

Hölzle and

Ungar,

1994,

Hölzle et al.,

1991] to implement operations, called dynamic

sites. Its runtime system generates CIL code that makes heavy use of static

method calls, relying on the CLR JIT for inlining and optimization. The

implementation of dynamic sites uses a complex runtime system and extensive

runtime code generation [

Turner and Chiles,

2009]. Recent work on IronPython

has moved to mixed-mode execution, with an interpreter for DLR syntax trees

as the main mode of execution and the compiled dynamic sites for hotspots,

as the extensive code generation needed by the dynamic sites was found to be

too heavyweight [

Hugunin,

2009].

Currently Microsoft has compilers that target the DLR for

Python (the IronPython compilers cited above), Ruby [

Lam,

2009], and

JavaScript [

Dhamija,

2007], and the set of the DLR features is biased towards

these languages. In particular, there is no native support for multiple return

values from functions, as these three languages implement multiple return

values using tuples or arrays. Tail call optimization is also not present in the

DLR, despite the CLR supporting for it. The semantics of Lua require tail

call optimization, and efficient implementation of Lua function calls requires

support for returning multiple values. Another issue is the implementation of

lexical scoping and varargs in the DLR, which revert to building stack frames

in the heap instead of using the CLR stack.

IronScheme [

Pritchard,

2009] is a Scheme R6RS [

Sperber et al.,

2007]

compiler for the CLR in active development that uses the DLR, but it uses a

modified version of the DLR that implements the extra functionality needed

to compile the Scheme language. The author estimates that the modified DLR

Chapter 2. “Naive” Compilation 30

used by the IronScheme compiler uses only 20% of code the original DLR, and

wants to investigate the viability of writing his own code generator instead of

using the DLR [

Vastbinder,

2008].

Phalanger [

Benda et al.,

2006] is a PHP compiler for the CLR. The unit

of execution in PHP is a script, and Phalanger compiles a script to a CLR

class, with the body of the script as a Main method of this class and other

functions declared in the script as static methods of the class. Each function

is compiled to two methods, one that takes the function’s arguments as formal

parameters, so uses the CLR stack, and another method that takes arguments

in an array and delegates to the other method, for function calls where the

target is unknown. Phalanger represents all values as a pointer of type object,

using a combination of boxing for PHP types that have corresponding CLR

primitive types (such as numbers), and subclasses of a PhpObject class for

other PHP types such as classes and interfaces.

Cuni et al. [

2009] use a generalization of polymorphic inline caches called

flexswitches to implement a JIT compiler for a toy dynamic language targeting

the CLR, so there are two layers of JIT compilation, the flexswitch-based

JIT compiler and the CLR JIT compiler. While a polymorphic inline cache

optimizes just the specific operation at the site of the cache, and does not

affect other operations, a flexswitch can call back to the flexswitch-based JIT

compiler to generate specialized code for code reachable from the flexswitch.

This approach can generate code that is very efficient, but the extra level of

compilation and recompilation adds considerable overhead, with most of the

total running time of the microbenchmarks in the paper being compilation

overhead.

3
Type Inference and Optimization

The previous chapter presented a basic compiler from Lua to the CLR

and some variations of it, changing the runtime representation of Lua values

and the treatment of functions that return multiple values. All variations of

the basic compiler have in common the fact that they did not need any analysis

of the source code beyond basic analysis to tie the use of local variables with

their definitions.

This chapter presents a more complex variation of the basic compiler,

using information derived from a type inference algorithm, a kind of static

analysis that tries to assign a type to each variable and expression in the

program. If types are precise enough, the compiler can use more efficient

runtime representations for values, and can generate more efficient code for

operations.

In Section 3.1, we give an overview of the problem of typing inference in

the Lua programming language, and describe our type inference algorithm. In

Section 3.2, we show how the compiler uses the type information extracted by

the algorithm. In Section 3.3, we review related work on type inference and

type-related analysis for dynamic programming languages, and discuss how

our work differs from this other work.

3.1
Type Inference For Lua

Lua is a dynamically typed language, which combines lack of type

annotations with runtime type checking. This imposes several constraints in

the representation of Lua values for the Lua compilers we presented in the

previous chapter: all numbers have to use the same underlying representation

as other values, and any operation involving two numbers converting from this

representation to native CLR numbers, doing the operation, and converting

back to the common representation; all polymorphic operations have to be

dispatched through virtual methods, a form of dynamic dispatch natively

supported by the CLR; all functions need to be able to take any number

of arguments of any type; all function applications can produce any number of

Chapter 3. Type Inference and Optimization 32

values of any type; finally, all tables have to allow keys and values of any type.

We can use more efficient representations and can generate more efficient

code if we are sure that variables and expressions have more precise types. In

an extreme case, if we are sure that expression e1 can only be a number and

that expression e2 can only be a number, we can safely make both expressions

evaluate to double, so the expression e1+e2 compiles to the following Common

Intermediate Language code, where C(e) is the code for evaluating expression

e and leaving the result on the top of the CLR’s data stack:

C(e1)

C(e2)

add

Contrast this with the code when we can not be sure e1 and e2 are

numbers, which is the following CIL code in the “box”, “intern”, and “prop”

compilers (we elide the case where either expression did not evaluate to a

number):

C(e1)

dup

isinst double

brfalse add1

unbox double

C(e2)

dup

isinst double

brfalse add2

unbox double

add

box double

br out

add1: . . .

br out

add2: . . .

out: ldots

What was just a simple addition now involves type checking, unboxing

and reboxing the result.

Another interesting case is the compilation of expressions such as e[c]

where c is a string literal and we are sure that e evaluates to a table whose

keys are all statically known and include c (a record, in other words). This is a

common expression in Lua because of the e.name syntactic sugar for tables. In

Chapter 3. Type Inference and Optimization 33

this case, we can represent the table as a sealed CLR class (a heap-allocated

record), and the expression compiles to the following simple code, where t is

the type of the record we synthesized for the table, and ldfld is a very efficient

field access operation (in practice an indexed memory fetch):

C(e)

ldfld t::c

Contrast with the following code, where callvirt is a dynamically dis-

patched call to a function that does a hashtable lookup, and we elide the special

case where e evaluates to a number:

C(e)

dup

isinst double

br num

castclass Lua.Reference

ldsfld InternedSymbols::c

callvirt Lua.Reference::get Item(Lua.Symbol)

br out

num: . . .

out: . . .

We want an algorithm that can extract from the program the type

information necessary for this kind of optimization. The specific algorithm

we use is a form of type inference. A type inference algorithm uses syntax-

directed typing rules to build and solve a set of constraints on the types of

the program [

Damas and Milner,

1982]. The solution ideally assigns the most

precise type for each expression and variable that still satisfies all typing rules.

All Lua programs have to be typable by our type inference algorithm, the

variation will only be in the degree of precision of this typing; programs that

make more use of Lua’s dynamism will necessarily have more imprecise types

but will still be well-typed, that is, our type inference will not introduce errors

in correct programs.

Our type system will assign type D, the dynamic type, to all variables

and expressions whose precise type can only be known at runtime. We say

these variables and expressions hold and evaluate to tagged values from the

way runtime type checking is traditionally implemented (e.g. in the Lua

interpreter), by representing a dynamic value as a tagged union. Any operation

on a tagged value involves a check of the tag and dispatching based on this tag.

An abstract class and concrete subclasses, the representation we used on the

last chapter, is a kind of tagged union. Typing all variables and expressions

Chapter 3. Type Inference and Optimization 34

with type D produces a valid typing for any well-formed Lua program, but

without any static type optimizations.

We are interested in using better representations than tagged unions in

our compiler, so we will introduce several untagged types in addition to D.

We will assign an untagged type to any variable and expression for which we

can infer a precise type. These variables and expressions hold and evaluate

to untagged values, so the implementation can use different and incompatible

representations for tagged and untagged types. For example, if we infer the

untagged type Number to variable x then we know x will only hold untagged

numbers, and we can choose a representation accordingly (double in the

compiler we present in Section 3.2). If we infer type D to x then x can

potentially hold any tagged value, even if at runtime it will only hold tagged

numbers, so we have to use the fallback dynamic representation (object in

the case of the CLR).

We could eliminate the distinction between tagged and untagged values,

and use the inferred type information only to eliminate type checks and

dynamic dispatch, which is what soft typing approaches do [

Wright and

Cartwright,

1997], but we would lose important optimization opportunities.

For example, in the code fragments we presented in the beginning of this

section we would only be able to eliminate the type checks and the dynamic

dispatch, but the unboxing, reboxing and the hashtable lookup would still be

there.

We will have untagged types for the first-order values booleans, numbers,

strings, and nil, and also for the higher-order values tables and functions.

Threads and userdata do not have untagged types as a simplification (our

simplified Lua core in Section

3.1.4 does not have threads and userdata). Lua

functions can return multiple values in some syntactical contexts, so we will

also introduce a “second-class” tuple type for these situations. Our table types

will be a family of related types, corresponding to the different ways tables get

used in Lua programs: records, sparse arrays, hash tables, or a combination of

these.

Our type system will also have a coercion relation ; that applies when

the values of a type can be coerced to values of another type without error (with

a runtime conversion if the two types do not share the same representation).

The coercion relation lets part of an expression have an untagged type even if

the expression as a whole needs to have type D. It also allows us to introduce

singleton types for literals that appear in the program, which in turn lets us

infer record-like types for tables that are only indexed by literals. And also

allows us to introduce nullable types, which are unions of an untagged type and

Chapter 3. Type Inference and Optimization 35

the type of nil, useful for typing table indexing expressions, as indexing a non-

existent value in Lua evaluates to nil instead of raising an error. The coercion

relation is similar to a subtyping relation with regard to contravariance, so

coercions from function and table types will be severely restricted. Section

3.1.2

gives the full coercion relation and elaborates on these issues.

There is no ML-style parametric polymorphism [

Cardelli and Wegner,

1985,

Damas and Milner,

1982] in our type system, for pragmatic reasons

that we elaborate on Section

3.1.3. The lack of polymorphic types in our type

system will not make programs fail to type check and compile, because our

type system has D as a fallback type. The worst that can happen is a loss

of precision, with a corresponding loss of runtime efficiency. This is different

from the type systems of languages of the ML family, where lack of polymorphic

types can make useful programs not compile at all.

Finding a valid and precise typing for a program is the job of our type

inference algorithm. The core of the algorithm is a traversal of a program’s

abstract syntax tree, typing the expressions in the tree from the leafs to the

root. If there are several valid typings for an expression then the algorithm will

use the most precise one. Coercions in the typing rules lets the type inference

assign a less precise type to an expression while having more precise types

in its parts. The contravariance restrictions on coercion of function and table

types add another complication, though; to assign a type to an expression the

algorithm may need to change the type of other expressions that already have

been typed.

For example, a function that has already been typed as Number →
Number has to be applied to a String. In this case, the algorithm needs to

change the type of the function’s parameter from Number to D. This may

induce a change in the return type of the function, and in other expressions that

have already been typed. To deal with the situations like these, the algorithm

is iterative, and does traversals of the program’s tree until the types of all terms

have converged. Termination is guaranteed because types always change from

more precise to less (according to coercion). Once the type of a term becomes

D it will remain D.

This “mutability” of function and table types is reflected in our typing

rules by non-determinism in the typing rules for constructors of these values.

The type of a function can have more parameter types than the function’s

arity, for example, and the type of the table constructor can be any valid table

type. Section

3.1.5 details the algorithm and gives a non-trivial example of its

iterative type assignment.

In the rest of this section we give a detailed description of the types,

Chapter 3. Type Inference and Optimization 36

coercion relation, and the main typing rules of our type system, and also detail

the main parts of the type inference algorithm.

3.1.1
Type Language

In the previous section we have already introduced the first type of our

type system, D. A value having type D means we can only know its type

at runtime, so values of type D have to carry their type information in their

runtime representation, which is why we called them tagged values. Our type

system will guarantee that any variable that can hold a tagged value or any

expression that can produce one will have type D. In the rest of this section

we will present the other types in our type system.

Let us start with singleton types, the types of constants. Singleton types

are nil, true, and false, plus a singleton type for each number and string (we

will use n to mean a numeric singleton type and s to mean a string singleton

type). Typing literals and constants with these singleton types will let us infer

record types for some tables.

The next types we will introduce are Bool, Number, and String,

for values that are known at runtime to be booleans, numbers, or strings,

respectively. Notice that while literal string “foo” has the “foo” singleton

type, the coercion relation effectively also gives it the String type because

“foo” ; String.

Table types can take two forms. The first form is a type with the template

D 7→ υ, where υ is a type. These are hash tables with dynamic keys and values

of type υ. The other form is a conjunction τ1 7→ υ1 ∧ . . .∧ τn 7→ υn with n ≥ 1

and τk 6= D, meaning a table where the keys can have any of the types τ1, . . . , τn

and the values any of the types υ1, . . . , υn, with keys of type τk having values

of type υk.

Table types as defined above can be ambiguous. For example, in the type

2 7→ Number ∧Number 7→ String the type of the value corresponding the

key 2 could be Number or String, as 2 can be interpreted as having singleton

type 2 or type Number (because of coercion). To remove this ambiguity we

restrict the types of the keys so that for any distinct key types τi and τj there

is no type σ with σ ; τi and σ ; τj.

To talk about function types we will first define tuple types, which

correspond to heterogeneous (and immutable) lists of values. Tuples are not

first-class values in Lua. They have temporary existence as the result of

evaluating a list of expressions (the rvalue of an assignment or the arguments

of a function application), and sometimes can be returned as the result of a

Chapter 3. Type Inference and Optimization 37

function application, but the elements of a tuple cannot be other tuples. The

size of a tuple size may not be statically know, so our type system has to

reflect this. We will give the type empty to empty tuples. Non-empty tuples

of known size have types of the form τ1× . . .× τn with n ≥ 1 (τk can not be a

tuple type, naturally). Tuples with a known minimum but unknown maximum

size have types of the form τ1 × . . .× τn ×D∗ (possibly D∗).
We can now define function types as types of the form τ → υ, where

τ and υ are tuple types. Variadic functions are functions where the domain

type is a tuple type of unknown maximum length, so variadic arguments of a

function always have type D in our type system.

Situations where a value can either be nil or some other untagged value

are common in our type system because of the way Lua tables work. In Lua,

indexing a table with a key that does not exist is not an error, but returns nil.

This means that even if all assignments to keys of type τ have type υ there

is the possibility of indexing the table and getting nil. We introduce nullable

types τ? to represent the union of τ and nil (a value of type τ? is either a

value of type τ or nil). To simplify our type inference, we restrict the type τ

in τ? to simple, table, and function types.

Our type system also types statements, not just expressions. The type of

a single statement is the singleton type void if it is not a return statement.

The type of a block of statements is also void if no return statements are

present in the block.

Finally, we need a way to define recursive types (to be able to have types

for things such as linked lists and trees); we use µα.τ for recursive types, where

τ is a function or table type with α appearing anywhere a function or table

type could appear. For example, µα.(1 7→ Number∧2 7→ α?) represents single

linked lists of numbers.

Figure

3.1 summarizes our complete type language.

3.1.2
Types and Coercion

The core of our typing rules and type inference algorithm is a coercion

relation τ ; υ between two types τ and υ that holds whenever values of type

τ can be coerced into values of type υ. This coercion means that values of type

τ can be converted to values of type υ, or it means that the both types τ and

υ share the same runtime representation, depending on the how we map types

to concrete representations.

The coercion relation is reflexive and transitive, and Figure

3.2 lists its

base cases.

Chapter 3. Type Inference and Optimization 38

tagged types
dynamic ::= D

dynamic list ::= D∗

untagged types
singleton ::= n, s, nil, true, false

simple ::= Bool, Number, String
table ::= τ1 7→ υ1 ∧ . . . ∧ τn 7→ υn with n ≥ 1, where

∀k.τk 6= D and ∀i, j, σ.(i 6= j ∧ σ ; τi) → σ 6;
τj

::= D 7→ υ
function ::= τ → υ, where τ and υ are tuple types
nullable ::= τ?, where τ is a simple, function, or table type

recursive ::= µα.τ , where τ is a function or table type with
α standing in for τ

tuple types
tuple ::= τ1 × . . .× τn with n ≥ 1

::= τ1 × . . .× τn ×D∗ with n ≥ 0
::= empty

Figure 3.1:

Type Language

The simple and nullable coercions are straightforward. Any untagged

first-order type can be coerced to D, and a nullable type can also be coerced

to D if its base type can be coerced. Tables and functions are a different

matter; only tables that map tagged values to tagged values and functions

that take tagged values and return a dynamic list can be coerced to D, because

there are no coercions from D to untagged types and functions and tables are

contravariant on their domain and key types, respectively.

The coercion rules for tuples are best understood in the context of the

typing rules that employ them, so we will defer the explanation to the next

section, where we describe and explain some the essential type rules of our

type system.

The purpose of the coercion relation is to balance the need of inferring

precise types with the need of inferring types for all correct Lua programs

(which often means using D). A coercion constraint in a typing rule means

that a part of the expression being typed can have a more precise type than

the whole expression. For example, coercion allows the type system to type an

argument in a function application with a function of type D∗ → D∗ with a

more precise type such as Number.

Chapter 3. Type Inference and Optimization 39

simple coercions
true ; Bool
false ; Bool

n ; Number
s ; String

nullable coercions
nil ; τ?
τ ; τ?

tagging coercions
nil ; D

Bool ; D
Number ; D

String ; D
τ? ; D iff τ ; D

D 7→ D ; D
τ1 × . . .× τn → D∗ with n > 0 ; D iff τ1 = D ∧ . . . ∧ τn−1 =

D∧(τn = D∨τn = D∗)

tuple coercions
empty ; nil× . . .× nil

τ1 × . . .× τn ; υ1 × . . .× υn iff τk ; υk
τ1 × . . .× τn ; τ1 × . . .× τn × nil

τ1 × . . .× τn ×D∗ ; υ1 × . . .× υn ×D∗ iff τk ; υk
τ1 × . . .× τn ×D∗ ; τ1 × . . .× τn ×D ×D∗

τ1 × . . .× τn ; D∗ iff τk ; D
τ1 × . . .× τn ×D∗ ; D∗ iff τk ; D

Figure 3.2:

Coercion Relation

3.1.3
Monomorphism Restriction

Lua’s primitive operations exhibit ad-hoc [

Cardelli and Wegner,

1985]

instead of parametric polymorphism. A simple function like the function foo

in the following fragment has no single polymorphic type:

function foo(a, b)

return a[1], b[2]

end

Function foo can work on any Lua type, via extensible semantics. If

indexing was restricted to tables then foo still would not be polymorphic, as

there is insufficient information to know if the table a is a record, an array, a

hashtable, a set, or other structures that Lua tables can emulate, each with a

different polymorphic type.

Chapter 3. Type Inference and Optimization 40

One way to assign polymorphic types to foo would be to type each

call site of foo separately, assuming that we are sure that those call sites

only call foo, so we could get enough information to resolve the ad-hoc

polymorphism of the indexing operator at compile-time. Each inferred type

for foo would lead to at least one different compilation of foo, because the use

of different representations may force more than one compiled version for the

same parametric type. If foo is parametric on two types then we need m × n
versions where m is the number of representations of one of the types and n the

number of representations of the other. If a call site of foo is inside a function

bar and bar itself is polymorphic, then the call sites of foo in each polymorphic

version of bar have to be typed separately.

Even if we accept the increased code size of having several compiled

versions of the same function, polymorphic type inference in the presence

of assignment and mutable data structures is unsound in the general case.

Restrictions in the inference algorithm can restore soundness, but at the cost of

greater complexity of the type inference (greater complexity of implementation,

greater complexity of understanding by the user, and greater complexity in

the algorithmic sense) [

Leroy and Weis,

1991]. Restricting our type inference

to monomorphic types does not mean restricting the set of programs that are

typable, only the precision of the type inference, so we decided to forego the

extra complexity of polymorphic types.

3.1.4
Typing Rules

We use a simplified core of the Lua language to make the presentation

of the typing rules in this section easier. This simplified core removes syn-

tactic sugar, reduces control flow statements to just if and while statements,

makes variable scope explicit, and splits function application in three differ-

ent operators, f(el)0 when we discard return values (function application as a

statement), f(el)1 when we want exactly one return value (the first, or nil if

the function returned no values), and f(el)n when we want all return values.

Appendix

A gives an operational semantics for our simplified core,

modeling extensible semantics (metamethods, see Section

1.1) through special

primitives. The simplified semantics just capture how the extensible semantics

influences the typing of operations and do not try to specify their precise

behavior.

Figure

3.3 describes the abstract syntax of our core Lua. The syntactic

categories are as follows: s are statements, l are lvalues, el are expression lists,

me are multi-expressions (single expressions that can evaluate to multiple

Chapter 3. Type Inference and Optimization 41

s ::= s1; s2 | skip | return el | e(el)0 | if e then s1 else s2 |
while e do s | local ~x = el in s | rec x = f in s | ~l =
el

l ::= x | e1[e2]
el ::= nothing | ~e | me | ~e,me
me ::= e(el)n | rn
e ::= v | e1[e2] | e1 ⊕ e2 | e1 == e2 | e1 < e2 | e1 and e2 |

e1 or e2 | not e | e(el)1 | r1
v ::= c | f | {}
f ::= fun() b | fun(r) b | fun(~x) b | fun(~x, r) b
b ::= s; return el
c ::= n | “” | “a1 . . . an” | nil | true | false
n ::= <decimal numerals>
a ::= <characters>

Figure 3.3:

Abstract Syntax

values), e are expressions, v are values, f are function constructors, b are

function bodies, and the remaining categories are for literals. The expressions

r1 and rn are rest expressions, to access variadic arguments (the formal

parameter r in the function constructors is the variadic argument list). The

notation ~x denotes the non-empty list x1, . . . , xn.

We will give the typing rules as a deduction system for the typing relation

Γ ` t : τ . The relation means that the syntactical term t has type τ given the

type environment Γ, which maps variables to types. We say Γ[x 7→ τ] to mean

environment Γ extended so it maps x to τ while leaving all other mappings

intact.

We start with the rules for assignment. The main constraint of our typing

system is that all valid Lua programs have to typecheck. The assignment

x, y = z + 2

is correct Lua code, where Lua at runtime adjusts the result of the expression

list to have the same length as the number of lvalues, dropping extra values

and using nil for missing ones. The rules for assignment, assign-drop and

assign-fill, have to take adjustment into account:

Γ ` lk : τk Γ ` el : υ1×. . .×υm m ≥ |~l| υk ; τk

Γ ` ~l = el : void

Γ ` lk : τk Γ ` el : υ1×. . .×υm m < |~l| υk ; τk nil ; τl l > m

Γ ` ~l = el : void

The assign-drop rule ignores the types of extra values, and assign-

Chapter 3. Type Inference and Optimization 42

fill uses nil as the types of missing values. Each value’s type needs to be

able to be coerced into the corresponding lvalue’s type. The assignment itself

has type void. The intuition behind the rule is that if there is more than one

assignment to the same lvalue (the same variable, for example), then the type

of the lvalue must be a type that all the values in the several assignments can

be coerced to. In the worst case this means D, but the job of the type inference

will be to find a more precise type if it is available.

The typing rules for simple expression lists, el-empty and el, are

straightforward:

Γ ` nothing : empty

Γ ` ek : τk n = |~e|
Γ ` ~e : τ1×. . .×τn

Assignments with empty expression lists will use rule assign-fill.

Adjustment is different in the special case where the last expression in a

expression list is a function application or rest expression, as these can produce

multiple values. In the assignment

x, y, z = a+ 1, f(empty)n

if the function application produces no values then y and z will get nil, if it

produces a single value then y will get this value and z will get nil, and if it

produces two or more values then y and z will get the first two values produced

and the rest is ignored.

First we will consider the case where the number of values the multi-

expression produces is statically known, which is covered by rules el-mexp-

empty and el-mexp:

Γ ` ek : τk Γ ` me : empty n = |~e|
Γ ` ~e,me : τ1×. . .×τn

Γ ` ek : τk Γ ` me : υ1×. . .×υm n = |~e|
Γ ` ~e,me : τ1×. . .×τn×υ1×. . .×υm

There are analogous rules mexp-empty and mexp for when the expres-

sion list is just the multi-expression.

When the number of values the multi-expression produces is not statically

known it will have type D∗ or τ1 × . . . × τn × D∗. We need corresponding

expression list rules el-var-1 and el-var-2:

Γ ` ek : τk Γ ` me : D∗ n = |~e|
Γ ` ~e,me : τ1×. . .×τn×D∗

Chapter 3. Type Inference and Optimization 43

Γ ` ek : τk Γ ` me : υ1×. . .×υm×D∗ n = |~e|
Γ ` ~e,me : τ1×. . .×τn×υ1×. . .×υm×D∗

We now add new rules assign-var-drop and assign-var-fill for

assignment that will correctly handle variable-length expression lists:

Γ ` lk : τk Γ ` el : υ1 × . . .× υm ×D∗ m ≥ |~l| υk ; τk

Γ ` ~l = el : void

Γ ` lk : τk Γ ` el : υ1 × . . .× υm ×D∗ m < |~l| υk ; τk τl = D l > m

Γ ` ~l = el : void

The rule assign-var-fill covers the interesting case, and comes from

our previous definition of D∗ as a list of tagged values, so it is natural that the

lvalues of D∗ need to have type D. In the assignment

x, y, z = a+ 1, f(empty)n,

if f(empty)n has type D∗ then both y an z will have type D.

Let us move to the rules for the typing of functions and function

application. Lua also adjusts the length of argument lists to the number of

formal parameters, so the code fragment (given in the abstract syntax of

Figure

3.3) below is correct Lua code:

local f = fun(x) return x+ 2 in

local g = fun(x, y) return x+ y in

local h = g in

if z then return h(2, 3) else h = f ; return h(3, 2)

One way the above code fragment can typecheck, given the typing and

coercion rules we have until now, is to have the type of h be D while f has type

D → D∗ and g has type D ×D → D∗, both types coercible to D. But ideally

we want the possibility of more precise types. A solution is to have h, f and

g all have the same type, Number×Number→ Number. This is possible

with the following rules, fun-empty and fun, for (non-variadic) function

definitions, so the type of the function’s domain can have more components

than the number of formal parameters:

Γ ` s; return el : υ

Γ ` fun() s; return el : τ1×. . .×τn → υ

Γ[~x 7→ ~τ] ` s; return el : υ

Γ ` fun(~x) s; return el : τ1×. . .×τn → υ n ≥ |~x|
The typing of a function application depends on the type of the function

expression, whether it is a non-variadic function type, a variadic function type,

Chapter 3. Type Inference and Optimization 44

or other type that can be coerced to D. The first case is similar to typing an

assignment, and is covered by rules app-drop, app-fil, app-var-drop, and

app-var-fill:

Γ ` f : τ1×. . .×τn → σ Γ ` el : υ1×. . .×υm m ≥ n υk ; τk
Γ ` f(el)n : σ

Γ ` f : τ1×. . .×τn → σ

Γ ` el : υ1×. . .×υm m < n υk ; τk nil ; τl l > m

Γ ` f(el)n : σ

Γ ` f : τ1×. . .×τn → σ Γ ` el : υ1×. . .×υm×D∗ m ≥ n υk ; τk
Γ ` f(el)n : σ

Γ ` f : τ1×. . .×τn → σ

Γ ` el : υ1×. . .×υm×D∗ m < n υk ; τk τl = D l > m

Γ ` f(el)n : σ

Similar rules cover f(el)0, where the type of the application is always

void, and f(el)1, where the type is nil if Γ ` f(el)n : empty, D if Γ ` f(el)n :

D∗, and τ1 if Γ ` f(el)n : τ1 × . . .× τn or Γ ` f(el)n : τ1 × . . .× τn ×D∗.
The return type of a function depends on the types of return expression

lists in the function body. We use a trick where the type of a block with no

return statements has type void, but a block with a return statement has

the type of the return statement. For blocks with more than one return

statements we give the same type to all the return statements using the rule

return:
Γ ` el : τ τ ; υ

Γ ` return el : υ

Figure

3.2 has the coercion rules for tuples, derived from how adjustment

works. The last two coercion rules cover the case where a function must have

return type D∗ because the function has to be coerced into D.

Function application when the type of the function expression is not a

function type is typed by rule app-dyn:

Γ ` f : τ Γ ` el : υ τ ; D υ ; D∗

Γ ` f(el)n : D∗

The rule means that the expression list can be any expression list that

produces tagged values (or values that can be coerced into tagged values), and

the application can return any number of tagged values.

Typing tables has similarities to typing functions. The typing for a table

constructor {} depends on how the rest of the program uses the tables created

by that constructor. The type system also needs to be flexible enough to let

Chapter 3. Type Inference and Optimization 45

the type inference algorithm synthesize precise enough types even when the

same expression can evaluate to different functions, or tables from different

constructors. Take the code below, where x can be a table created by the first

or the second table constructor:

local f = fun(x) return x.foo in

local a = {} in

local b = {} in

a.foo = 3; a.bar = “s”; b.foo = 5; return f(a), f(b)

We will have the first and second table constructors (and, by extension,

variables a and b) sharing the same precise type “foo” 7→ Number?∧“bar” 7→
String?. We are trading precision for possibly greater memory consumption

in the representation of the tables created by the second table constructor

(because of the unused “bar” field).

These typing rules for the table constructor are cons and cons-dyn:

∀i, j, σ.(i 6= j ∧ σ ; τi)→ σ 6; τj nil ; υk
Γ ` {} : τ1 7→ υ1 ∧ . . . ∧ τn 7→ υn

nil ; υ

Γ ` {} : D 7→ υ

They basically restate the rules for creating table types in our type

language given on Figure

3.1, with the added restriction that nil has to be

coercible to any type used as a value. This added restriction comes from the

behavior of Lua tables where indexing a non-existent key returns nil instead

of being an error. Without this restriction the type system becomes unsound,

as we could type as τ (with nil 6; τ) an expression that evaluates to nil at

runtime. Lua has other kinds of table constructors that can lift this restriction

in some cases, and in the end of this section we discuss a nuance of Lua’s

semantics that, while not removing this restriction, at least lessens its effects

in most Lua programs.

Indexing a table uses the rule index:

Γ ` e1 : τ1 7→ υ1 ∧ . . . ∧ τn 7→ υn Γ ` e2 : σ σ ; τk
Γ ` e1[e2] : υk

The restriction on the types of table keys guarantees that τk is unique.

The index rule types both indexing expressions and indexing assignments

(indexing in lvalue position), although we will see in the next section that

they are treated differently by the type inference algorithm.

Chapter 3. Type Inference and Optimization 46

There is also an index-dyn rule for indexing non-tables, analogous to

the app-dyn rule:

Γ ` e1 : τ Γ ` e2 : υ τ ; D υ ; D
Γ ` e1[e2] : D

The nil ; υ restriction on types of table values means that expressions

such as t[e1][e2] cannot have precise types using just the rules we gave, as t[e1]

cannot have a type τ where τ is a table type in our typing rules; the closest to a

table type t[e1] can have is τ? where τ is a table type. So the expression t[e1][e2]

always has to use the index-dyn rule. This is how Lua’s semantics work in

the general case, as the user can extend the behavior of the nil value. But in

practice extending the behavior of nil in this manner is forbidden (the user

has to use Lua’s debug library for that), because changing the behavior of nil

can break library and third-party code that depends on the standard behavior.

So it is safe to add rules to get precise type inference for expressions such as

t[e1][e2] (and expressions such as the t[e](el) application), like index-nil:

Γ ` e1 : (τ1 7→ υ1 ∧ . . . ∧ τn 7→ υn)? Γ ` e2 : σ σ ; τk
Γ ` e1[e2] : υk

This last rule is type safe, as the nil in values of type τ? is the untagged

nil, which the compiler can make sure has the standard nil behavior.

The complete set of typing rules is in Appendix

B. In the next section

we will outline part of the type inference algorithm based on these rules.

3.1.5
Type Inference

The type system we outlined in the previous section allows us to assign

more precise types to a Lua program than just D, and lets us check if these

types lead to a well-typed program (assigning type Number to an expression

that can possibly hold a string at runtime is against the typing rules, for

example). But the type system is not constructive: it can only check if a typing

is valid, not produce one. Assigning valid and precise types to programs is the

task of our type inference algorithm.

Our type inference algorithm finds types for the program’s variables and

expressions by recursively trying to apply the typing rules with type variables

instead of just types. A type variable is a reference to a type (or another type

variable), and the type the variable refers to can change during the course

of the inference, and this change is always from more precise to less precise

types. The algorithm proceeds from the root node of the program’s abstract

Chapter 3. Type Inference and Optimization 47

syntax tree to its leafs, using the typing rules and an update procedure for

type variables that is based on the coercion relation of Section

3.1.2. Several

syntactical constructs have different typing rules, and the algorithm has to

choose one based on information that may later change. The algorithm does

multiple passes over the syntax tree until no type variables have changed (we

say that the types have converged). We will later see this gives us the benefit

of a straightforward implementation of aliasing for function and table types

when our type inference has to force different functions or tables to have the

same type.

In the exposition of the algorithm below we always represent type

variables with upper-case letters, with V(X) being the value that the type

variable X refers to and X := τ an update of type variable X. A fresh

(unassigned) variable has the special value ε. During the course of the inference

we need to change table types, adding or removing pairs of key and value types.

To make it easier to follow the algorithm, we use different letters to indicate

invariants that some type variables can have. We use T and U for table types.

Different table constructors may need to have the same type, so T always holds

another type variable which we will call P or Q. So the following always holds

for table types:

V(T) = P

V(P) = τ1 7→ X1 ∧ . . . ∧ τn 7→ Xn.

Similarly, we use the letter F for function types. Functions need a similar

indirection for the types of their return values, and we use the letters R and

S for the type variable used for the return type. So the following always holds

for function types:

V(F) = X1 × . . .×Xn → ×R

V(R) = Y1 × . . .× Yn or Y1 × . . .× Yn ×D∗ or D∗

Each syntactical term t has an implicit type variable that we will refer

as [[t]].

Let us now present an example of type inference for the fragment

local f = fun(x) return x.foo in

local a = {} in

local b = {} in

a.foo = 3; a.bar = “s”; b.foo = 5; return f(a), f(b)

that we used in the last section. In the first iteration we have the function

Chapter 3. Type Inference and Optimization 48

definition getting a fresh function type F with V(F) = XF1 → ×R, and F

gets assigned to f . The first table constructor gets a fresh table type T with

V(T) = P , and T gets assigned to a, while the second table constructor gets

a fresh table type U with V(U) = Q, and U gets assigned to b. After the first

assignment statement we have V(P) = “foo” 7→ XP1 and V(XP1) = 3. After

the second assignment we have V(P) = “foo” 7→ XP1 ∧ “bar” 7→ XP2 with

V(XP2) = “s”. After the third statement we have V(Q) = “foo” 7→ XQ1 and

V(XQ1) = 5. After Processing the first expression in the expression list of the

last statement we have V(XF1) = T , as V(XF1) was ε. After processing the

second expression we have aliasing of T and U , so we have V(T) = V(U) = P ′

where P ′ is a fresh type variable. The expression list produces ε× ε.
In the second iteration we have V(XF1) = U (which is now an alias of T),

so the indexing expression in the function body now sets P ′ to “foo” 7→ XP ′
1

but still has type ε, so R is still ε. The first table constructor now makes

V(XP ′
1
) = nil so T respects the invariant of table types. The second table

constructor does not change anything, as U is an alias of T . The first

assignment updates XP ′
1

to Number?, as Number? is the most precise type

that both nil and 3 can be coerced to. After the second statement we have

V(P ′) = “foo” 7→ XP ′
1
∧“bar” 7→ XP ′

2
and V(XP ′

2
) = “s”. The third assignment

now does not change anything as 5 ; Number?. There is no more aliasing

in the last statement as both T and U have the same value P ′, but the type

of the expression list is still ε× ε.
In the third iteration we still have V(XF1) = U , but the indexing expres-

sion in the function body now has type Number?, so V(R) = Number?. The

first table constructor changes XP ′
2

from “s” to String?, to restore the invari-

ant of table types. The second table constructor does not change anything.

The three assignments now do not change anything either, as 3 ; Number?,

“s” ; String? and 5 ; Number?. In the last statement the type of the

expression list now is Number?×Number?.

In the fourth iteration no type variables change, and the algorithm stops.

In the final assignments (eliminating the type variables) we have f with type

(“foo” 7→ Number? ∧ “bar” 7→ String?) → Number? and both a and b

having type “foo” 7→ Number? ∧ “bar” 7→ String?. The whole fragment

has type Number?×Number?. It is straightforward to check that this is a

correct typing in our type system.

The entry point of the algorithm is the procedure infer:

1: procedure infer(root)

2: Γ := {}
3: repeat

Chapter 3. Type Inference and Optimization 49

4: inferstep(Γ, root)

5: until converge

6: end procedure

Procedure inferstep corresponds to one iteration of the type inference

algorithm, taking a type environment, which is a mapping from identifiers

to type variables, and a syntactical term. We will give parts of its definition

using pattern matching on terms to simplify the exposition. Let us start with

the definition of inferstep for assignment statements, covering rules assign-

drop and assign-fill:

1: procedure inferstep(Γ, 〈l1, . . . , ln = el〉)
2: inferstep(Γ, el)

3: let 〈υ1 × . . .× υm〉 = V([[el]])

4: if m ≥ n then

5: for k := 1, n do

6: inferstep(Γ, lk)

7: update(υk, V([[lk]]))

8: end for

9: else

10: for k := 1,m do

11: inferstep(Γ, lk)

12: update(υk, V([[lk]]))

13: end for

14: for k := m+ 1, n do

15: inferstep(Γ, lk)

16: update(nil, V([[lk]]))

17: end for

18: end if

19: [[l1, . . . , ln = el]] := void

20: end procedure

All definitions of inferstep follow a similar structure, derived from

the typing rule it implements. In the definition above, for type inference of

assignments, we begin by recursively inferring the type of the expression list.

If there are more rvalues than lvalues, we recursively infer the type for each

lvalue, and update its type variable (we will see that V([[lk]]) is always a type

variable) with the type of the corresponding rvalue, and ignore the others.

This corresponds to rule assign-drop. If there are more lvalues than rvalues,

we do the above, and update the type variables of any remaining lvalues

with nil. This corresponds to rule assign-fill. Extending the definition of

Chapter 3. Type Inference and Optimization 50

inferstep given above to cover rules assign-var-drop and assign-var-

fill is straightforward.

This is the definition of inferstep for simple expression lists:

1: procedure inferstep(Γ, 〈e1, . . . , en〉)
2: for k := 1, n do

3: inferstep(Γ, ek)

4: end for

5: [[e1, . . . , en]] := V([[e1]])× . . .× V([[en]])

6: end procedure

The definition above recursively infers the types of each expression in the

expression list and assigns a tuple of these types as the type of the expression

list. The definition implements typing rule el.

The update(τ,X) procedure is the core of the type inference algorithm.

This procedure updates X from its current value υ to a υ′ so that τ
V
; υ′

and υ
V
; υ′, where

V
; is the coercion relation lifted for type variables. For

example, this is the definition of update when τ = nil, used in inferstep

for assignments:

1: procedure update(nil, X)

2: match V(X) with

3: case ε: X := nil

4: case n: X := Number?

5: case s: X := String?

6: case true | false: X := Bool?

7: case D | τ?: break

8: otherwise: X := V(X)?

9: end match

10: end procedure

The first case, where X is unassigned, is a common case for all update

definitions. Then come three cases where X holds a singleton type, so we

update X to the corresponding nullable type. Then comes the case where

nil
V
; X already holds, with X holding D or a nullable type, so we do nothing.

For other values of X we update X so it holds the corresponding nullable type.

Another case of update is the one where V(X) is D. In this case, the

update does nothing if t is a scalar type, as τ ; D already holds for all scalar

types. The interesting subcases are where τ is a function or table type. This is

the definition for τ as a function type:

1: procedure update(F, 〈X when V(X) = D〉)

Chapter 3. Type Inference and Optimization 51

2: let 〈Y1 × . . .× Yn → R〉 = V(F)

3: for k := 1, n do

4: Yk := D
5: end for

6: R := D∗

7: end procedure

The only way to let a function type be coerced to D is to have all its

parameters have type D and its return type be D∗, so we force the function

type to be D× . . .×D → D∗. It is easier to see that the above procedure works

if we examine part of inferstep for function definitions:

1: procedure inferstep(Γ, 〈fun(x1, . . . , xn) s; return el〉)
2: if V([[fun(x1, . . . , xn) s; return el]]) = ε then

3: let R = newvar

4: let τ = newvar× . . .× newvar︸ ︷︷ ︸
n

→ R

5: let F = newvar τ

6: [[fun(x1, . . . , xn) s; return el]] := F

7: end if

8: let F = V([[fun(x1, . . . , xn) s; return el]])

9: let 〈X1 × . . .×Xm → R〉 = V(F)

10: inferstep(Γ[x1 7→ X1, . . . , xn 7→ Xn, rv 7→ R], 〈s; return el〉)
11: end procedure

In the above inferstep procedure we construct an initial function type

if this is the first iteration; this function type has the structure we outlined in

the beginning of this section (and the structure that the update procedure

we gave above expects). Then we deconstruct the function type to get the

type variables for each parameter and for the return values, and recursively

infer types in the body using an extended type environment. We inject the

return type variable in the environment so type inference for statements (and

in particular return statements) can change the return type of the enclosing

function directly. Notice the parallel with the rule FUN we gave in the previous

section.

Another interesting update(τ,X) subcase when V(X) = D is the

subcase for table types:

1: procedure update(T, 〈X when V(X) = D〉)
2: let P = V(T)

3: P := D 7→ (newvar D)

4: end procedure

Chapter 3. Type Inference and Optimization 52

In the above procedure we are forcing the table to have type D 7→ D.

We use a new type variable to hold the second D to respect the structure for

table types that we gave in the beginning of the section. Again, it is easier to

understand update if we examine inferstep for table constructors:

1: procedure inferstep(Γ, 〈{}〉)
2: if V([[{}]]) = ε then

3: let P = newvar

4: let T = newvar

5: let T := P

6: [[{}]] := T

7: end if

8: let T = V([[{}]])
9: let P = V(T)

10: if V(P) 6= ε then

11: let 〈τ1 7→ X1 ∧ . . . ∧ τn 7→ Xn〉 = V(P)

12: for k := 1, n do

13: update(nil, Xk)

14: end for

15: end if

16: end procedure

Like we did for function definitions, we make an empty table type with

the structure we outlined in the beginning of this section if this is the first

iteration. We then deconstruct the table type and enforce the invariant that

nil has to be able to be coerced to the types of the table’s values.

In the last section we discussed how the type system allows us to keep

precise types for functions and tables even if different function definitions need

to have the same type. In the type inference algorithm it is the job of the

update procedure to unify different function types (and table types) when

this occurs. The iterative nature of our algorithm and the structure we use for

these types make this a simple procedure, though; we can build a new fresh

type for the aliased types, and just make sure for function types that the new

type preserves the invariant that we have at least as many parameter types

than formal parameters. This is the aliasing update for function types:

1: procedure update(F, 〈X when V(X) = G〉)
2: if V(F) 6= V(G) then

3: let 〈X1 × . . .×Xm → R〉 = V(F)

4: let 〈Y1 × . . .× Yn → S〉 = V(G)

5: let k = max m,n

Chapter 3. Type Inference and Optimization 53

6: let R′ = newvar

7: G := newvar× . . .× newvar︸ ︷︷ ︸
k

→ R′

8: F := V(G)

9: end if

10: end procedure

In the above procedure we make F and G hold the same fresh type

variables for parameters and return types, effectively aliasing F and G. The

aliasing update for table types is simpler:

1: procedure update(7→ T, 〈X when V(X) = U〉)
2: if V(T) 6= V(U) then

3: let P = newvar

4: T := P

5: U := P

6: end if

7: end procedure

Again, we just make the two table types hold the same (fresh) type

variable, effectively aliasing T and U .

The inferstep procedure for function application is analogous to assign-

ment. The inferstep procedure for indexing operations is more interesting,

as it is the procedure responsible for enforcing the invariants on types of table

keys. This is part of the inferstep procedure for indexing in lvalue position:

1: procedure inferstep(Γ, 〈l when l = 〈e1[e2]〉〉)
2: inferstep(Γ, e1)

3: inferstep(Γ, e2)

4: match V([[e1]]) with

5: case T :

6: match find(V([[e2]]),V(T)) with

7: case ε:

8: let X = newvar

9: union(V([[e2]]) 7→ X,V(T))

10: [[l]] := X

11: end

12: case X: [[l]] := X

13: end match

14: end

15: case otherwise:

16: update(V([[e1]]),newvar D)

Chapter 3. Type Inference and Optimization 54

17: update(V([[e2]]),newvar D)

18: [[l]] := newvar D
19: end

20: end match

21: end procedure

In the indexing expression e1[e2], if the type of e1 is a table type T , we

try to find which the type for values with keys of type V([[e2]]). This uses the

auxiliary function find. find(υ, P)searches for a pair τk 7→ X in P so that

υ
V
; τk. If there is such a pair then find returns X, otherwise it returns ε. If

find returns ε then we extend the table’s type with the new key type and a

fresh type variable, using the auxiliary procedure union(〈υ 7→ X〉, P):

1: procedure union(〈υ 7→ X〉, P)

2: if V(P) = ε then

3: P := υ 7→ X

4: else

5: let 〈τ1 7→ X1 ∧ . . . ∧ τn 7→ Xn〉 = V(P)

6: let P ′ = newvar (υ 7→ X)

7: for k := 1, n do

8: if τk
V
; υ then

9: update(V(Xk), X)

10: else

11: P ′ := V(P ′) ∧ τk 7→ Xk

12: end if

13: end for

14: P := V(P ′)

15: end if

16: end procedure

The implementations of find and τ
V
; υ are straightforward. The

implementation of
V
; has to alias its arguments if they are both function

or table types, otherwise aliasing in other places may break the invariants on

key types.

The inferstep procedure for indexing in rvalue position is similar to

inferstep for indexing in lvalue position: we just replace [[l]] := X with

[[e1[e2]]] := V(X) and [[l]] := newvar D with [[e1[e2]]] := D. inferstep for

indexing can also be trivially extended to cover the alternative index-nil rule

we presented in the last section.

In the next section we will show how the types inferred by the type

inference algorithm can lead to a variation of the compiler we presented on

Chapter 3. Type Inference and Optimization 55

Chapter 2 that generates exploits type information to generate more efficient

code.

3.2
Compiling Types

This section presents a variation on the “intern” compiler we presented

in Section

2.2.3. Its code generator uses information extracted by the type

inference algorithm to generate optimized representations for Lua’s values and

specialized code for Lua’s operations.

The representation of tagged types (corresponding to type D) is un-

changed, so any operation that involves values of type D continues generating

the same code as before. We then have two issues to tackle: first, representation

of untagged types, second; code generation for operations on untagged types

and coercions.

3.2.1
Untagged Representations

Representing singleton types and simple types is straightforward, as

each of them has an analogue in the CLR: Number is double, String is

Lua.Symbol, each numeric and string singleton type has a corresponding

literal, and true, false, and Bool are respectively the literals true, false,

and the CLR type bool. The singleton type nil is the special value null.

We represent function types using a pair of delegate types, which are

CLR’s analogue of function types. We use two types instead of just one so we

can keep the optimization of Section

2.2.1 for function calls that only need

a single value; one delegate type returns a single value, the other delegate

type returns a tuple. Function return values are the only place we need a

representation of a tuple type, as tuples are not first class values. We represent

a tuple type τ1 × . . . × τn × D∗ with a CLR class having a field vk of type

corresponding to the representation of type τk for each type in the static part

of the tuple, and having a member r of type object[] for the dynamic part of

the tuple.

We represent the actual functions as CLR classes that implement one

“invoke” method for each of the two delegate types that represent the func-

tion’s type, and have fields for the function’s display. Functions with types

that can be coerced to D also subclass the Function type of dynamic Lua

functions.

The representations of table types are CLR classes, but the specifics de-

pend on their characteristics. For each singleton key type τk with corresponding

Chapter 3. Type Inference and Optimization 56

value type υk we have a field vτk of type corresponding to the representation

of type υk. This is the record part of the table.

If the table has Number 7→ υ as part of its type, its CLR class has a

member a of type SparseArray<T>, where T is the representation of type υ.

The SparseArray<X> type is a polymorphic specialization of Lua tables (with

an array part and a hash part) for numeric keys, parametrized over the type

of its values.

If the table has String 7→ υ as part of its type, its CLR class has a

member s of type Dictionary<Lua.Symbol, T>, where T is the representation

of type υ. Dictionary is the CLR’s type for polymorphic hash tables (from

its base class library).

For Bool 7→ υ we do the same as if the table has both true 7→ υ and

false 7→ υ as part of its type, and generate code accordingly. A table with

τ 7→ υ as part of its type, where τ is a function type, gets a field f of type

Dictionary<Delegate, T> where T is the representation of type υ. If the table

has τ 7→ υ as part of its type, where τ is a table type, it gets a field t of type

Dictionary<T, U>, where T and U are the representation of types τ and υ,

respectively.

Tables of type D 7→ υ are represented by the CLR class HTable<T>,

where T is the representation of type υ. Class HTable<X> is a polymorphic

version of Table, the class of dynamic Lua tables, that implements the same

protocol as Table plus methods for accessing elements parametrized by type

X.

We can use the same types for both τ and τ? in most cases, because the

CLR’s reference semantics allows null as a valid value for any reference type.

The exception is Number?, because double is a value type. In this case, we

use the boxed version of double, a reference type.

CLR’s structured reference types (which include classes and delegates)

are naturally recursive, so representing recursive types is straightforward.

3.2.2
Code Generation

It is straightforward to generate code for Lua operations that uses the

type information. For each operation there is a fast case, where the operation

has simple semantics for the types involved, like arithmetic with numbers,

indexing with records, and applications with functions, and a dynamic case

where you coerce the operands to D and then do the dynamically dispatched

operation. Generating code for the dynamic dispatch is the same as for the

compiler on Section

2.2.3.

Chapter 3. Type Inference and Optimization 57

In the fast case the code for the operation is often just a single CIL

instruction, as in the two examples in the beginning of Section 3.1. In some

cases the code for the operation itself is a no-op, like and or or with a first

operand that is known to be neither nil nor false. There are also some edge

cases like arithmetic operations with one number operand and one operand of

other type, where we can generate better specialized code than just naively

treating it as the dynamic case.

The code for simple coercions is a no-op, as the representation of a

singleton type is the same as the simple type they can be coerced to. Nullable

coercions for most types are also no-ops, due to CLR reference semantics

regarding null, and coercion from Number to Number? is just boxing.

Coercion to D is a no-op for tables and functions, boxing for numbers,

wrapping in the Symbol type for strings, and selecting the corresponding

singleton value for Bool and nil. Coercing nullable types to D is a no-op

for Number? and the same operation as coercing the non-nullable type for

the other types.

Tuples are not first class values, so they usually only have ephemeral

existence in the CLR evaluation stack. Tuple coercions then involve coercing

individual tuple elements as we pushed on the stack, and then pushing

additional elements as needed. In cases where we have to create a tuple object

so we can return it as the result of a function call, we generate the code for

the tuple coercion, then call the corresponding tuple object constructor. The

typing rules guarantee that these cases only occur when generating code for

return.

3.3
Related Work

This section is a review of some of the previous approaches for extracting

type information from dynamically typed programs. We divide the approaches

in two, presented in this order: type inference and flow analysis. Type inference

approaches work directly on the abstract syntax tree of a program, and assign a

type in a formally defined type language to each syntactical term. Flow analysis

works on a control flow graph, built incrementally from an entry point in the

program (using the nodes in the syntax tree and the information obtained

by the analysis as input), and tracks the flow of abstract values through this

graph; types are just a kind of abstract value.

The type information discovered by flow analysis is always used for

optimization, by eliminating runtime type checks and usually also optimizing

representation of values. This is not the case for the type inference approaches

Chapter 3. Type Inference and Optimization 58

we review in this section; some of them have the goal of optimizing the program,

like the type inference we presented in this chapter and the flow analysis

approaches, but most are primarily for checking types to discover potential

runtime errors. In the section where we review the type inference approaches

we note which of these goals (optimization or checking) is the primary goal for

each approach.

3.3.1
Type Inference

Type inference algorithms for dynamically typed languages are not new.

Gomard [

1990] describes a two-level lambda calculus with a monomorphic type

system that adds a type untyped (similar to our type D), and an annotated

version of each primitive operation that works on values of this type. He also

presents an extension of the unification-based algorithm W [

Damas and Milner,

1982] that, on a type error (unification failure), annotates the primitive where

the error occurred and retries the algorithm until it succeeds. One possible

application he gives for this modified algorithm W is to avoid doing type

checks in dynamically typed code.

His type system forces these annotations to propagate to subexpressions,

though, while our coercions can be localized to only part of an expression,

increasing precision. Our type system also has a richer type language that

cannot be fitted into his framework without losing precision. Extending his

framework to support the same level of precision we achieve would lead to a

more complex type system and inference algorithm that would be harder to

understand.

Global tagging optimization [

Henglein,

1992b,

a] adds a type Dynamic

(similar to our type D) to a fairly complete subset of Scheme extended with

coercions, and a type inference algorithm that finds out which coercions give

the most precise types for a program using an extension of unification, and it is

used to generate code for Scheme that uses more efficient data representations

and avoids type checking. The algorithm can be implemented with a single pass

over the program. His type system has polymorphic primitives but all inferred

types are monomorphic. The algorithm is efficient and reasonably simple, but

is very specific to its type system, and cannot accommodate Lua’s ad-hoc

polymorphic primitives or adjustment of expression lists.

The type system and inference algorithm in

Henglein and Rehof [

1995]

extends the work of

Henglein [

1992b,

a] with polymorphism for inferred types

and modular type inference (it can infer types of functions without know-

ing how they are used), by incorporating polymorphic coercions as part of a

Chapter 3. Type Inference and Optimization 59

function’s polymorphic type. These polymorphic coercions have coercion pa-

rameters that are analogous to type parameters in polymorphic types. The

type system also replaces the type Dynamic of

Henglein [

1992b] with a sum

type where each type constructor in the type language appears once and only

once. The goal is code optimization through better data representation and

avoidance of runtime checks, but the use of polymorphism requires generation

of specialized code.

The inference algorithm in

Henglein and Rehof [

1995] is still based

on unification, but has a complex intermediate step between unification

and generalization of type variables; this intermediate step simplifies the

parameters of the polymorphic coercions. Without this extra step the number

of parameters to be generalized can be exponential on the size of the function.

Polymorphic coercion parameters are an elegant way of combining parametric

polymorphism with dynamic typing, but it is not useful in our case, as a

polymorphic type system is a poor fit for Lua due to the reasons we gave on

Section

3.1.

Aiken and Fähndrich [

1995] give an alternative formulation for Henglein’s

global tagging optimization [

Henglein,

1992b], which also has the goal of

optimizing representations. They model coercions with subtyping constraints

on a type system where each type has a structural part and a tagging part,

and the structural part allows both union and intersection types. The inference

algorithm generates a set of constraints from the program’s syntax tree,

solves these constraints, and maps these back to coercions. The algorithm

is more general than the algorithm in

Henglein [

1992b], and can accommodate

richer (but still monomorphic) type systems at the cost of cubical instead of

linear time complexity, but the constraint language cannot express the ad-hoc

polymorphism in our type system without sacrificing precision.

Soft typing [

Cartwright and Fagan,

1991] presents a type system and

inference algorithm for a functional language that has polymorphic types and

union types (using an encoding of sum types as polymorphic types so they

work with regular unification), where the inference algorithm inserts runtime

type checks when algorithm W finds a type error.

Wright and Cartwright [

1997] have a more sophisticated soft typing

system for full Scheme. This system has extensions to deal with features present

in Scheme but not in the idealized functional language used in

Cartwright and

Fagan [

1991], including imperative features, and not only inserts runtime type

checks, but also flags applications of primitives that can never succeed, and

tries to expose readable types to the programmer (the encoding used for union

types in

Cartwright and Fagan [

1991] makes it harder to understand what the

Chapter 3. Type Inference and Optimization 60

types mean).

The primary goal of both soft typing approaches is to find possible errors

in programs by exposing the necessary runtime checks to the programmer;

optimizing the program by removing unnecessary runtime checks is a side

effect. Soft typing approaches also assume a uniform runtime representation

for all types. The goal of our type system, on the other hand, is to optimize

Lua programs, primarily by using optimized representations of Lua values. It

is ill suited for finding programming errors.

3.3.2
Flow Analysis

Iterative flow analysis has been used by optimizing compilers for Scheme

and Lisp to extract type information from dynamically typed programs.

Beer [

1987] presents an inference system that uses local data flow analysis

to infer types in Common Lisp programs, aided by type declarations for

formal parameters. The inference system has, for each node in the flow

graph, a function that computes the type of the node’s output from the

type of the node’s input. Initially all types (except those flowing from formal

parameters and constants) are empty, and analysis of the flow graph is iterated

until reaching a fixed point. Optional type declarations act as filters for

the types of corresponding control flow nodes. An implementation of type

inference using these techniques is present in the “Python” CMU Common

Lisp compiler [

MacLachlan,

1992]. The information extracted by the analysis

is used in code optimization.

Lua, in contrast to Common Lisp, does not have type declarations, so

a local data flow analysis like the above would need to assign the maximal

type (an analogue to D) to formal parameters. The result is that in most

cases all local variables and expressions will also have this maximal type,

rendering inference useless. Our type inference is also syntax-directed instead

of depending on computing a data flow graph, which is a harder problem in a

higher-order language with a single namespace (Lisp-1), as Lua and Scheme,

than in languages with separate scalar and function namespaces (Lisp-2), as

Common Lisp [

Gabriel and Pitman,

1988,

Shivers,

1988].

Storage Use Analysis [

Serrano and Feeley,

1996] uses a global data flow

analysis to infer types in a Scheme dialect by computing a subset of the

(finite) set of possible abstract values (one abstract value for each scalar type,

closure, and structured data constructor in the program). The analysis has

a special abstract value > for values external to the program. The analysis

is done by iterated traversal of the call graph of an intermediate form of the

Chapter 3. Type Inference and Optimization 61

program where all closure creation has been made explicit and higher-order

function application has been converted to closure calls. The call graph is not

constructed explicitly, but traversed implicitly from the syntactical structure

of the transformed program. The authors use the information extracted by

their analysis for optimizing data representation.

Our type inference algorithm is similar to the Storage Use Analysis

algorithm in that their “type system” is also monomorphic, but the actual

details of the inference algorithm are very different: we do not require a

transformation to make closure creation and use explicit, and traverse the

syntax tree instead of the call graph. Their type system is also implicitly

specified by the algorithm, and their treatment of structured types is ad-hoc,

while our type system is specified separately as a deduction system. We believe

this makes our type system and inference easier to reason about, both for the

compiler writer and for the programmer. Although our type inference’s purpose

is program optimization, it is trivial to make it output readable types for the

programmer, using the type language in Section

3.1.1.

Polymorphic Splitting [

Wright and Jagannathan,

1998] is a global flow

analysis for Scheme that mimics ML’s let-polymorphism [

Damas and Milner,

1982] by splitting different occurrences of the same let-bound closure in

different abstract values instead of having they all be the same abstract value.

The analysis explicitly constructs a flow graph from the program’s syntax tree,

and propagates abstract values along this graph. The authors use the results

of this analysis to eliminate runtime checks in Scheme programs, but, due to

polymorphism, assume a uniform data representation, so the results of the

analysis are unsuited for the optimizations that our type inference enables.

4
Benchmarks

This chapter presents our suite of benchmarks and the results of those

benchmarks on different variations of our Lua to CLR compiler and different

implementations of the CLR. We analyze the performance impact of our

changes to build a partial performance model of these implementations. We

also benchmark our compilers against the Lua interpreter on x86, a Lua x86

JIT compiler, and a Microsoft-developed Python to CLR compiler. These

benchmarks respectively serve to find out how well Lua can perform on the

CLR relative to other Lua implementations, and how well our approach for

compiling a dynamic language in the CLR works relative to a compiler using

the Microsoft DLR.

Section 4.1 describes the programs we used in our benchmarks and the

Lua operations and idioms that they exercise. Section 4.2 gives the results and

analysis of our benchmarking of the different variations of our Lua to CLR

compiler, and Section 4.3 compares compilers with other Lua implementations

and with a Python compiler for the CLR. Appendix

C has tables with running

times for all of the benchmarks in this chapter.

4.1
Benchmark Programs

Our first suite of benchmarks is a suite of small (less than fifty lines of

code) numerical benchmarks mostly taken from a suite of bencharks that com-

pare several programming languages [

Brent A. Fulgham and Isaac Gouy,

2009].

They are useful because implementations of these benchmarks are readily avail-

able for several programming languages, they have few dependencies on Lua’s

standard library, and they have no dependencies on the platform facilities.

These benchmarks are naive, but useful for testing the impact of specific opti-

mizations. Small benchmarks are useful for comparing performance of different

implementations, and to guide programmers on how to tailor their programs

to get the best performance out of a particular implementation [

Gabriel,

1985].

The benchmarks are listed on Table

4.1, with a brief description of what

they do and what they exercise (what are the main influences on their results).

Chapter 4. Benchmarks 63

Name Description
binary-trees allocation and traversal of binary trees, exercises small

records, memory allocation and GC
fannkuch array permutations with a small array, exercises array

operations
fib-iter fibonnaci function, iterative algorithm, exercises simple

arithmetic and loops
fib-memo fibonnaci function, recursive algorithm with memoiza-

tion, exercises array operations on a variable-sized array
and first-class functions

fib-rec fibonnaci function, recursive algorithm, exercises recur-
sion

mandelbrot mandelbrot fractal, exercises floating point arithmetic
and iteration

n-body newtonian gravity simulation, exercises floating point
arithmetic on records and arrays

n-sieve sieve of Eratosthenes using an array, exercises array
access

n-sieve-bits sieve of Eratosthenes using bitfields, exercises floating
point arithmetic and arrays

partial-sum iterative summation of series, exercises floating point
arithmetic and built-in functions with iteration

recursive several recursive functions, exercises recursion
spectral-norm spectral norm of an infinite matrix, exercises arithmetic

involving several cooperating functions

Table 4.1:

First benchmark suite

The overlapping coverage of these benchmarks of the first suite is on

purpose; similar benchmarks should respond in a similar way to changes in the

implementation of the compiler.

We also implemented a second suite of benchmarks. It is a set of varia-

tions on the Richards Benchmark [

Richards,

1999], a medium-sized benchmark.

The benchmark implements the kernel of a very simple operating system, with

a task dispatcher, input/output devices, and worker tasks that communicate

via message passing. The benchmark has implementations for several program-

ming languages. Its output is deterministic, so it is trivial to verify that a par-

ticular implementation is correct; the simulation uses pseudorandom numbers,

but the pseudorandom number generator is part of the benchmark.

We have six different implementations of the benchmark, with different

ways of implementing the core task dispatcher; the implementations have

around three hundred lines of Lua code each. For comparison, the C version

of the benchmark has four hundred lines of code, and the Python version has

about four hundred and fifty.

Chapter 4. Benchmarks 64

Our implementations of the Richards benchmarks are listed on Table

4.2.

Name Description
richards the closest to the C implementation, it uses an explicit

state string and a sequence of ifs inside an endless loop
as the core of the dispatcher; the state string simulates
a bitfield

richards-tail has a state machine using tail calls for the state transi-
tions instead of an endless loop, with the code to imple-
ment each state factored out to a different function, but
otherwise is identical to the previous one

richards-oo embeds the dispatcher logic inside each task as several
methods, and keeps the state local in each task object;
state transition is via a trampoline: each task returns
the next task to be processed

richards-oo-tail the previous implementation using tail calls instead
of the trampoline, each task calls the next one to be
processed directly

richards-oo-meta like richards-oo but uses a parent table to hold the
methods, and a metatable associated with each task
object that delegates method calls to this parent table

richards-oo-cache also uses a parent table, but the metatable caches each
method in the task object itself after the first use, to
speed up subsequent lookups

Table 4.2:

Second benchmark suite

4.2
Benchmarking the Variations

This section compares the different variations of our Lua compiler

on different implementations of the CLR. We present a series of graphs

of performance improvement (or worsening) relative to the base compiler

described in Section

2.1. All graphs show a base 2 logarithm of the running

time of the benchmark compiled by the base compiler divided by the running

time of the benchmark compiled by each of the other compilers (e.g. -1 means

the benchmark took twice as long, 2 means it took a fourth of the time). The

other compilers are identified by the short names listed on Table

2.1. All of

the tests are done on a computer with an AMD Phenom 8400 processor with

2Gb of RAM and executing in x86 (32-bit) mode.

The first CLR implementation we benchmarked is Microsoft .NET 3.5

SP1, the current version of the CLR released by Microsoft. Figure

4.1 shows

the results of the first benchmark suite on this version of the CLR.

Chapter 4. Benchmarks 65

spectral-norm

recursive

partial-sum

n-sieve-bits

n-sieve

n-body

mandelbrot

fib-rec

fib-memo

fib-iter

fannkuch

binarytrees

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

single
box
intern
prop
infer

log base 2 of relative time

Figure 4.1:

.NET 3.5 SP1 Comparison

The results show barely any improvement with the optimization of the

function calls that only need to return a single value when we are using

a structure to represent Lua values. Changing the representation to avoid

structures and use boxing instead improves most benchmarks, specially the

ones that make heavy use of function calls. The CLR JIT does not optimize

code that uses structures as well as other code, so the performance gain in

avoiding allocation of the unnecessary arrays gets lost in the noise [

Morrison,

2008b].

Interning strings leads to a good improvement in the benchmarks that

use records, confirming that this implementation of the CLR does not intern

strings. Local type propagation shows a big improvement only in the bench-

marks where the core of the benchmark is a numerical loop inside a single

function, but for these benchmarks it is about as good as the full type infer-

ence. The biggest improvement comes from doing full type inference on the

programs. The running time for the benchmarks of the first suite is dominated

by boxing, type checking, and dispatch, and type inference is eliminating most

of those.

The results for the second suite of benchmarks are on Figure

4.2. Neither

the base compiler nor the single return value compiler could run the richards-

oo-tail; they both blow the stack because the CLR JIT is not compiling the

Chapter 4. Benchmarks 66

richards-oo-cache

richards-oo-meta

richards-oo-tail

richards-oo

richards-tail

richards

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

single
box
intern
prop
infer

log base 2 of relative time

Figure 4.2:

.NET 3.5 SP1 Comparison, Richards benchmarks

tail calls in them as actual tail calls, and they continue using stack space. The

.NET JIT treats the tail call opcodes as just a suggestion, and ignores it in

several situations [

Broman,

2007]. Only the JIT on version 4.0 of .NET for

the x64 platform will always honor the tail call opcodes [

Richins,

2009]. The

results for richards-oo-tail on Figure

4.2 are relative to the “box” compiler.

All of the benchmarks in this suite do a great number of string equality

tests, so interning strings shows a good improvement for all of them. Local type

propagation shows a modest improvement, but the biggest improvement again

comes from doing full type inference. The big improvement in the richards-oo-

tail benchmark for type inference relative to the improvement in richards-oo

is due to another anomaly of tail calls in the .NET implementation of the

CLR, where a tail call to a function with a different number of arguments

than the current function interacts badly with the code that synchronizes

with the thread running the garbage collector [

Borde,

2005]; type inference

is unifying all of the mutually recursive functions in richards-oo-tail to have

the same signature, avoiding the problem and thus increasing the amount of

improvement in relation to the other compilers.

The benchmarks that use metatables, richards-oo-meta and richards-

oo-cache, show little improvement with type inference, as our type inference

algorithm always infers the most general table type for tables that have a

Chapter 4. Benchmarks 67

spectral-norm

recursive

partial-sum

n-sieve-bits

n-sieve

n-body

mandelbrot

fib-rec

fib-memo

fib-iter

fannkuch

binarytrees

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

single
box
intern
prop
infer

log base 2 of relative time

Figure 4.3:

.NET 4.0 Beta 1 Comparison

metatable attached. This ends up spreading to functions used as methods.

We also ran our benchmarks on Microsoft .NET 4.0 Beta 1, the current

beta of the next version of Microsoft’s implementation of the CLR. The results

are on Figure

4.3 and Figure

4.4. They are about the same as the results for

.NET 3.5 SP1, showing that the behavior of the JIT compiler in both versions

is similar. Microsoft .NET 4.0 Beta 1 has the same issues with tail calls that

.NET 3.5 SP1 has, so our “base” and “single” compilers also cannot complete

the richards-oo-tail benchmark.

Finally, we ran our benchmarks on Mono 2.4, an open-source implemen-

tation of the CLR. Figure

4.5 shows the results for the first suite of benchmarks.

They are very different from the results of both Microsoft implementations,

showing the different performance models of Mono and .NET, even though

they both are implementations of the same managed runtime environment.

Boxing in Mono performs much worse than using structures, and when using

structures there is a good improvement in code that uses function calls when

avoiding unnecessary array allocations. The best results are still obtained by

doing full type inference.

Figure

4.6 shows the results for the suite of Richards benchmark on

Mono 2.4. Arithmetic is not as critical for the benchmarks in this suite as in

the benchmarks of the first suite, so the “box” compiler, which also optimizes

Chapter 4. Benchmarks 68

richards-oo-cache

richards-oo-meta

richards-oo-tail

richards-oo

richards-tail

richards

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

single
box
intern
prop
infer

log base 2 of relative time

Figure 4.4:

.NET 4.0 Beta 1 Comparison, Richards benchmarks

returning single values, shows an improvement in these benchmarks despite

using boxed numbers. Mono also does not intern its strings, so we get a good

improvement when doing that, relative to the “box” compiler. But none of the

benchmarks that use tail calls ran on Mono without blowing the stack.

The differences between the Mono and .NET implementations are big

enough to change the optimal compilation: for Mono the best approach is to

combine type inference with a structure as a fallback uniform representation,

while for .NET it is to combine type inference with a uniform representation

that uses boxing, the one we actually implemented. Our previous work showed

that the penalty for using structures was even greater in a previous version

of the .NET CLR [

Mascarenhas and Ierusalimschy,

2008]; the current version

of the .NET CLR is just over one year old at the time of the writing of this

dissertation, and is the first to have improved code generation for programs

that use structures [

Morrison,

2008b]. The performance characteristics vary

not only between competing implementations of the same runtime, but also

between different versions of the same implementation, so the best approach for

building a compiler that targets a managed runtime environment can depend

on a specific version of a specific implementation of the runtime.

Chapter 4. Benchmarks 69

spectral-norm

recursive

partial-sum

n-sieve-bits

n-sieve

n-body

mandelbrot

fib-rec

fib-memo

fib-iter

fannkuch

binarytrees

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

single
box
intern
prop
infer

log base 2 of relative time

Figure 4.5:

Mono 2.4 Comparison

4.3
Other Benchmarks

This section compares our Lua compilers first with other Lua implemen-

tations and then with IronPython 2.0, a Python compiler for the CLR that

we already reviewed in Section

2.3. We first show the results of benchmark-

ing our Lua compilers that were able to run all of the benchmarks in both

suites (“box”, “intern”, “prop”, and “infer”) against version 5.1.4 of the Lua

interpreter and LuaJIT 1.1.5, a JIT compiler for Lua 5.1. The graphs for this

benchmark show the performance of each of our compilers, plus LuaJIT, rela-

tive to the Lua interpreter, also as the base 2 logarithm of the relative running

times.

Figure

4.7 shows the results of the first benchmark suite. With type

inference our last compiler is able to generate, with the help of the .NET

JIT, code that performs better than LuaJIT for most benchmarks, and better

than the Lua interpreter for all benchmarks. Local type propagation, in the

three benchmarks where it was most useful, gets similar results. Our other

two compilers still outperform the Lua interpreter in several benchmarks, but

are worse than the interpreter in benchmarks that depend on floating point

arithmetic, by a factor of two in some cases. The Lua interpreter is very efficient

doing floating point computations, as it always works with unboxed numbers.

Chapter 4. Benchmarks 70

richards-oo-cache

richards-oo-meta

richards-oo

richards

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

single
box
intern
prop
infer

log base 2 of relative time

Figure 4.6:

Mono 2.4 Comparison, Richards benchmarks

The results of the second benchmark suite are on Figure

4.8. The issue

with tail calls in the .NET CLR is clearer to see here, as we are now comparing

against the Lua interpreter. While the “box” compiler is about a factor of

two slower than the Lua interpreter in most benchmarks, for the richards-oo-

tail benchmark it is approximately ten times slower than the Lua interpreter.

The gap narrows for the “intern” and “prop” compilers but is gone only for

the last compiler, where this benchmark performs similarly to the richards-

oo benchmark. This is consistent with the reason for the anomaly that we

discussed in the previous section.

Combining the results of both benchmark suites, we have the benchmarks

running in at most twice the time as the Lua interpreter, but usually running

in a similar amount of time (except for the outlier, the richards-oo-tail

benchmark). The performance is on par or exceeds the performance of a

x86 Lua JIT compiler when our type inference algorithm is able to assign

more precise types. These results support our assertion in Chapter 1 that it is

possible to generate efficient code from a dynamically-typed source language

to a managed runtime.

Our last benchmark compares our compilers with IronPython 2.0, a

Python compiler for the CLR that we reviewed in Section

2.3. For this

benchmark we added the richards-oo benchmark to the benchmarks of the

Chapter 4. Benchmarks 71

spectral-norm

recursive

partial-sum

n-sieve-bits

n-sieve

n-body

mandelbrot

fib-rec

fib-memo

fib-iter

fannkuch

binary-trees

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

box
intern
prop
infer
luajit

log base 2 of relative time

Figure 4.7:

Comparison with Lua 5.1.4

first suite, as there is a single implementation of the Richards benchmark for

Python. Figure

4.9 shows the performance relative to our “box” compiler,

again by showing the base 2 logarithm of the relative running times (“ipy” is

the IronPython compiler).

Python has separate array and dictionary types, while Lua arrays (in the

absence of precise type inference) are an optimization of tables. This explains

the better performance of IronPython in the binarytrees, fib-memo and n-

sieve benchmarks, relative to our compilers that do not have type inference.

Our compilers outperform IronPython in the other benchmarks even without

type inference. With type inference we outperform IronPython in all of the

benchmarks, in almost all of them by more than a factor of four, as the code

IronPython generates is still doing runtime type checking and still boxing

numbers.

Chapter 4. Benchmarks 72

richards-oo-cache

richards-oo-meta

richards-oo-tail

richards-oo

richards-tail

richards

-4 -3 -2 -1 0 1 2

box
intern
prop
infer
luajit

log base 2 of relative time

Figure 4.8:

Comparison with Lua 5.1.4, Richards benchmarks

richards-oo

spectral-norm

recursive

partial-sum

n-sieve-bits

n-sieve

n-body

mandelbrot

fib-rec

fib-memo

fib-iter

fannkuch

binary-trees

-2 -1 0 1 2 3 4 5

intern
prop
infer
ipy

log base 2 of relative time

Figure 4.9:

Comparison with IronPython

5
Conclusions

Writing an optimizing compiler for a managed runtime involves guess-

work and experimentation. Instead of targeting low-level machine code with a

clear performance model we are targeting a high-level language with its own

type system, runtime library, and optimizing Just-In-Time compiler. Not only

it is difficult to predict how a particular approach will perform, but the per-

formance can vary among different implementations of the managed runtime,

or even different versions of the same implementation.

We have shown the difficulty in compiling to a managed runtime by

building a series of compilers for the Lua programming language that targets

the Common Language Runtime. We built several compilers with different

ways to represent Lua types in the CLR type system and different ways to

compile Lua operations, and then benchmarked these compilers on different

implementations of the CLR. Our benchmarks show how the best approach

for compiling Lua to the CLR depends on what implementation of the CLR

we are targeting.

The choice of implementation approach and implementation target influ-

ences not only the performance of our Lua implementation but also its seman-

tics, as tail call optimization does not work for some combinations of implemen-

tations of our compiler and implementations of the CLR, even though it should

have worked by the CLR standard. There are other corners of Lua’s semantics

that are problematic to implement in the CLR: weak tables, finalizers, and

coroutines, but we already covered these in

Mascarenhas and Ierusalimschy

[

2005], so we focused on the efficient implementation of Lua’s core semantics

for the Lua compilers of this dissertation.

The influence of the implementation target on the semantics of Lua has

parallels to the work on definitional interpreters in

Reynolds [

1998], where

the closer the semantics of the language that you want to interpret is to the

semantics of the language you are using to write the interpreter the simpler

the interpreter can be. Where the semantics differ you have to implement

the correct semantics in terms of the underlying language. With compilers

for high-level targets such as managed runtime environments, the closer the

Chapter 5. Conclusions 74

semantics of the language you are compiling to the semantics of the runtime

the more direct the compilation, and where the semantics differ you need extra

scaffolding and support to implement the correct semantics.

Lua is a dynamically typed language, and the CLR is a statically typed

runtime, so in most of our compilers all of Lua’s operations had to be compiled

using runtime type checks and the virtual dispatch mechanism of the CLR.

We also had to use a unified representation for Lua values that either wasted

memory and interacted in a less than optimal way with the JIT of one of

the CLR implementations we tested, or had to store all numbers in boxes in

the heap instead of using the efficient native representation for floating-point

numbers that the CLR has.

We specified a type system and type inference algorithm for Lua that

can statically assign more precise types to several kinds of Lua operations. We

implemented this algorithm in one of our compilers, and used its output to

generate more efficient representations for Lua values and better performing

code. Analysis of the output of the type inference algorithm and the perfor-

mance gains showed that the type inference algorithm correctly infers precise

types for most variables and operations in our benchmarks.

Compared to other Lua implementations, our best combination of Lua

compiler without type inference and CLR implementation has the level of

performance of version 5.1.4 of the Lua interpreter, being worse by a factor

of less than two in benchmarks that are heavily dependent on floating point

computation, and faster by a little over a factor of two in benchmarks that are

heavily dependent on recursion.

With type inference, our best combination of Lua compiler and CLR

implementation outperforms the Lua interpreter and performs better than

version 1.1.5 of the LuaJIT compiler for most benchmarks. Our results show

that it is possible to get good performance out of a dynamic language in a

managed runtime if the managed runtime has a good implementation.

We also benchmarked our Lua compilers against IronPython 2.0, a

Python compiler for the CLR that uses a different implementation approach

based on runtime generation of specialized code, in contrast to our simpler

approach that only uses offline compilation. Without type inference our best

compiler performs equal or better than IronPython in almost all benchmarks;

with type inference our best compiler outperforms IronPython by a large

margin in all benchmarks. We believe our approach is the best one for compiling

Lua on the CLR given the current state of the Dynamic Language Runtime

that IronPython is built on.

Future implementations of the CLR may change the impact of some of

Chapter 5. Conclusions 75

our implementation decisions, so the specific results may change, but this only

restates our general thesis that the optimal implementation approach depends

on the specific implementations that are the targets.

Type inference was the key to the optimizations with the most impact

on performance, and this suggests directions for future research. Our type

inference algorithm works just as badly across module boundaries as the

local type propagation of Section

2.2.4 works across function call boundaries.

Parameters of exported functions in our type system always have the dynamic

type, and imported functions also always return values of this type.

Recent work on gradual typing [

Siek and Taha,

2006,

2007] and Typed

Scheme [

Tobin-Hochstadt and Felleisen,

2008] may lead to an approach com-

bining type annotations in module boundaries with type inference used for

intra-module optimization. Gradual typing is a type system where parts of a

program may be annotated with precise types, and parts not annotated have a

dynamic type. The type system guarantees that type errors only occur in the

dynamically-typed portions of the program. Typed Scheme is a gradual typing

system for Scheme that lets the programmer mix statically and dynamically

typed Scheme code. The Typed Scheme runtime is still the same runtime as

regular Scheme; the type annotations provide static type safety, not increased

performance through removal of type checks or better representations.

Gradual typing may be orthogonal to the type system we use for our

type inference algorithm.

Siek and Vachharajani [

2008] has already show that

gradual typing is compatible with Hindley-Milner type inference, and

Herman

et al. [

2007] use techniques taken from Heinglein’s work on dynamic typing

that we reviewed in Section

3.3.1 [

Henglein,

1992a]. Combing gradual typing

and our type inference should make it possible to have inference working across

modules with minimal type annotations, as well as increasing the static type

safety of Lua programs.

Bibliography

N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman,

R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M.

Pitman, G. J. Rozas, G. L. Steele, Jr., G. J. Sussman, M. Wand, and

H. Abelson. Revised5 report on the algorithmic language Scheme. SIGPLAN

Notices, 33(9):26–76, 1998. ISSN 0362-1340.

1.1

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,

techniques, and tools. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, 1986. ISBN 0-201-10088-6.

2.1.2

Alexander Aiken and Manuel Fähndrich. Dynamic typing and subtype infer-

ence. In FPCA ’95: Proceedings of the Seventh International Conference

on Functional Programming Languages and Computer Architecture, pages

182–191, New York, NY, 1995. ACM.

3.3.1

Randall D. Beer. Preliminary report on a practical type inference system for

Common Lisp. SIGPLAN Lisp Pointers, 1(2):5–11, 1987. ISSN 1045-3563.

3.3.2

Jan Benda, Tomas Matousek, and Ladislav Prosek. Phalanger: Compiling and

running PHP applications on the Microsoft .NET platform. In Proceedings

of the .NET Technologies Conference, pages 31–38, 2006.

2.3

Gregory Blajian, Roger Eggen, Maurice Eggen, and Gerald Pitts. Mono

versus .NET: A comparative study of performance for distributed processing.

In Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications, pages 45–51, 2006.

2

Shri Borde. Tail call performance on x86, 2005. Available at

http://blogs.

msdn.com/shrib/archive/2005/01/25/360370.aspx.

4.2

Brent A. Fulgham and Isaac Gouy. The computer language benchmarks game,

2009. Available at http://shootout.alioth.debian.org.

4.1

Yannis Bres, Bernard Serpette, and Manuel Serrano. Bigloo.NET: compiling

Scheme to .NET CLR. Journal of Object Technology, 9(3):71–94, October

2004.

2.3

Bibliography 77

David Broman. Tail call JIT conditions, 2007. Available at

http://blogs.

msdn.com/davbr/pages/tail-call-jit-conditions.aspx.

4.2

Luca Cardelli and Peter Wegner. On understanding types, data abstraction,

and polymorphism. ACM Computing Surveys, 17(4):471–523, 1985. ISSN

0360-0300.

3.1,

3.1.3

Robert Cartwright and Mike Fagan. Soft typing. In PLDI ’91: Proceedings

of the ACM SIGPLAN 1991 Conference on Programming Language Design

and Implementation, pages 278–292, New York, NY, 1991. ACM.

3.3.1

Bill Chiles and Alex Turner. Dynamic language runtime, 2009. Available at

http://dlr.codeplex.com/.

1,

2.3

William Clinger. Common Larceny. In Proceedings of the 2005 International

Lisp Conference, pages 101–107, 2005.

2.3

William D. Clinger and Lars Thomas Hansen. Lambda, the ultimate label or

a simple optimizing compiler for Scheme. In LFP ’94: Proceedings of the

1994 ACM Conference on LISP and Functional Programming, pages 128–

139, New York, NY, 1994. ACM.

2.3

Antonio Cuni, Davide Ancona, and Armin Rigo. Faster than c#: efficient

implementation of dynamic languages on .net. In ICOOOLPS ’09: Proceed-

ings of the 4th workshop on the Implementation, Compilation, Optimization

of Object-Oriented Languages and Programming Systems, pages 26–33, New

York, NY, 2009. ACM.

2.3

Luis Damas and Robin Milner. Principal type-schemes for functional programs.

In POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 207–212, New York, NY,

1982. ACM.

3.1,

3.3.1,

3.3.2

Ana Lúcia de Moura, Noemi Rodriguez, and Roberto Ierusalimschy. Corou-

tines in Lua. Journal of Universal Computer Science, 10(7):910–925, 2004.

1

L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the

Smalltalk-80 system. In POPL ’84: Proceedings of the 11th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pages 297–

302, New York, NY, 1984. ACM.

1,

2.3

Jitendra Dhamija. Introducing managed JScript, 2007. Avail-

able at

http://blogs.msdn.com/jscript/archive/2007/05/07/

introducing-managed-jscript.aspx.

2.3

Bibliography 78

ECMA. ECMAScript language specification, 1999. Available at

http://www.ecma-international.org/publications/standards/Ecma-

262.htm.

1

Daniel P. Friedman, Christopher T. Haynes, and Mitchell Wand. Essentials

of programming languages (2nd ed.). MIT, Cambridge, MA, 2001. ISBN

0-262-06217-8.

2.1.2

Richard P. Gabriel. Performance and evaluation of LISP systems. MIT,

Cambridge, MA, 1985. ISBN 0-262-07093-6.

4.1

Richard P. Gabriel and Kent M. Pitman. Endpaper: Technical issues of

separation in function cells and value cells. Lisp and Symbolic Computation,

1(1):81–101, 1988.

3.3.2

Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous

Java performance evaluation. In OOPSLA ’07: Proceedings of the 22nd An-

nual ACM SIGPLAN Conference on Object-oriented Programming Systems

and Applications, pages 57–76, New York, NY, 2007. ACM.

2

Carsten K. Gomard. Partial type inference for untyped functional programs. In

LFP ’90: Proceedings of the 1990 ACM Conference on LISP and Functional

Programming, pages 282–287, New York, NY, 1990. ACM.

3.3.1

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language

Specification. Addison Wesley, 2005. ISBN 978-0321246783.

2.1.2

Dayong Gu, Clark Verbrugge, and Etienne M. Gagnon. Relative factors in

performance analysis of Java virtual machines. In VEE ’06: Proceedings of

the 2nd International Conference on Virtual Execution Environments, pages

111–121, New York, NY, 2006. ACM.

2

Jennifer Hamilton. Language integration in the Common Language Runtime.

SIGPLAN Notices, 38(2):19–28, 2003. ISSN 0362-1340.

2.3

Mark Hammond. Python for .NET: lessons learned, 2000. Available at

http://word-to-html.com/convertions/Python_for_NET.html.

2.3

Fritz Henglein. Dynamic typing. In ESOP’92: Proceedings of the 4th European

Symposium on Programming, pages 233–253, London, UK, 1992a. Springer-

Verlag.

3.3.1,

5

Fritz Henglein. Global tagging optimization by type inference. In LFP

’92: Proceedings of the 1992 ACM Conference on LISP and Functional

Programming, pages 205–215, New York, NY, 1992b. ACM.

3.3.1

Bibliography 79

Fritz Henglein and Jakob Rehof. Safe polymorphic type inference for a dynam-

ically typed language: translating Scheme to ML. In FPCA ’95: Proceedings

of the Seventh International Conference on Functional Programming Lan-

guages and Computer Architecture, pages 192–203, New York, NY, 1995.

ACM.

3.3.1

David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual

typing. In Proceedings of the Symposium on Trends in Functional Program-

ming, pages 1–16, April 2007.

5

Urs Hölzle and David Ungar. Optimizing dynamically-dispatched calls with

run-time type feedback. In PLDI ’94: Proceedings of the ACM SIGPLAN

1994 Conference on Programming Language Design and Implementation,

pages 326–336, New York, NY, 1994. ACM Press.

1,

2.3

Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed

object-oriented languages with polymorphic inline caches. In ECOOP ’91:

Proceedings of the European Conference on Object-Oriented Programming,

pages 21–38, London, UK, 1991. Springer-Verlag.

2.3

Jim Hugunin. IronPython: A fast Python implementation for .NET and

Mono. In Proceedings of PyCon DC 2004, 2004. Available at

http:

//www.python.org/pycon/dc2004/papers/9.

2.3

Jim Hugunin. Ironpython 2.0, 2008. Available at

http://ironpython.

codeplex.com/Release/ProjectReleases.aspx?ReleaseId=8365.

2.3

Jim Hugunin. Ironpython 2.6 alpha 1, 2009. Available at

http://ironpython.

codeplex.com/Release/ProjectReleases.aspx?ReleaseId=22982.

2.3

Roberto Ierusalimschy. Programming in Lua, Second Edition. Lua.Org, 2006.

ISBN 8590379825.

1,

1.1

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. The

implementation of Lua 5.0. Journal of Universal Computer Science, 11(7):

1159–1176, 7 2005.

2.1.1

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. The

evolution of Lua. In HOPL III: Proceedings of the third ACM SIGPLAN

Conference on History of Programming Languages, pages 2–1–2–26, New

York, NY, 2007. ACM Press.

1

John Lam. IronRuby, 2009. Available at

http://ironruby.net.

2.3

Bibliography 80

Xavier Leroy and Pierre Weis. Polymorphic type inference and assignment. In

POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 291–302, New York, NY,

1991. ACM.

3.1.3

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Prentice Hall, 1999. ISBN 978-0201432947.

1

Robert A. MacLachlan. The Python compiler for CMU Common Lisp. In

LFP ’92: Proceedings of the 1992 ACM Conference on LISP and Functional

Programming, pages 235–246, New York, NY, 1992. ACM.

3.3.2

Dragos Manolescu, Brian Beckman, and Benjamin Livshits. Volta: Developing

distributed applications by recompiling. IEEE Software, 25(5):53–59, 2008.

ISSN 0740-7459.

1

Fabio Mascarenhas and Roberto Ierusalimschy. Running Lua scripts on the

CLR through bytecode translation. Journal of Universal Computer Science,

11(7):1275–1290, 2005.

2.1.1,

2.3,

5

Fabio Mascarenhas and Roberto Ierusalimschy. Efficient compilation of Lua

for the CLR. In SAC ’08: Proceedings of the 2008 ACM Symposium on

Applied Computing, pages 217–221, New York, NY, 2008. ACM.

1,

4.2

Fabio Mascarenhas and Roberto Ierusalimschy. LuaInterface: Scripting the

.NET CLR with Lua. Journal of Universal Computer Science, 10(7):892–

909, 2004.

2.1.1

David Mertz. Charming Python: Functional programming in Python, 2001.

Avaliable at

http://www.ibm.com/developerworks/library/l-prog2.

html.

2.1.2

Microsoft. ECMA C# and Common Language Infrastructure standards, 2005.

Available at

http://msdn.microsoft.com/net/ecma/.

1,

1.2,

2

Vance Morrison. Measure early and often for performance. MSDN Magazine,

9(4), 2008a. Available at

http://msdn.microsoft.com/en-us/magazine/

cc500596.aspx.

2

Vance Morrison. What’s coming in .NET runtime per-

formance in version v3.5 SP1, 2008b. Available at

http://blogs.msdn.com/vancem/archive/2008/05/12/

what-s-coming-in-net-runtime-performance-in-version-v3-5-sp1.

aspx.

4.2,

4.2

Bibliography 81

Llewellyn Pritchard. IronScheme, 2009. Available at

http://www.codeplex.

com/IronScheme.

2.3

John C. Reynolds. Definitional interpreters for higher-order programming

languages. Higher Order and Symbolic Computation, 11(4):363–397, 1998.

ISSN 1388-3690.

5

Martin Richards. Richards Benchmark, 1999. Available at

http://www.cl.

cam.ac.uk/~mr10/Bench.html.

4.1

Grant Richins. Tail call improvements in .NET framework 4, 2009. Avail-

able at

http://blogs.msdn.com/clrcodegeneration/archive/2009/05/

11/tail-call-improvements-in-net-framework-4.aspx.

4.2

Bernard Paul Serpette and Manuel Serrano. Compiling Scheme to JVM

bytecode: a performance study. SIGPLAN Notices, 37(9):259–270, 2002.

ISSN 0362-1340.

2.3

Manuel Serrano and Marc Feeley. Storage use analysis and its applications. In

ICFP ’96: Proceedings of the First ACM SIGPLAN International Confer-

ence on Functional Programming, pages 50–61, New York, NY, 1996. ACM.

2.3,

3.3.2

Manuel Serrano and Pierre Weis. Bigloo: A portable and optimizing com-

piler for strict functional languages. In Proceedings of the Static Analysis

Symposium, pages 366–381, 1995.

2.3

Olin Shivers. Control flow analysis in Scheme. In PLDI ’88: Proceedings of the

ACM SIGPLAN 1988 Conference on Programming Language Design and

Implementation, pages 164–174, New York, NY, 1988. ACM.

3.3.2

Jeremy Siek and Walid Taha. Gradual typing for objects. In Proceedings

of ECOOP 2007: European Conference on Object-Oriented Programming,

pages 2–27, 2007.

5

Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In

Proceedings of the Scheme and Functional Programming Workshop, pages

81–92, September 2006.

5

Jeremy G. Siek and Manish Vachharajani. Gradual typing with unification-

based inference. In DLS ’08: Proceedings of the 2008 Symposium on Dynamic

languages, pages 1–12, New York, NY, 2008. ACM.

5

Bibliography 82

Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton Van Straaten, Richar

Kelsey, Willian Clinger, Jonathan Rees, Robert Bruce Findler, and Jacob

Matthews. Revised6 report on the algorithmic language Scheme, 2007.

Available at

http://www.r6rs.org.

2.3

Guy L. Steele, Jr. Rabbit: A compiler for Scheme. Technical report, MIT,

Cambridge, MA, 1978.

1.1

Sun Microsystems. Supporting dynamically typed languages on the Java

platform, 2008. JSR 292, available at

http://jcp.org/en/jsr/detail?

id=292.

1

Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation

of Typed Scheme. SIGPLAN Notices, 43(1):395–406, 2008. ISSN 0362-1340.

5

Alex Turner and Bill Chiles. Sites, binders, and dynamic object interop

spec, 2009. Available at

http://dlr.codeplex.com/Project/Download/

FileDownload.aspx?DownloadId=68830.

2.3

James Vastbinder. A .NET Triumvirate: IronScheme, IronLisp, and

Xacc, 2008. Available at

http://www.infoq.com/news/2008/01/

leppie-ironscheme.

2.3

Andrew K. Wright and Robert Cartwright. A practical soft type system

for scheme. ACM Transasctions on Programming Languagens and Systems

(TOPLAS), 19(1):87–152, 1997. ISSN 0164-0925.

3.1,

3.3.1

Andrew K. Wright and Suresh Jagannathan. Polymorphic splitting: an

effective polyvariant flow analysis. ACM Transactions on Programming

Languages and Systems, 20(1):166–207, 1998. ISSN 0164-0925.

3.3.2

Dachuan Yu, Andrew Kennedy, and Don Syme. Formalization of generics for

the .NET Common Language Runtime. SIGPLAN Notices, 39(1):39–51,

2004. ISSN 0362-1340.

1.2

A
Operational Semantics

This appendix presents a big-step operational semantics for the simplified

Lua language in Figure

3.3 as a series of inference rules for relations
s→

(statements and expression lists),
l→ (lvalues), and

e→ (expressions). Each

relation is from a memory M, an environment E and a term a to another

memory M′ and a value v that depends on the relation.

A memory M is a function Loc → Value ∪ {⊥}. Loc is the set of

locations. Value is the set of Lua values and also the set of output values

of the relation
e→. Lua values are numbers, strings, nil, true, false, closures,

which are a pair of environment E and function term f , and tables, which are

locations pointing to functions Value→ Loc ∪ {⊥}.
The set of output values for relation

l→ is Loc, and for relation
s→ it is

the set of value tuples Value∗.

An environment E is a function Var → Loc that maps variables to

locations in memory.

The functions index, app, arith and less are primitives that model part of

Lua’s extensible semantics. The functions index, arith and less take a memory

and two values and return a memory and a value, and app takes a memory,

a value and a tuple and returns a memory and another tuple. The output

memory of these functions is the same as the input memory for all locations

that are ⊥ in the input memory and are not part of any of the input values.

A.1
Semantic Rules

Rule skip:

M, E , skip
s→M,⊥

Rule seq-return:

M, E , s1
s→M′, v v 6= ⊥

M, E , s1; s2
s→M′, v

Appendix A. Operational Semantics 84

Rule seq:

M, E , s1
s→M′,⊥ M′, E , s2

s→M′′, v

M′, E , s1; s2
s→M′′, v

Rule return:
M, E , el s→M′, v

M, E , return el
s→M′, v

Rule if-false:

M, E , e e→M′, false M′, E , s2
s→M′′, v

M, E , if e then s1 else s2
s→M′′, v

Rule if-nil:

M, E , e e→M′,nil M′, E , s2
s→M′′, v

M, E , if e then s1 else s2
s→M′′, v

Rule if-true:

M, E , e e→M′, v M′, E , s1
s→M′′, u v 6= false v 6= nil

M, E , if e then s1 else s2
s→M′′, u

Rule while-false:

M, E , e e→M′, false

M, E ,while e do s
s→M′,⊥

Rule while-false:

M, E , e e→M′,nil

M, E ,while e do s
s→M′,⊥

Rule while-return:

M, E , e e→M′, v M′, E , s s→M′′, u v 6= false v 6= nil u 6= ⊥
M, E ,while e do s

s→M′′, u

Rule while-true:

M, E , e e→M′, v M′, E , s s→M′′,⊥ M′′, E ,while e do s
s→M′′′, u

v 6= false v 6= nil

M, E ,while e do s
s→M′′′, u

Rule local-1:

M, E , el s→M′,⊥ M′[~m 7→ ~nil], E [~x 7→ ~m], s
s→M′′, v M′(mk) = ⊥

M, E , local ~x = el in s
s→M′′, v

Appendix A. Operational Semantics 85

Rule local-2:

M, E , el s→M′, ~v M′[~m 7→ ~va], E [~x 7→ ~m], s
s→M′′, u M′(mk) = ⊥

M, E , local ~x = el in s
s→M′′, v

where vak
= vk if k ≤ |~v| and vak

= nil otherwise and |~m| = |~x|.
Rule assign-1:

M, E , l1
l→M1,m1 . . .Mk−1, E , lk

l→M′,mk M′, E , el s→M′′,⊥
M, E ,~l = el

s→M′′[~m 7→ ~nil],⊥

Rule assign-2:

M, E , l1
l→M1,m1 . . .Mk−1, E , lk

l→M′,mk M′, E , el s→M′′, ~v

M, E ,~l = el
s→M′′[~m 7→ ~va],⊥

where vak
= vk if k ≤ |~v| and vak

= nil otherwise and |~m| = |~l|.
Rule app-stat:

M, E , e(el)1
e→M′, v

M, E , e(el)0
s→M′,⊥

Rule var-lval:

M, E , x s→ E(x)

Rule var-rval:

M, E , x e→M(E(x))

Rule cons:

M, E , {} e→M[t 7→ λx.⊥], t M(t) = ⊥

Rule tab-lval:

M, E , e1
e→M′, t M′, E , e2

e→M′′, v t ∈ Table M′′(t)(v) 6= ⊥
M, E , e1[e2]

s→M′′,M′′(t)(v)

Rule tab-lval-new:

M, E , e1
e→M′, t M′, E , e2

e→M′′, v t ∈ Table M′′(t)(v) = ⊥
M, E , e1[e2]

s→M′′[t 7→ M′′(t)[v 7→ l], l M′′(l) = ⊥

Rule tab-rval:

M, E , e1
e→M′, t M′, E , e2

e→M′′, v t ∈ Table M′′(t)(v) 6= ⊥
M, E , e1[e2]

s→M′′,M′′(M′′(t)(v))

Appendix A. Operational Semantics 86

Rule tab-rval-nil:

M, E , e1
e→M′, t M′, E , e2

e→M′′, v t ∈ Table M′′(t)(v) = ⊥
M, E , e1[e2]

s→M′′,nil

Rule tab-meta:

M, E , e1
e→M′, v1 M′, E , e2

e→M′′, v2 v1 /∈ Table

M, E , e1[e2]
e→ index(M′′, v1, v2)

Rule el-empty:

M, E ,nothing
s→M,⊥

Rule el:

M, E , e1
e→M1, v1 . . .Mk−1, E , ek

e→M′, vk k = |~v|
M, E , ~e s→M′, ~v

Rule el-mexp:

M, E , e1
e→M1, v1 . . .Mk−1, E , ek

e→M′, vk M′, E ,me s→M′′, u k = |~v|
M, E , ~e,me s→M′′, ~vu

Rule app-closure:

M, E , e e→M′, 〈E ′, fun(~x) b〉 M′, E , el s→M′′, ~v

M′′[~m 7→ ~va], E ′[~x 7→ ~m], b
s→M′′′, u M′′(mk) = ⊥

M, E , e(el)n
s→M′′′, u

where vak
= vk if k ≤ |~v| and vak

= nil otherwise and |~m| = |~x|.
Rule app-meta:

M, E , e e→M′, v1 M′, E , el s→M′′, v2 v1 /∈ Closure

M, E , e(el)n
s→ app(M′′, v1, v2)

Rule app-first-nil:

M, E , e(el)n
s→M′,⊥

M, E , e(el)1
e→M′,nil

Rule app-first:
M, E , e(el)n

s→M′, ~v

M, E , e(el)1
e→M′, v1

Appendix A. Operational Semantics 87

Rule arith:

M, E , e1
e→M′, v1 M′, E , e2

e→M′′, v2 v1 ∈ Number v2 ∈ Number

M, E , e1 ⊕ e2
e→M′′, E , v1⊕ v2

Rule arith-meta:

M, E , e1
e→M′, v1 M′, E , e2

e→M′′, v2 v1 /∈ Number ∨ v2 /∈ Number

M, E , e1 ⊕ e2
e→ arith(M′′, v1, v2)

Rule eq-true:

M, env, e1
e→M′, v1 M′, E , e2

e→ v2 v1 = v2

M, E , e1 == e2
e→M′′, true

Rule eq-false:

M, env, e1
e→M′, v1 M′, E , e2

e→ v2 v1 6= v2

M, E , e1 == e2
e→M′′, false

Rule less-true:

M, E , e1
e→M′, v1 M′, E , e2

e→M′′, v2 v1 ∈ Number v2 ∈ Number v1 < v2

M, E , e1 ⊕ e2
e→M′′, E , true

Rule less-false:

M, E , e1
e→M′, v1 M′, E , e2

e→M′′, v2 v1 ∈ Number v2 ∈ Number v1 6< v2

M, E , e1 ⊕ e2
e→M′′, E , false

Rule less-meta:

M, E , e1
e→M′, v1 M′, E , e2

e→M′′, v2 v1 /∈ Number ∨ v2 /∈ Number

M, E , e1 ⊕ e2
e→ less(M′′, E , v1⊕ v2)

Rule and-nil:

M, E , e1
e→M′, v1 v1 = nil

M, E , e1 and e2
e→M′,nil

Rule and-false:

M, E , e1
e→M′, v1 v1 = false

M, E , e1 and e2
e→M′, false

Appendix A. Operational Semantics 88

Rule and:

M, E , e1
e→M′, v1 M′, E , e2

e→M′′, v2 v1 6= false v1 6= nil

M, E , e1 and e2
e→M′′, v2

Rule or-nil:

M, E , e1
e→M′,nil M′, E , e2

e→M′′, v2

M, E , e1 or e2
e→M′′, v2

Rule or-false:

M, E , e1
e→M′, false M′, E , e2

e→M′′, v2

M, E , e1 or e2
e→M′′, v2

Rule or:

M, E , e1
e→M′, v1 v1 6= false v1 6= nil

M, E , e1 or e2
e→M′, v1

Rule not-nil:
M, E , e e→M′,nil

M, E ,not e
e→M′, true

Rule not-false:

M, E , e e→M′, false

M, E ,not e
e→M′, true

Rule not-true:

M, E , e e→M′, v v 6= false v 6= nil

M, E ,not e
e→M′, false

Rule fun:

M, E , fun(~x) b
e→M, 〈E , fun(~x) b〉

B
Typing Rules

This appendix presents the full set of typing rules, including those already

mentioned in Section

3.1.4.

Rule skip:

Γ ` skip : void

Rule seq-void:

Γ ` s1 : void Γ ` s2 : void

Γ ` s1; s2 : void

Rule seq-1:
Γ ` s1 : τ Γ ` s2 : void

Γ ` s1; s2 : τ

Rule seq-2:
Γ ` s1 : void Γ ` s2 : τ

Γ ` s1; s2 : τ

Rule seq-both:

Γ ` s1 : τ1 Γ ` s2 : τ2 τ1 ; υ τ2 ; υ

Γ ` s1; s2 : υ

Rule if-void:

Γ ` e : τe Γ ` s1 : void Γ ` s2 : void

Γ ` if e then s1 else s2 : void

Rule if-1:
Γ ` e : τe Γ ` s1 : τ Γ ` s2 : void

Γ ` if e then s1 else s2 : τ

Rule if-2:
Γ ` e : τe Γ ` s1 : void Γ ` s2 : τ

Γ ` if e then s1 else s2 : τ

Rule if-both:

Γ ` e : τe Γ ` s1 : τ1 Γ ` s2 : τ2 τ1 ; υ τ2 ; υ

Γ ` if e then s1 else s2 : υ

Appendix B. Typing Rules 90

Rule while-void:

Γ ` e : τ Γ ` s : void

Γ ` while e do s : void

Rule while:
Γ ` e : τ Γ ` s : υ

Γ ` while e do s : υ

Rule return:
Γ ` el : τ τ ; υ

Γ ` return el : υ

Rule local-drop-void:

Γ ` el : υ1×. . .×υm Γ[~x 7→ ~τ] ` s : void m ≥ |~x| υk ; τk
Γ ` local ~x = el in s : void

Rule local-drop:

Γ ` el : υ1×. . .×υm Γ[~x 7→ ~τ] ` s : ω m ≥ |~x| υk ; τk
Γ ` local ~x = el in s : ω

Rule local-fill-void:

Γ ` el : υ1×. . .×υm Γ[~x 7→ ~τ] ` s : void m < |~x| υk ; τk nil ; τl l > m

Γ ` local ~x = el in s : void

Rule local-fill:

Γ ` el : υ1×. . .×υm Γ[~x 7→ ~τ] ` s : ω m < |~x| υk ; τk nil ; τl l > m

Γ ` local ~x = el in s : ω

Rule local-var-drop-void:

Γ ` el : υ1 × . . .× υm ×D∗ Γ[~x 7→ ~τ] ` s : void m ≥ |~x| υk ; τk
Γlocal ~x = el in s : void

Rule local-var-drop:

Γ ` el : υ1 × . . .× υm ×D∗ Γ[~x 7→ ~τ] ` s : ω m ≥ |~x| υk ; τk
Γlocal ~x = el in s : ω

Rule local-var-fill-void:

Γ ` el : υ1 × . . .× υm ×D∗ Γ[~x 7→ ~τ] ` s : void m < |~x|
υk ; τk τl = D l > m

Γ ` local ~x = el in s : void

Appendix B. Typing Rules 91

Rule local-var-fill:

Γ ` el : υ1 × . . .× υm ×D∗ Γ[~x 7→ ~τ] ` s : ω m < |~x|
υk ; τk τl = D l > m

Γ ` local ~x = el in s : ω

Rule assign-drop:

Γ ` lk : τk Γ ` el : υ1×. . .×υm m ≥ |~l| υk ; τk

Γ ` ~l = el : void

Rule assign-fill:

Γ ` lk : τk Γ ` el : υ1×. . .×υm m < |~l| υk ; τk nil ; τl l > m

Γ ` ~l = el : void

Rule assign-var-drop:

Γ ` lk : τk Γ ` el : υ1 × . . .× υm ×D∗ m ≥ |~l| υk ; τk

Γ ` ~l = el : void

Rule assign-var-fill:

Γ ` lk : τk Γ ` el : υ1 × . . .× υm ×D∗ m < |~l| υk ; τk τl = D l > m

Γ ` ~l = el : void

Rule el-empty:

Γ ` nothing : empty

Rule el:
Γ ` ek : τk n = |~e|
Γ ` ~e : τ1×. . .×τn

Rule el-mexp-empty:

Γ ` ek : τk Γ ` me : empty n = |~e|
Γ ` ~e,me : τ1×. . .×τn

Rule el-mexp:

Γ ` ek : τk Γ ` me : υ1×. . .×υm n = |~e|
Γ ` ~e,me : τ1×. . .×τn×υ1×. . .×υm

Rule el-var-1:

Γ ` ek : τk Γ ` me : D∗ n = |~e|
Γ ` ~e,me : τ1×. . .×τn×D∗

Appendix B. Typing Rules 92

Rule el-var-2:

Γ ` ek : τk Γ ` me : υ1×. . .×υm×D∗ n = |~e|
Γ ` ~e,me : τ1×. . .×τn×υ1×. . .×υm×D∗

Rule app-drop:

Γ ` f : τ1×. . .×τn → σ Γ ` el : υ1×. . .×υm m ≥ n υk ; τk
Γ ` f(el)n : σ

Rule app-fill:

Γ ` f : τ1×. . .×τn → σ

Γ ` el : υ1×. . .×υm m < n υk ; τk nil ; τl l > m

Γ ` f(el)n : σ

Rule app-var-drop:

Γ ` f : τ1×. . .×τn → σ Γ ` el : υ1×. . .×υm×D∗ m ≥ n υk ; τk
Γ ` f(el)n : σ

Rule app-var-fill:

Γ ` f : τ1×. . .×τn → σ

Γ ` el : υ1×. . .×υm×D∗ m < n υk ; τk τl = D l > m

Γ ` f(el)n : σ

Rule app-dyn:

Γ ` f : τ Γ ` el : υ τ ; D υ ; D∗

Γ ` f(el)n : D∗

Rule app-stat:
Γ ` e(el)n : τ

Γ ` e(el)0 : void

Rule app-first:

Γ ` e(el)n : τ1 × . . .× τn
Γ ` e(el)1 : τ1

Rule app-first-nil:

Γ ` e(el)n : empty

Γ ` e(el)1 : nil

Rule app-first-dyn:

Γ ` e(el)n : D∗

Γ ` e(el)1 : D

Appendix B. Typing Rules 93

Rule cons:

∀i, j, σ.(i 6= j ∧ σ ; τi)→ σ 6; τj nil ; υk
Γ ` {} : τ1 7→ υ1 ∧ . . . ∧ τn 7→ υn

Rule cons-dyn:
nil ; υ

Γ ` {} : D 7→ υ

Rule index:

Γ ` e1 : τ1 7→ υ1 ∧ . . . ∧ τn 7→ υn Γ ` e2 : σ σ ; τk
Γ ` e1[e2] : υk

Rule index-dyn:

Γ ` e1 : τ Γ ` e2 : υ τ ; D υ ; D
Γ ` e1[e2] : D

Rule arith-num:

Γ ` e1 : τ1 Γ ` e2 : τ2 τ1 ; Number τ2 ; Number

Γ ` e1 ⊕ e2 : Number

Rule arith-dyn:

Γ ` e1 : τ1 Γ ` e2 : τ2 τ1 6; Number ∨ τ2 6; Number τ1 ; D τ2 ; D
Γ ` e1 ⊕ e2 : D

Rule eq:

Γ ` e1 : τ1 Γ ` e2 : τ2 τ1 ; τ2 ∨ τ2 ; τ1
Γ ` e1 == e2 : Bool

Rule less-num:

Γ ` e1 : τ1 Γ ` e2 : τ2 τ1 ; Number τ2 ; Number

Γ ` e1 < e2 : Bool

Rule less-dyn:

Γ ` e1 : τ1 Γ ` e2 : τ2 τ1 6; Number ∨ τ2 6; Number τ1 ; D τ2 ; D
Γ ` e1 < e2 : D

Rule and-nil:
Γ ` e1 : nil

Γ ` e1 and e2 : nil

Rule and-false:
Γ ` e1 : false

Γ ` e1 and e2 : false

Appendix B. Typing Rules 94

Rule and-true:

Γ ` e1 : τ1 Γ ` e1 : τ2 τ1 6= false nil 6; τ1
Γ ` e1 and e2 : τ2

Rule and:

Γ ` e1 : τ1 Γ ` e1 : τ2 τ1 6= nil nil ; τ1 τ1 ; υ τ2 ; υ

Γ ` e1 and e2 : υ

Rule or-nil:
Γ ` e1 : nil Γ ` e2 : τ

Γ ` e1 or e2 : τ

Rule or-false:
Γ ` e1 : false Γ ` e2 : τ

Γ ` e1 or e2 : τ

Rule or-true:

Γ ` e1 : τ τ 6= false nil 6; τ

Γ ` e1 or e2 : τ

Rule or:

Γ ` e1 : τ1 Γ ` e2 : τ2 τ1 6= nil nil ; τ1 τ1 ; υ τ2 ; υ

Γ ` e1 or e2 : υ

Rule not-nil:
Γ ` e : nil

Γ ` not e : true

Rule not-false:
Γ ` e : false

Γ ` not e : true

Rule not-true:

Γ ` e : t τ 6= false nil 6; τ

Γ ` not e : false

Rule not:
Γ ` e : t τ 6= nil nil ; τ

Γ ` not e : Bool

Rule fun-empty:

Γ ` s; return el : υ

Γ ` fun() s; return el : τ1×. . .×τn → υ

Rule fun:

Γ[~x 7→ ~τ] ` s; return el : υ

Γ ` fun(~x) s; return el : τ1×. . .×τn → υ n ≥ |~x|

C
Collected Benchmark Results

base single box intern prop infer
binary-trees 2.140 1.987 2.256 1.143 0.857 0.193
fannkuch 1.825 1.835 3.315 3.397 1.684 0.829
fib-iter 0.567 0.504 1.780 1.824 0.130 0.062
fib-memo 0.468 0.230 0.318 0.340 0.351 0.147
fib-rec 1.806 0.540 1.311 1.297 1.304 0.773
mandelbrot 1.632 1.588 5.608 5.551 0.146 0.145
n-body 2.656 2.516 4.169 3.123 3.084 0.853
n-sieve 1.901 1.887 3.115 3.138 1.352 0.296
nsieve-bits 0.883 0.567 1.377 1.403 1.028 0.574
partial-sum 0.647 0.493 1.152 1.184 0.680 0.407
recursive 1.639 0.450 1.418 1.425 1.488 0.110
spectral-norm 1.894 1.186 3.212 3.245 3.175 0.210
richards 0.343 0.308 0.329 0.217 0.202 0.047
richards-tail N/A N/A N/A N/A N/A N/A
richards-oo 0.383 0.304 0.327 0.227 0.197 0.052
richards-oo-tail N/A N/A N/A N/A N/A N/A
richards-oo-meta 0.691 0.634 0.463 0.315 0.274 0.242
richards-oo-cache 0.493 0.352 0.370 0.241 0.216 0.186

Table C.1:

Benchmark running times for Mono 2.4, in seconds

Appendix C. Collected Benchmark Results 96

base single box intern prop infer
binary-trees 0.686 0.671 0.686 0.269 0.218 0.031
fannkuch 1.373 1.392 1.267 1.312 0.895 0.696
fib-iter 0.189 0.189 0.236 0.232 0.037 0.029
fib-memo 0.183 0.156 0.154 0.176 0.166 0.023
fib-rec 0.920 0.644 0.287 0.265 0.265 0.131
mandelbrot 1.102 1.115 0.858 0.985 0.037 0.041
n-body 1.952 1.798 1.817 1.277 1.197 0.191
n-sieve 1.336 1.326 1.244 1.258 0.996 0.205
n-sieve-bits 0.365 0.343 0.359 0.363 0.296 0.199
partial-sum 0.314 0.291 0.283 0.269 0.168 0.158
recursive 0.712 0.511 0.253 0.242 0.222 0.047
spectral-norm 1.178 1.125 0.840 0.850 0.825 0.162
richards 0.240 0.230 0.211 0.156 0.148 0.055
richards-tail 0.255 0.234 0.215 0.160 0.150 0.064
richards-oo 0.255 0.218 0.201 0.158 0.127 0.055
richards-oo-tail N/A N/A 1.094 0.827 0.628 0.060
richards-oo-meta 0.425 0.398 0.298 0.211 0.201 0.179
richards-oo-cache 0.281 0.252 0.240 0.162 0.156 0.152

Table C.2:

Benchmark running times for .NET 3.5 SP1, in seconds

base single box intern prop infer
binary-trees 0.691 0.690 0.597 0.252 0.203 0.035
fannkuch 1.182 1.406 1.196 1.301 0.895 0.671
fib-iter 0.204 0.218 0.243 0.268 0.044 0.034
fib-memo 0.178 0.165 0.150 0.172 0.173 0.029
fib-rec 0.968 0.665 0.318 0.297 0.296 0.138
mandelbrot 1.093 1.120 1.007 0.998 0.042 0.045
n-body 1.747 1.986 1.658 1.303 1.190 0.183
n-sieve 1.437 1.450 1.292 1.259 0.983 0.206
nsieve-bits 0.346 0.356 0.354 0.381 0.318 0.193
partial-sum 0.331 0.304 0.281 0.283 0.180 0.161
recursive 0.735 0.525 0.277 0.266 0.258 0.052
spectral-norm 1.152 1.131 0.854 0.873 0.848 0.107
richards 0.280 0.259 0.217 0.159 0.152 0.050
richards-tail 0.278 0.261 0.214 0.162 0.156 0.063
richards-oo 0.279 0.263 0.201 0.158 0.140 0.054
richards-oo-tail N/A N/A 1.212 0.690 0.394 0.055
richards-oo-meta 0.470 0.460 0.291 0.207 0.202 0.190
richards-oo-cache 0.308 0.283 0.228 0.169 0.162 0.152

Table C.3:

Benchmark running times for .NET 4.0 Beta 1, in seconds

Appendix C. Collected Benchmark Results 97

lua luajit
binary-trees 0.259 0.184
fannkuch 1.228 0.707
fib-iter 0.499 0.083
fib-memo 0.264 0.109
fib-rec 0.835 0.170
mandelbrot 0.503 0.108
n-body 0.680 0.347
n-sieve 0.655 0.532
n-sieve-bits 0.318 0.134
partial-sum 0.282 0.136
recursive 0.704 0.128
spectra-lnorm 0.705 0.269
richards 0.133 0.054
richards-tail 0.137 0.059
richards-oo 0.116 0.052
richards-oo-tail 0.128 0.056
richards-oo-meta 0.140 0.068
richards-oo-cache 0.138 0.062

Table C.4:

Benchmark running times for Lua 5.1.4 and LuaJIT 1.1.5, in seconds

binary-trees 0.137
fannkuch 1.983
fib-iter 0.553
fib-memo 0.102
fib-rec 0.706
mandelbrot 1.061
n-body 1.581
n-sieve 0.753
n-sieve-bits 0.626
partial-sum 0.402
recursive 0.476
spectral-norm 1.838
richards 0.676

Table C.5:

Benchmark running times for IronPython 2.0, in seconds

