
Francisco Figueiredo Goytacaz Sant'Anna

Safe System-level Concurrency on
Resource-Constrained Nodes with Céu

PhD Thesis

Thesis presented to the Post�graduate Program in Computer
Science of the Informática Department, PUC�Rio as partial
ful�llment of the requirements for the degree of Doctor in
Philosophy in Computer Science

Adviser : Prof. Roberto Ierusalimschy
Co�Adviser: Prof. Noemi de La Roque Rodriguez

Rio de Janeiro
September 2013

Francisco Figueiredo Goytacaz Sant'Anna

Safe System-level Concurrency on
Resource-Constrained Nodes with Céu

Thesis presented to the Post�graduate Program in Computer
Science of the Informática Department, PUC�Rio as partial
ful�llment of the requirements for the degree of Doctor in
Philosophy in Computer Science. Approved by the following
commission:

Prof. Roberto Ierusalimschy
Adviser

Department of Informática � PUC�Rio

Prof. Noemi de La Roque Rodriguez
Co�Adviser

Department of Informática � PUC�Rio

Rio de Janeiro � September 12, 2013

All rights reserved.

Francisco Figueiredo Goytacaz Sant'Anna

Bibliographic data
Sant'Anna, Francisco Figueiredo Goytacaz

Safe System-level Concurrency on Resource-
Constrained Nodes with Céu / Francisco Figueiredo
Goytacaz Sant'Anna; adviser: Roberto Ierusalimschy;
co�adviser: Noemi de La Roque Rodriguez. � Rio de
Janeiro : PUC�Rio, Department of Informática, 2013.

v., 86 f: il. ; 29,7 cm

1. PhD Thesis - Pontifícia Universidade Católica do
Rio de Janeiro, Department of Informática.

Bibliography included.

1. Informática � Thesis. 2. Concurrency. 3. Determin-
ism. 4. Embedded Systems. 5. Esterel. 6. Reactivity. 7. Syn-
chronous. 8. Wireless Sensor Networks. I. Ierusalimschy,
Roberto. II. Rodriguez, Noemi de La Roque. III. Pontifí-
cia Universidade Católica do Rio de Janeiro. Department
of Informática. IV. Title.

CDD: 004

Acknowledgments

I would like to thank my supervisors Roberto Ierusalimschy and Noemi

Rodriguez for their time and knowledge sharing.

TTT: Olaf / Philippas

I'm also thankful to Luiz Fernando Soares, for my period in the Telemídia

Lab, and all my teachers in CAp-UERJ, responsible for my education before

college.

My studies were funded by CNPq and SAAB.

Abstract

Sant'Anna, Francisco Figueiredo Goytacaz; Ierusalimschy, Roberto;
Rodriguez, Noemi de La Roque. Safe System-level Concur-
rency on Resource-Constrained Nodes with Céu. Rio de
Janeiro, 2013. 86p. PhD Thesis � Department of Informática, Pon-
tifícia Universidade Católica do Rio de Janeiro.

Despite the continuous research to facilitate Wireless Sensor Networks devel-

opment, most safety analysis and mitigation e�orts in concurrency are still

left to developers, who must manage synchronization and shared memory

explicitly. We propose a system language that ensures safe concurrency by

handling threats at compile time, rather than at runtime. The synchronous

and static foundation of our design allows for a simple reasoning about con-

currency that enables compile-time analysis resulting in deterministic and

memory-safe programs. As a trade-o�, our design imposes limitations on

the language expressiveness, such as doing computationally-intensive oper-

ations and meeting hard real-time responsiveness. To show that the achieved

expressiveness and responsiveness is su�cient for a wide range of WSN ap-

plications, we implement widespread network protocols and the CC2420

radio driver. The implementations show a reduction in source code size,

with a penalty of memory increase below 10% in comparison to nesC. Over-

all, we ensure safety properties for programs relying on high-level control

abstractions that also lead to concise and readable code.

Keywords
Concurrency. Determinism. Embedded Systems. Esterel. Reactiv-

ity. Synchronous. Wireless Sensor Networks.

Contents

I Introduction 15

II Overview of programming models 19

II.1 Asynchronous model 19

II.2 Synchronous model 21

II.3 Programming models in WSNs 22

III The design of Céu 25

III.1 The execution model of Céu 25

III.2 Shared-memory concurrency 31

III.3 Integration with C 33

III.4 Local scopes and �nalization 34

III.5 First-class timers 36

III.6 Internal events 38

III.7 Di�erences to Esterel 40

IV Demo applications 43

IV.1 WSN ring 43

IV.2 Spaceship game 46

V Evaluation 51

V.1 Code size 52

V.2 Memory usage 53

V.3 Responsiveness 54

V.4 Discussion 57

VI The semantics of Céu 59

VI.1 Abstract syntax 59

VI.2 Operational semantics 60

VI.3 Concrete language mapping 65

VII The implementation of Céu 69

VII.1 Temporal analysis 70

VII.2 Memory layout 71

VII.3 Trail allocation 71

VII.4 The external C API 75

VIIIRelated work 79

IX Conclusion 81

List of Figures

II.1 Two blinking LEDs in OCCAM-PI, ChibiOS and Céu.
Each line of execution in parallel blinks a LED with a �xed (but

di�erent) frequency. (The LEDs are connected to I/O ports 11 and

12.) Every 3 seconds both LEDs should light on together. After a

couple of minutes of execution, only the implementation in Céu

remains synchronized. 20
II.2 �Blinking LED� in nesC, Protothreads, and Céu. 24

III.1 Syntax of Céu.
26

III.2 A Céu program to illustrate the scheduler behavior. 27
III.3 A sequence of reaction chains for the program in Figure III.2. 28
III.4 Start/stop behavior for the radio driver.

The occurrence of CC2420_STOP (line 5) seamlessly aborts the

receiving loop (collapsed in line 9) and resets the driver to wait

for the next CC2420_START (line 3). 30
III.5 Automatic detection for concurrent accesses to shared mem-

ory.
The �rst example is suspicious because x and p can be accessed

concurrently (lines 11 and 14). The second example is safe because

accesses to y can only occur in sequence. The third example illus-

trates a false positive in our algorithm. 32
III.6 A Céu program with embedded C de�nitions. The globals I

and inc are de�ned in the native block (lines 3 and 4), and are

imported by Céu in line 8. C symbols must be pre�xed with an

underline to be used in Céu (line 9). 33
III.7 Annotations for C functions.

Function abs is side-e�ect free and can be concurrent with any other

function. The functions _Leds_led0Toggle and _Leds_led1Toggle

can execute concurrently. The variables buf1 and buf2 can be

accessed concurrently (annotations are also applied to variables). 34
III.8 Unsafe use of local references.

The period in which the radio driver manipulates the reference to

msg passed by _AMSend_send (line 15) may outlive the lifetime of

the variable scope, leading to an unde�ned behavior in the program. 35
III.9 A loop that awaits an internal event can emulate a subroutine.

The send �subroutine� (lines 16-19) is invoked from three di�erent

parts of the program (lines 5, 9, and 14). 39
III.10 Exception handling in Céu.

The emit's in lines 10 and 14 raise an exception to be caught by

the await in line 6. The emit continuations are discarded given

that the surrounding par/or is aborted. 41

IV.1 Communicating trail for the WSN ring. 44
IV.2 Monitoring trail for the WSN ring. 45

13 List of Figures

IV.3 Retrying trail for the WSN ring. 46
IV.4 Retrying trail for the WSN ring. 47
IV.5 The �spaceship� game 47
IV.6 Outermost loop for the game. 48
IV.7 Sets the game attributes. 48
IV.8 The game central loop. 49
IV.9 The �game over� behavior for the game. 50

V.1 Comparison between Céu and nesC for the implemented
applications.
The column group Code size compares the number of language

tokens and global variables used in the sources; the group Céu

features shows the number of times each functionality is used in

each application; the group Memory usage compares ROM and

RAM consumption. 52
V.2 Percentage of received packets depending on the duration of

the lengthy operation.
Note the logarithmic scale on the x -axis. The packet arrival fre-

quency is 20ms. The operation frequency is 140ms. In the (left)

green area, Céu performs similarly to nesC. The (middle) gray

area represents the region in which nesC is still responsive. In the

(right) red area, both implementations become unresponsive (i.e.

over 5% packet losses). 56
V.3 Percentage of received packets depending on the sending fre-

quency.
Each received packet is tied to a 8-ms operation. Céu is 100%

responsive up to a frequency of 30ms per packet. 57

VI.1 Reduced syntax of Céu. 59
VI.2 The recursive predicate isBlocked is true only if all branches

in parallel are hanged in awaiting or emitting expressions that
cannot transit. 63

VI.3 The function clear extracts fin expressions in parallel and put
their bodies in sequence. 64

VII.1 Compilation process: from the source code in Céu to the �nal
binary. 69

VII.2 A program with a corresponding AST describing the sets I
and O. The program is safe because accesses to y in parallel
have no intersections for I. 71

VII.3 A program with blocks in sequence and in parallel, with
corresponding memory layout. 72

VII.4 Static allocation of trails and entry-point labels. 73
VII.5 Generated code for the program of Figure VII.4. 74
VII.6 The TinyOS binding for Céu. 77

VIII.1 Table of features found in work related to Céu.
The languages are sorted by the date they �rst appeared in a

publication. A gray background indicates where the feature �rst

appeared (or a contribution if it appears in a Céu cell). 80

I

Introduction

Wireless sensor networks (WSNs) are composed of a large number of

tiny devices (known as �motes�) capable of sensing the environment and

communicating. They are usually employed to continuously monitor physical

phenomena in large or unreachable areas, such as wild�re in forests and air

temperature in buildings. Each mote features limited processing capabilities,

a short-range radio link, and one or more sensors (e.g. light and temperature)

[2].

WSNs are usually designed with safety and (soft) real-time requirements

under constrained hardware platforms. At the same time, developers demand

e�ective programming abstractions, ideally with unrestricted access to low-

level functionality. These particularities impose a challenge to WSN-language

designers, who must provide a comprehensive set of features requiring correct

and predicable behavior under platforms with limited memory and CPU. As

a consequence, WSN languages either lack functionality or fail to o�er a small

and reliable programming environment.

System-level development for WSNs commonly follows one of three major

programming models: event-driven, multi-threaded, and synchronous. In event-

driven programming [23, 13], each external event can be associated with a

short-lived function callback to handle a reaction to the environment. This

model is e�cient, but is known to be di�cult to program [1, 14]. Multi-

threaded systems emerged as an alternative in WSNs, providing traditional

structured programming in multiple lines of execution [14, 9]. However, the

development process still requires manual synchronization and bookkeeping

of threads [30]. Synchronous languages [3] have also been adapted to WSNs

and o�er higher-level compositions of activities with a step-by-step execution,

considerably reducing programming e�orts [27, 28].

Despite the increase in development productivity, WSN system languages

still fail to ensure static safety properties for concurrent programs. However,

given the di�culty in debugging WSN applications, it is paramount to push

as many safety guarantees to compile time as possible [32]. Shared-memory

concurrency is an example of a widely adopted mechanism that typically relies

Chapter I. Introduction 16

on runtime safety primitives only. For instance, current WSN languages ensure

atomic memory access either through runtime barriers, such as mutexes and

locks [9, 33], or by adopting cooperative scheduling which also requires explicit

yield points in the code [27, 14]. In either case, there is no additional static

guarantees or warnings about unsafe memory accesses.

We believe that programming WSNs can bene�t from a new language

that takes concurrency safety as a primary goal, while preserving typical

multi-threading features that programmers are familiarized with, such as

shared memory concurrency. We present Céu1, a synchronous system-level

programming language that provides a reliable yet powerful set of abstractions

for the development of WSN applications. Céu is based on a small set

of control primitives similar to Esterel's [10], leading to implementations

that more closely re�ect program speci�cations. As a main contribution, we

propose a static analysis that permeates all language mechanisms and detects

safety threats, such as concurrent accesses to shared memory and concurrent

termination of threads, at compile time. In addition, we introduce the following

new safety mechanisms: �rst-class timers to ensure that timers in parallel

remain synchronized (not depending on internal reaction timings); �nalization

blocks for local pointers going out of scope; and stack-based communication

that avoids cyclic dependencies. Our work focuses on concurrency safety, rather

than type safety [11].2

In order to enable the static analysis, programs in Céu must su�er some

limitations. Computations that run in unbounded time (e.g., compression,

image processing) cannot be elegantly implemented [36], and dynamic loading

is forbidden. However, we show that Céu is su�ciently expressive for the

context of WSN applications. We successfully implemented the CC2420 radio

driver, and the DRIP, SRP, and CTP network protocols [39] in Céu. In

comparison to nesC [19], the implementations reduced the number of source

code tokens by 25%, with an increase in ROM and RAM below 10%.

The rest of the thesis is organized as follows: Chapter II introduces

Céu through comparisons with state-of-the-art languages representing the

prevailing concurrency models used in WSNs. Chapter III details the design of

Céu, motivating and discussing the safety aspects of each relevant language

feature. Chapter IV presents two demo applications, exploring the safe and

high-level programming style promoted by the language. Chapter V evaluates

the implementation of some network protocols in Céu and compares some of

its aspects with nesC (e.g. memory usage and tokens count). We also evaluate

1Céu is the Portuguese word for sky.
2 We consider both safety aspects to be complimentary and orthogonal, i.e., type-safety

techniques could also be applied to Céu.

17

the responsiveness of the radio driver written in Céu. Chapter VI presents a

formal semantics of Céu restricted to its control primitives, which comprises

most novelties and challenging parts of our design. Chapter VII discusses key

aspects of the implementation of Céu, such as the static analysis algorithm

and stackless lines of execution. Chapter VIII discusses related work to Céu.

Chapter IX concludes the thesis and makes �nal remarks.

II

Overview of programming models

Concurrent languages can be generically classi�ed in two major execution

models. In the asynchronous model, the program activities (e.g. threads and

processes) run independently of one another as result of non-deterministic

preemptive scheduling. In order to coordinate at speci�c points, these activities

require explicit use of synchronization primitives (e.g. mutual exclusion and

message passing). In the synchronous model, the program activities (e.g.

callbacks and coroutines) require explicit control/scheduling primitives (e.g.

returning or yielding). For this reason, they are inherently synchronized, as

the programmer himself speci�es how they execute and transfer control.

In this chapter we give an overview of these models, focusing on the

synchronous model, given thatCéu and most related work targeting WSNs [19,

14, 28, 33, 27, 4, 5] (detailed in Chapter VIII) are synchronous.

II.1 Asynchronous model

The asynchronous model of computation can be classi�ed according to

how independent activities coordinate. In shared memory concurrency, com-

munication is via global state, while synchronization is via mutual exclusion.

In message passing, both communication and synchronization happen via ex-

changing messages.

The default behavior of activities being independent hinders the develop-

ment of highly synchronized applications. As a practical evidence, Figure II.1

shows a simple application that blinks two LEDs in parallel with di�erent fre-

quencies1. We implemented it in two asynchronous styles and also in Céu.

For shared memory concurrency, we used a multithreaded RTOS2, while for

message passing, we used an occam variation for Arduino [25].

The LEDs should blink together every 3 seconds (LCM between 600ms

and 1s). As we expected, even for such a simple application, the LEDs in

1The complete source code and a video demos for the application can be found at
http://www.ceu-lang.org/TR/#blink.

2http://www.chibios.org/dokuwiki/doku.php?id=start

http://www.ceu-lang.org/TR/#blink
http://www.chibios.org/dokuwiki/doku.php?id=start

Chapter II. Overview of programming models 20

// OCCAM−PI
PROC main ()

CHAN SIGNAL s1,s2:
PAR

PAR
tick(600, s1!)
toggle(11, s1?)

PAR
tick(1000, s2!)
toggle(12, s2?)

:

// ChibiOS
void thread1 () {

while (1) {
sleep(600);
toggle(11);

}
}
void thread2 () {

while (1) {
sleep(1000);
toggle(12);

}
}

void setup () {
create(thread1);
create(thread2);

}

// Ceu
par do

loop do
await 600ms;
_toggle(11);

end
with

loop do
await 1s;
_toggle(12);

end
end

Figure II.1: Two blinking LEDs in OCCAM-PI, ChibiOS and Céu.
Each line of execution in parallel blinks a LED with a �xed (but di�erent) frequency.

(The LEDs are connected to I/O ports 11 and 12.) Every 3 seconds both LEDs should

light on together. After a couple of minutes of execution, only the implementation

in Céu remains synchronized.

the two asynchronous implementations lost synchronism after some time of

execution. The Céu implementation remained synchronized for all tests that

we have performed.

The implementations are intentionally naive: they just spawn the activ-

ities to blink the LEDs in parallel. The behavior for the asynchronous imple-

mentations of the blinking application is perfectly valid, as the preemptive

execution model does not ensure implicit synchronization among activities. In

a synchronous language, however, the behavior must be predictable, and loos-

ing synchronism is impossible by design. We used timers in this application,

but any kind of high frequency input would also behave nondeterministically

in asynchronous systems.

Note that even though the implementations are syntactically similar,

with two endless loops in parallel, the underlying execution models between

Céu and the two others are antagonistic, hence, the di�erent execution

behavior.

Although this application can be implemented correctly with an asyn-

chronous execution model, it circumvents the language style, as timers need

to be synchronized in a single thread. Furthermore, it is common to see sim-

ilar naive blinking examples in reference examples of asynchronous systems3,

3 Example 1 in the RTOS DuinOS v0.3 : http://code.google.com/p/duinos/.
Example 3 in the occam-based Concurrency for Arduino v20110201.1855 : http://

http://code.google.com/p/duinos/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/

21 II.2. Synchronous model

suggesting that LEDs are really supposed to blink synchronized, a guarantee

that the language cannot provide.

II.2 Synchronous model

In this section, we present a review of some synchronous languages and

programming techniques that more closely relate to Céu. We refer back to

them in detail in Chapter VIII to discuss speci�c features and di�erences that

require a deeper knowledge about Céu.

Event-driven programming

At the lowest abstract level of the synchronous model, event-driven

programming is usually employed as a technique in general-purpose languages

with no speci�c support for reactivity. Because a single line of execution and

stack are available, programmers need to deal with the burden of manual stack

management and inversion of control. [1]

In the context of WSNs, the programming language nesC [19] o�ers

event-driven programming for the TinyOS operating system. The concurrency

model of nesC is very �exible, supporting the traditional serialization among

callbacks (the default and recommended behavior), and also asynchronous

callbacks that interrupt others. To deal with race conditions, nesC supports

atomic sections with a similar semantics to mutual exclusion in asynchronous

languages. We use nesC as the back end of Céu for TinyOS [23].

Cooperative multithreading

Cooperative multithreading is an alternative approach to preemptive

multithreading where the programmer is responsible for scheduling activities

in the program (known as coroutines [34]). With this approach, there are no

possible race conditions on global variables, as the points that transfer control

in coroutines are explicit (and, supposedly, are never inside critical sections).

In the context of WSNs, Protothreads [14] o�er very lightweight cooper-

ative multithreading for embedded systems. Its stackless implementation re-

duces memory consumption but precludes support for local variables. Fur-

thermore, Protothreads provide no static safety warranties: programs can loop

inde�nitely, and accesses to globals are unrestricted.

Finite state machines

The use of �nite state machines (FSMs) is a classic technique to im-

plement reactive applications, such as network protocols and graphical user

interfaces. A contemporary work [28] targets WSNs and is based on the Stat-

echarts formalism [22].

concurrency.cc/.

http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/
http://concurrency.cc/

Chapter II. Overview of programming models 22

FSMs have some known limitations. For instance, writing purely sequen-

tial �ow is tedious, requiring to break programs in multiple states with a single

transition connecting each of them. Another inherent problem of FSMs is the

state explosion phenomenon, which can be alleviated in some designs that

support hierarchical FSMs running in parallel [28].

Synchronous languages

The family of reactive synchronous languages4 is an established alter-

native to C in the �eld of safety-critical embedded systems [3]. Two major

styles of synchronous languages have evolved: in the control�imperative style

(e.g. Esterel [8]), programs are structured with control �ow primitives, such as

parallelism, repetition, and preemption; in the data�ow�declarative style (e.g.

Lustre [21]), programs can be seen as graphs of values, in which a change to a

value is propagated through its dependencies without explicit programming.

Céu is strongly in�uenced by Esterel [10] in its support for hierarchical

compositions of activities and reactivity to events. However, some fundamental

di�erences exist, and we discuss them in detail in Section III.7.

II.3 Programming models in WSNs

A WSN application has to handle a multitude of concurrent events,

such as timers and packet transmissions, keeping track of them according to

its speci�cation. From a control perspective, programs are composed of two

main patterns: sequential, i.e., an activity with two or more sub-activities

in sequence; and parallel, i.e., unrelated activities that eventually need to

synchronize. As an example, an application that alternates between sampling a

sensor and broadcasting its readings has a sequential pattern (with an enclosing

loop); while using a 1-minute timeout to interrupt an activity denotes a parallel

pattern.

Figure II.2 presents the three synchronous programming (sub-)models

commonly used in WSNs through a simple concurrent application. It shows the

implementations in nesC [19], Protothreads [14], and Céu for an application

that continuously turns on a LED for 2 seconds and o� for 1 second. After

1 minute of activity, the application turns o� the LED and proceeds to

another activity (marked in the code as <...>). The diagram on the bottom-

right of Figure II.2 describes the overall control behavior for the application.

The sequential programming pattern is represented by the LED alternating

4 The term synchronous is convoluted here: Synchronous languages evidently follow the
synchronous programming model, but multi-purpose languages (e.g., Java and C) can also
behave synchronously by applying techniques such as event-driven programming and state
machines.

23 II.3. Programming models in WSNs

between the two states, while the parallel pattern is represented by the 1-

minute timeout.

The �rst implementation, in nesC, which represents the event-driven

model, spawns two timers �in parallel� at boot time (Boot.booted): one to

make the LED blink and another to wait for 1 minute. The callback T1.fired

continuously toggles the LED and resets the timer according to the state

variable on. The callback T2.fired executes only once, canceling the blinking

timer, and proceeds to <...>. Overall, we argue that this implementation has

little structure: the blinking loop is not explicit, but instead relies on a static

state variable and multiple invocations of the same callback. Furthermore,

the timeout handler (T2.fired) requires speci�c knowledge about how to

stop the blinking activity, and the programmer must manually terminate it

(T1.cancel()).

The second implementation, in Protothreads, which represents the multi-

threaded model [14, 9], uses a dedicated thread to make the LED blink in

a loop. This brings more structure to the solution. The main thread also

helps a reader to identify the overall sequence of the program, which is not

easily identi�able in the event-driven implementation without tracking the

dependencies among callbacks. However, it still requires much bookkeeping

for initializing, scheduling and rejoining the blinking thread after the timeout

(inside the while condition).

The third implementation, in Céu, which represents the synchronous-

language model, uses a par/or construct to run the two activities in parallel:

an endless loop to blink the LED, and a single statement that waits for

1 minute before terminating. The par/or stands for parallel-or and rejoins

automatically when any of its trails terminates. We argue that the hierarchical

structure of Céu more closely re�ects the control diagram and ties the two

activities together, implying that (a) they can only exist together; (b) they

always start together (c) they always terminate together. Besides the arguably

cleaner syntax, the additional control-�ow information that can be inferred

from the program is the base for all features and safety guarantees introduced

by Céu.

Chapter II. Overview of programming models 24

/* nesC */
event void Boot.booted() {

call T1.start(0)
call T2.start(60000)

}
event void T1.fired() {

static int on = 0;
if (on) {

call Leds.led0Off();
call T1.start(1000);

} else {
call Leds.led0On();
call T1.start(2000);

}
on = !on

}
event void T2.fired() {

call T1.cancel();
call Leds.led0Off();
<...> // CONTINUE

}

/* Protothreads */
int main() {

PT_INIT(&blink);
timer_set(&timeout,60000);
while (
PT_SCHEDULE(blink()) &&
!timer_expired(timeout)

);
leds_off(LEDS_RED);
<...> // CONTINUE

}
PT_THREAD blink() {

while (1) {
leds_on(LEDS_RED);
timer_set(&timer,2000);
PT_WAIT(expired(&timer));
leds_off(LEDS_RED);
timer_set(&timer,1000);
PT_WAIT(expired(&timer));

}
}

/* Céu */
par/or do

loop do
_Leds_led0On();
await 2s;
_Leds_led0Off();
await 1s;

end
with

await 1min;
end
_Leds_led0Off();
<...> // CONTINUE

Figure II.2: �Blinking LED� in nesC, Protothreads, and Céu.

III

The design of Céu

Céu is a concurrent language in which multiple lines of execution�

known as trails�continuously react to input events from the environment.

Waiting for an event halts the running trail until that event occurs. The envi-

ronment broadcasts an occurring event to all active trails, which share a single

global time reference (the event itself). The fundamental distinction between

Céu and prevailing multi-threaded designs is the way threads are combined in

programs. Céu provides Esterel-like syntactic hierarchical compositions, while

most multi-threaded systems typically only support top-level de�nitions for

threads. Figure III.1 shows a compact reference of Céu, which helps to follow

the examples in this chapter.

We start the chapter with the fundamental design decisions behind Céu's

execution model, namely the uniqueness of external events and deterministic

scheduler (Section III.1). Then, we discuss how they enable safe concurrency

support for shared memory and C calls (Sections III.2 and III.3). We further

introduce some new programming features that match Céu's synchronous and

safety-oriented design: local scope �nalization (Section III.4), �rst-class timers

(Section III.5), and a stack-based communication mechanism (Section III.6).

We �nish with a discussion that summarizes the chapter by comparing Céu

with Esterel (Section III.7).

III.1 The execution model of Céu

Céu is grounded on a precise de�nition of time as a discrete sequence of

external input events: a sequence because only a single input event is handled

at a time; discrete because reactions to events are guaranteed to execute in

bounded time (to be discussed further). The execution model forCéu programs

is as follows:

1. The program initiates the �boot reaction� in a single trail.

2. Active trails execute until they await or terminate. This step is named a

reaction chain, and always runs in bounded time.

Chapter III. The design of Céu 26

// DECLARATIONS
input <type> <id>; // external event
event <type> <id>; // internal event
var <type> <id>; // variable

// EVENT HANDLING
await <id>; // awaits event
emit <id>; // emits event

// COMPOUND STATEMENTS
<...> ; <...> ; // sequence
if <...> then <...> // conditional

else <...> end
loop do <...> end // repetition

break // (escape loop)
finalize <...> // finalization

with <...> end

// PARALLEL COMPOSITIONS
par/and do <...> // rejoins on termination of both sides

with <...> end
par/or do <...> // rejoins on termination of any side

with <...> end
par do <...> // never rejoins

with <...> end

// C INTEGRATION
f(); // C call (prefix ‘’)
native do <...> end // block of native code
pure <id>; // pure annotation
safe <id> with <id>; // safe annotation

Figure III.1: Syntax of Céu.

3. The program goes idle and the environment takes control.

4. On the occurrence of a new external input event, the environment awakes

all trails awaiting that event. It then goes to step 2.

The synchronous execution model of Céu is based on the hypothesis that

internal reactions run in�nitely faster in comparison to the rate of external

events [36]. Conceptually, a program takes no time on step 2 and is always idle

on step 3. In practice, if a new external input event occurs while a reaction

chain is running (step 2), it is enqueued to run in the next reaction. When

multiple trails are active at a time (i.e. awaking on the same event), Céu

schedules them in the order they appear in the program text. This policy is

somewhat arbitrary, but provides a priority scheme for trails, and also ensures

deterministic and reproducible execution for programs, which is important for

simulation purposes. A reaction chain may also contain emissions and reactions

to internal events, which are presented in Section III.6.

27 III.1. The execution model of Céu

1 input void A, B, C;
2 par/and do
3 // trail 1
4 <...> // <...> represents non−awaiting statements
5 await A;
6 <...>
7 with
8 // trail 2
9 <...>

10 await B;
11 <...>
12 with
13 // trail 3
14 <...>
15 await A;
16 <...>
17 await B;
18 par/and do
19 // trail 3
20 <...>
21 with
22 // trail 4
23 <...>
24 end
25 end

Figure III.2: A Céu program to illustrate the scheduler behavior.

To illustrate the behavior of the scheduler of Céu, the execution of the

program in Figure III.2 is depicted in the diagram of Figure III.3. The program

starts in the boot reaction and is split in three trails. Following the order of

declaration, the scheduler �rst executes trail 1 until it awaits A in line 5; then

trail 2 executes until it awaits B in line 10; then trail 3 is scheduled and

also awaits A, in line 15. As no other trails are pending, the reaction chain

terminates and the scheduler remains idle until the occurrence of A: trail 1

awakes, executes and terminates; and then trail 3 executes and waits for B in

line 17. Trail 2 remains suspended, as it is not awaiting A. During this reaction,

new instances of events A, B, and C occur and are enqueued to be handled in

the reactions that follow. As A happened �rst, it is used in the next reaction.

However, no trails are awaiting it, so an empty reaction chain takes place. The

next reaction dequeues event B: trail 2 awakes, executes and terminates; then

trail 3 is split in two and both terminate. The program terminates and does

not react to the pending event C. Note that each step in the time line (t0, t1,

etc.) is identi�ed by the event it handles. Inside a reaction, trails only react to

that identifying event (or remain suspended).

Chapter III. The design of Céu 28

Figure III.3: A sequence of reaction chains for the program in Figure III.2.

(a) Bounded execution

Reaction chains should run in bounded time to guarantee that programs

are responsive and can handle upcoming input events from the environment.

Similarly to Esterel [10], Céu requires that each possible path in a loop body

contains at least one await or break statement, thus ensuring that loops never

run in unbounded time. Consider the examples that follow:

loop do

if <cond> then

break;

end

end

loop do

if <cond> then

break;

else

await A;

end

end

The �rst example is refused at compile time, because the if true branch

may never execute, resulting in a tight loop (i.e., an in�nite loop that does not

await). The second variation is accepted, because for every iteration, the loop

either breaks or awaits.

Enforcing bounded execution makes Céu inappropriate for algorithmic-

intensive applications that require unrestricted loops (e.g., cryptography, image

processing). However, Céu is designed for control-intensive applications and

we believe this is a reasonable price to pay in order to achieve higher reliability.

(b) Parallel compositions and abortion

The use of trails in parallel allows that programs wait for multiple

events at the same time. Furthermore, trails await without loosing context

information, such as locals and the program counter, what is a desired behavior

in concurrent applications. [1]

Céu supports three kinds of parallel constructs regarding how they rejoin

29 III.1. The execution model of Céu

in the future: a par/and requires that all trails in parallel terminate before

proceeding to the next statement; a par/or requires that any trail in parallel

terminates before proceeding to the next statement, aborting all awaiting

sibling trails; �nally, a par never rejoins and should be used when trails in

parallel are supposed to run forever (if they terminate, the scheduler forcedly

halts them forever). To illustrate how trails rejoin, consider the two variations

of the following archetype:

loop do

par/and do

<...>

with

await 100ms;

end

end

loop do

par/or do

<...>

with

await 100ms;

end

end

In the par/and variation, the block marked as <...> in the �rst trail

(which may contain nested compositions with await statements) is repeated

every 100 milliseconds at minimum, as both sides must terminate before re-

executing the loop. In the par/or variation, if the block does not terminate

within 100 milliseconds, it is restarted. These archetypes represent, respec-

tively, the sampling and timeout patterns, which are very common in reactive

applications.

The code in Figure III.4 is extracted from our implementation of the

CC2420 radio driver and uses a par/or to control the start/stop behavior of

the radio. The input events CC2420_START and CC2420_STOP (line 1) represent

the external interface of the driver with a client application (e.g. a protocol).

The driver enters the top-level loop and awaits the starting event (line 3); once

the client application makes a start request, the driver spawns two other trails:

one to await the stopping event (line 5), and another to actually receive radio

messages in a loop (collapsed in line 9). As compositions can be nested, the

receiving loop can be as complex as needed, including other loops and parallel

constructs. However, once the client requests to stop the driver, the trail in

line 5 awakes and terminates, causing the par/or also terminate and abort the

receiving loop. In this case, the top-level loop restarts and waits for the next

request to start the radio (line 3, again).

The par/or construct of Céu is regarded as an orthogonal preemption

primitive [7] because the two sides in the composition need not to be tweaked

with synchronization primitives or state variables in order to a�ect each

other. In contrast, it is known that traditional (asynchronous) multi-threaded

languages cannot express thread abortion safely [7, 35].

Chapter III. The design of Céu 30

1 input void CC2420_START, CC2420_STOP;
2 loop do
3 await CC2420_START;
4 par/or do
5 await CC2420_STOP;
6 with
7 // loop with other nested trails
8 // to receive radio packets
9 <...>

10 end
11 end

Figure III.4: Start/stop behavior for the radio driver.
The occurrence of CC2420_STOP (line 5) seamlessly aborts the receiving loop (col-

lapsed in line 9) and resets the driver to wait for the next CC2420_START (line 3).

(c) Reasoning about concurrency

The blinking LED of Figure II.2 in Céu illustrates how synchronous

parallel constructs lead to a simpler reasoning about concurrency aspects in

comparison to the other implementations. As reaction times are assumed to be

instantaneous, the blinking loop takes exactly 3 seconds (i.e., 2s+1s). Hence,

after 20 iterations, the accumulated time becomes 60 seconds and the loop

terminates concurrently with the 1-minute timeout in parallel. Given that the

loop appears �rst in the code, the scheduler will restart it and turn on the

LED for the last time. Then, the 1-minute timeout is scheduled, aborts the

whole par/or, and turns o� the LED. This reasoning is actually reproducible in

practice, and the LED will light on exactly 21 times for every single execution

of this program. First-class timers are discussed in more detail in Section III.5.

Note that this static control inference is impossible in asynchronous languages,

given that internal reactions take an unpredictable time (as illustrated in

Figure II.1). Even in the other implementations of Figure II.2, this control

inference cannot be easily extracted, specially considering the presence of two

di�erent timers.

The behavior for the LED timeout just described denotes a weak abortion,

because the blinking trail had the chance to execute for the last time. By

inverting the two trails, the par/or would terminate immediately, and the

blinking trail would not execute, denoting a strong abortion [7]. Céu not only

provides means to choose between weak and strong abortion, but also detects

the two con�icting possibilities and issues a warning at compile time (to be

discussed in Section III.2).

31 III.2. Shared-memory concurrency

III.2 Shared-memory concurrency

WSN applications make extensive use of shared memory, such as for han-

dling memory pools, message queues, routing tables, etc. Hence, an important

goal of Céu is to ensure a reliable execution for concurrent programs that

share memory. Concurrency in Céu is characterized when two or more trail

segments in parallel execute during the same reaction chain. A trail segment

is a sequence of statements followed by an await (or termination).

In the �rst code fragment that follows, the two assignments to x run con-

currently, because both trail segments are spawned during the same reaction

chain. However, in the second code fragment, the assignments to y are never

concurrent, because A and B are di�erent external events and the respective

segments can never execute during the same reaction chain:

var int x=1;

par/and do

x = x + 1;

with

x = x ∗ 2;

end

input void A, B;

var int y=0;

par/and do

await A;

y = y + 1;

with

await B;

y = y ∗ 2;

end

Note that although the variable x is accessed concurrently in the �rst

example, the assignments are both atomic and deterministic: the �nal value

of x is always 4 (i.e. (1 + 1) ∗ 2)). Remember from Section III.1 that trails are

scheduled in the order they appear and run to completion (i.e., until they await

or terminate). However, programs with concurrent accesses to shared memory

are suspicious, because an apparently innocuous reordering of trails modi�es

the semantics of the program; for instance, the previous example would yield

3 with the trails reordered, i.e., (1 ∗ 2 + 1).

We developed a compile-time temporal analysis forCéu in order to detect

concurrent accesses to shared variables, as follows: if a variable is written in

a trail segment, then a concurrent trail segment cannot read or write to that

variable, nor dereference a pointer of that variable type. An analogous policy

is applied for pointers vs variables and pointers vs pointers. The algorithm for

the analysis holds the set of all events in preceding await statements for each

variable access. Then, the sets for all accesses in parallel trails are compared

to assert that no events are shared among them. Otherwise the compiler warns

about the suspicious accesses.

Consider the three examples in Figure III.5. The �rst code is detected

Chapter III. The design of Céu 32

1 input void A;
2 var int x;
3 var int∗ p;
4 par/or do
5 loop do
6 await A;
7 if <cnd> then
8 break;
9 end

10 end
11 x = 1;
12 with
13 await A;
14 ∗p = 2;
15 end

input void A, B;
var int y;
par/or do

await A;
y = 1;

with
await B;
y = 2;

end
await A;
y = 3;

input void A;
var int z;
par/and do

await A;
z = 1;

with
await A;
await A;
z = 2;

end

Figure III.5: Automatic detection for concurrent accesses to shared memory.
The �rst example is suspicious because x and p can be accessed concurrently (lines 11

and 14). The second example is safe because accesses to y can only occur in sequence.

The third example illustrates a false positive in our algorithm.

as suspicious, because the assignments to x and p (lines 11 and 14) may be

concurrent in a reaction to A (lines 6 and 13); In the second code, although two

of the assignments to y occur in reactions to A (lines 4-5 and 10-11), they are

not in parallel trails and, hence, are safe. Note that the assignment in reaction

to B (line 8) is safe given that reactions to di�erent events cannot overlap

(due to the single-event rule). The third code illustrates a false positive in our

algorithm: the assignments to z in parallel can only occur in di�erent reactions

to A (lines 5 and 9), as the second assignment awaits two occurrences of A, while

the �rst trail assigns and terminates in the �rst occurrence.

Con�icting weak and strong abortions, as introduced in Section III.1,

are also detected with the proposed algorithm. Besides accesses to variables,

the algorithm also keeps track of trail terminations inside a par/or, issuing a

warning when they can occur concurrently. This way, the programmer can be

aware about the con�ict existence and choose between weak or strong abortion.

The proposed static analysis is only possible due to the uniqueness of

external events within reactions and support for syntactic compositions, which

provide precise information about the �ow of trails (i.e., which run in parallel

and which are guaranteed to be in sequence). Such precious information cannot

be inferred when the program relies on state variables to handle control, as

typically occurs in event-driven systems.

We also implemented an alternative algorithm that converts a Céu

program into a deterministic �nite automata. The resulting DFA represents all

possible points a program can reach during runtime and, hence, eliminates all

33 III.3. Integration with C

1 native do
2 #include <assert.h>
3 int I = 0;
4 int inc (int i) {
5 return I+i;
6 }
7 end
8 native _assert(), _inc(), _I;
9 _assert(_inc(_I));

Figure III.6: A Céu program with embedded C de�nitions. The globals I and

inc are de�ned in the native block (lines 3 and 4), and are imported by Céu in line

8. C symbols must be pre�xed with an underline to be used in Céu (line 9).

false positives. However, the algorithm is exponential and may be impractical

in some situations. That being said, the simpler static analysis does not detect

false positives in any of the implementations to be presented in Section V and

executes in negligible time, suggesting that the algorithm is practical.

III.3 Integration with C

Most existing operating systems and libraries for WSNs are based on

C, given its omnipresence and level of portability across embedded platforms.

Therefore, it is fundamental that programs in Céu have access to all function-

ality the underlying platform already provides.

In Céu, any identi�er pre�xed with an underscore is repassed as is

to the C compiler that generates the �nal binary. Therefore, access to C

is seamless and, more importantly, easily trackable. Céu also supports na-

tive blocks to de�ne new symbols in C, as Figure III.6 illustrates. Code inside

�native do ... end� is also repassed to the C compiler for the �nal generation

phase. As Céu mimics the type system of C, values can be easily passed back

and forth between the languages.

C calls are fully integrated with the static analysis presented in Sec-

tion III.2 and cannot appear in concurrent trails segments, because Céu has

no knowledge about their side e�ects. Also, passing variables as parameters

counts as read accesses to them, while passing pointers counts as write ac-

cesses to those types (because functions may dereference and assign to them).

This policy increases considerably the number of false positives in the analysis,

given that many functions can actually be safely called concurrently. There-

fore, Céu supports explicit syntactic annotations to relax the policy. They are

illustrated in Figure III.7, and are described as follows:

� The pure modi�er declares a C function that does not cause side e�ects,

Chapter III. The design of Céu 34

1 pure _abs(); // side−effect free
2 safe _Leds_led0Toggle with // ’led0’ vs ’led1’ is safe
3 _Leds_led1Toggle;
4 var int∗ buf1, buf2; // point to different buffers
5 safe buf1 with buf2; // ’buf1’ vs ’buf2’ is safe

Figure III.7: Annotations for C functions.
Function abs is side-e�ect free and can be concurrent with any other function. The

functions _Leds_led0Toggle and _Leds_led1Toggle can execute concurrently. The

variables buf1 and buf2 can be accessed concurrently (annotations are also applied

to variables).

allowing it to be called concurrently with any other function in the

program.

� The safe modi�er declares a pair of variables or functions that do not

a�ect each other, allowing them to be used concurrently.

Céu does not extend the bounded execution analysis to C function calls.

On the one hand, C calls must be carefully analyzed in order to keep programs

responsive. On the other hand, they also provide means to circumvent the

rigor of Céu in a well-marked way (the special underscore syntax). Evidently,

programs should only resort to C for simple operations that can be assumed

to be instantaneous, such as non-blocking I/O and struct accessors, but never

for control purposes.

III.4 Local scopes and �nalization

Local declarations for variables bring de�nitions closer to their use in

programs, increasing the readability and containment of code. Another bene�t,

specially in the context of WSNs, is that blocks in sequence can share the

same memory space, as they can never be active at the same time. The

syntactic compositions of trails allows the Céu compiler to statically allocate

and optimize memory usage: memory for trails in parallel must coexist; trails

that follow rejoin points reuse all memory.

However, the unrestricted use of locals may introduce subtle bugs when

dealing with pointers and C functions interfacing with device drivers. Given

that hardware components outlive the scope of any local variable, a pointer

passed as parameter to a system call may be held by a device driver for longer

than the scope of the referred variable, leading to a dangling pointer.

The code snippet in Figure III.8 was extracted from our implementation

of the CTP collection protocol [39]. The protocol contains a complex control

hierarchy in which the trail that sends beacon frames (lines 11-16) may be

35 III.4. Local scopes and �nalization

1 <...>
2 par/or do
3 <...> // stops the protocol or radio
4 with
5 <...> // neighbour request
6 with
7 loop do
8 par/or do
9 <...> // resends request

10 with
11 await (dt) ms; // beacon timer expired
12 var _message_t msg;
13 payload = _AMSend_getPayload(&msg,...);
14 <prepare the message>
15 _AMSend_send(..., &msg, ...);
16 await CTP_ROUTE_RADIO_SENDDONE;
17 end
18 end
19 end

Figure III.8: Unsafe use of local references.
The period in which the radio driver manipulates the reference to msg passed by

_AMSend_send (line 15) may outlive the lifetime of the variable scope, leading to an

unde�ned behavior in the program.

aborted from multiple par/or trails (all collapsed in lines 3, 5, and 9). Now,

consider the following behavior: The sending trail awakes from a beacon timer

(line 11). The local message bu�er (line 12) is prepared and passed to the radio

driver (line 13-15). While waiting for an acknowledgment from the driver (line

16), the protocol receives a request to stop (line 3) that aborts the sending

trail and makes the local bu�er go out of scope. As the radio driver runs

asynchronously and still holds the reference to the message (passed in line

15), it may manipulate the dangling pointer. A possible solution is to cancel

the message send in all trails that can abort the sending trail (through a call

to AMSend_cancel). However, this would require expanding the scope of the

message bu�er, adding a state variable to keep track of the sending status, and

duplicating the code, increasing considerably the complexity of the application.

Céu provides a safer and simpler solution with the following rule: C

calls that receive pointers require a �nalization block to safely handle referred

variables going out of scope. This rule prevents the previous example to

compile, forcing the relevant parts to be be rewritten as

Chapter III. The design of Céu 36

1 native nohold _AMSend_getPayload();

2 <...>

3 var _message_t msg;

4 <...>

5 finalize

6 _AMSend_send(..., &msg, ...);

7 with

8 _AMSend_cancel(&msg);

9 end

10 <...>

First, the nohold annotation informs the compiler that the referred C

function does not require �nalization code because it does not hold references

(line 1). Second, the finalize construct (lines 5-9) automatically executes the

with clause (line 8) when the variable passed as parameter in the finalize

clause (line 6) goes out of scope. Therefore, regardless of how the sending trail

is aborted, the �nalization code politely requests the OS to cancel the ongoing

send operation (line 8).

All network protocols that we implemented in Céu use this �nalization

mechanism for message sends. We looked through the TinyOS code base and

realized that among the 349 calls to the AMSend.send interface, only 49 have

corresponding AMSend.cancel calls. We veri�ed that many of these sends should

indeed have matching cancels because the component provides a stop interface

for clients. In nesC, because message bu�ers are usually globals, a send that

is not properly canceled typically results in an extra packet transmission

that wastes battery. However, in the presence of dynamic message pools, a

misbehaving program can change the contents of a (not freed) message that is

actually about to be transmitted, leading to a subtle bug that is hard to track.

The �nalization mechanism is fundamental to preserve the orthogonality

of the par/or construct, i.e., an aborted trail does not require clean up code

outside it.

III.5 First-class timers

Activities that involve reactions to wall-clock time1 appear in typical

patterns of WSNs, such as timeouts and sensor sampling. However, support

for wall-clock time is somewhat low-level in existing languages, usually through

timer callbacks or sleep blocking calls. In any concrete system implementation,

however, a requested timeout does not expire precisely with zero-delay, a fact

that is usually ignored in the development process. We de�ne the di�erence

1 By wall-clock time we mean the passage of time from the real world, measured in hours,
minutes, etc.

37 III.5. First-class timers

between the requested timeout and the actual expiring time as the residual

delta time (delta). Without explicit manipulation, the recurrent use of timed

activities in sequence (or in a loop) may accumulate a considerable amount of

deltas that can lead to incorrect behavior in programs.

The await statement of Céu supports wall-clock time and handles deltas

automatically, resulting in more robust applications. As an example, consider

the following program:

var int v;

await 10ms;

v = 1;

await 1ms;

v = 2;

Suppose that after the �rst await request, the underlying system gets

busy and takes 15ms to check for expiring awaits. The Céu scheduler will

notice that the await 10ms has not only already expired, but delayed with

delta=5ms. Then, the awaiting trail awakes, sets v=1, and invokes await 1ms.

As the current delta is higher than the requested timeout (i.e. 5ms > 1ms),

the trail is rescheduled for execution, now with delta=4ms.

Céu also takes into account the fact that time is a physical quantity

that can be added and compared. For instance, for the program that follows,

although the scheduler cannot guarantee that the �rst trail terminates exactly

in 11ms, it can at least ensure that the program always terminates with v=1:

par/or do

await 10ms;

<...> // any non−awaiting sequence

await 1ms;

v = 1;

with

await 12ms;

v = 2;

end

Remember that any non-awaiting sequence is considered to take no time

in the synchronous model. Hence, the �rst trail is guaranteed to terminate

before the second trail, because 10 + 1 < 12. A similar program in a language

without �rst-class support for timers, would depend on the execution timings

for the code marked as <...>, making the reasoning about the execution

behavior more di�cult. The importance of synchronized timers becomes more

evident in the presence of loops, like in the introductory example of Figure II.2

in which the �rst trail is guaranteed to execute exactly 21 times before being

aborted by the timer in the second trail.

Note that in extreme scenarios, small timers in sequence (or in a loop)

Chapter III. The design of Céu 38

may never �catch up� with the external clock, resulting in a delta that increases

inde�nitely. To deal with such cases, the current delta is always returned from

an await and can be used in programs:

loop do

var int late = await 1ms;

if late < 1000 then

<...> // normal behavior

else

<...> // abnormal behavior

end

end

III.6 Internal events

Céu provides internal events as a signaling mechanism among parallel

trails: a trail that invokes await e can be awoken in the future by a trail that

invokes emit e.

In contrast with external events, which are handled in a queue, internal

events follow a stack policy. In practical terms, this means that a trail that

emits an internal event pauses until all trails awaiting that event completely

react to it, continuing to execute afterwards. Another di�erence to external

events is that internal events occur in the same reaction chain they are emitted,

i.e., an emit instantaneously matches and awakes all corresponding await

statements that were invoked in previous reaction chains2.

The stacked execution for internal events introduces support for a re-

stricted form of subroutines that cannot express recursive de�nitions (either

directly or indirectly), resulting in bounded memory and execution time. Fig-

ure III.9 shows how the dissemination trail from our implementation of the

DRIP protocol simulates a function and can be invoked from di�erent parts

of the program (lines 16-19), just like a subroutine. The await send (line 17)

represents the function entry point, which is surrounded by a loop so that it

can be invoked repeatedly. The DRIP protocol distinguishes data and meta-

data packets and disseminates one or the other based on a request parame-

ter. For instance, when the trickle timer expires (line 8), the program invokes

emit send=>1 (line 9), which awakes the dissemination trail (line 17) and starts

sending a metadata packet (collapsed in line 18). Note that if the trail is al-

ready sending a packet, then the emit will not match the await and will have

no e�ect (the nesC implementation uses an explicit state variable to attain

this same behavior).

2In order to ensure bounded reactions, an await statement cannot awake in the same

39 III.6. Internal events

1 event int send;
2 par do
3 <...>
4 await DRIP_KEY;
5 emit send => 0; // broadcast data
6 with
7 <...>
8 await DRIP_TRICKLE;
9 emit send => 1; // broadcast meta

10 with
11 <...>
12 var _message_t∗ msg = await DRIP_DATA_RECEIVE;
13 <...>
14 emit send => 0; // broadcast data
15 with
16 loop do
17 var int isMeta = await send;
18 <...> // send data or metadata (contains awaits)
19 end
20 end

Figure III.9: A loop that awaits an internal event can emulate a subroutine.
The send �subroutine� (lines 16-19) is invoked from three di�erent parts of the

program (lines 5, 9, and 14).

This form of subroutines has some signi�cant limitations:

Single instance: Calls to a running subroutine have no e�ect. As noted in

the example of Figure III.9, a subroutine that awaits on its body may

miss further calls to it (in some cases this behavior is actually desired).

Single calling : Further calls to a subroutine in a reaction chain also have

no e�ect. Even if a subroutine terminates within a reaction chain (i.e.

reaches the await again), other emit invocations are ignored until the

next reaction chain. Remember that await statements must be awaiting

before the reaction chain starts to be awoken and that emit statements

are immediately broadcast (i.e., they are not bu�ered).

No recursion: Recursive calls to a subroutine also have no e�ect. For the

same reason of the single instance property, a trail cannot be awaiting

itself while running and the recursive call is ignored.

No concurrency : If two trails in parallel try to call the same subroutine,

the static analysis warns about non-determinism. Even if the warning is

ignored, the call from the �rst trail takes e�ect (based on deterministic

scheduling), while the second call fails on the single call property.

reaction chain it is invoked.

Chapter III. The design of Céu 40

Céu provides no support for standard functions for a number of reasons:

� The interaction with other Céu control primitives is not obvious (e.g.,

executing an await or a par/or inside a function).

� They would still be restricted in some ways given the embedded context

(e.g. no recursion or closures).

� Programs can always recur to C when absolutely necessary.

Regardless of the limitations, this form of subroutines is widely adopted

in Céu programs, given that they were designed to work with the other control

mechanisms. Keep in mind that the typical reactive organization of programs

(awaiting an external stimulus, reacting to it, and going back to awaiting) does

not demand recursive subroutines.

Internal events also provide means for describing more elaborate control

structures, such as exceptions. The code in Figure III.10 handles incoming

packets for the CC2420 radio driver in a loop. After awaking from a new

packet noti�cation (line 4), the program enters in a sequence to read the bytes

from the hardware bu�er (lines 8-16). If any anomaly is found on the received

data, the program invokes emit next to discard the current packet (lines 10 and

14). Given the execution semantics of internal events, the emit continuation is

stacked and awakes the trail in line 6, which terminates and aborts the whole

par/or in which the emitting trail is paused. Therefore, the continuation for

the emit never resumes, and the loop restarts to await a next packet.

III.7 Di�erences to Esterel

A primary goal of Céu is to support reliable shared-memory and C

concurrency on top of a deterministic scheduler and e�ective safety analysis

(Sections III.1, III.2 and III.3). Esterel, however, does not support shared-

memory concurrency because �if a variable is written by some thread, then it

can neither be read nor be written by concurrent threads� [6]. Furthermore,

Esterel is deterministic only with respect to reactive control, i.e., �the same

sequence of inputs always produces the same sequence of outputs� [6]. However,

the order of execution for side-e�ect operations within a reaction is non-

deterministic: �if there is no control dependency and no signal dependency,

as in "call f1() || call f2()", the order is unspeci�ed and it would be an

error to rely on it� [6].

In Esterel, an external reaction can carry simultaneous signals, while in

Céu, a single event de�nes a reaction. The notion of time in Esterel is similar

to that of digital circuits, in which multiple wires (signals) can be queried for

41 III.7. Di�erences to Esterel

1 <...>
2 event void next;
3 loop do
4 await CC_RECV_FIFOP;
5 par/or do
6 await next;
7 with
8 <...> // (contains awaits)
9 if rxFrameLength > _MAC_PACKET_SIZE then

10 emit next; // packet is too large
11 end
12 <...> // (contains awaits)
13 if rxFrameLength == 0 then
14 emit next; // packet is empty
15 end
16 <...> // (contains awaits)
17 end
18 end

Figure III.10: Exception handling in Céu.
The emit's in lines 10 and 14 raise an exception to be caught by the await in line 6.

The emit continuations are discarded given that the surrounding par/or is aborted.

their status (present or absent) on each clock tick. Céu more closely re�ects

event-driven programming, in which occurring events are sequentially and

uninterruptedly handled by the program. This design decision is fundamental

for the temporal analysis of Section III.2.

Esterel makes no semantic distinctions between internal and external

signals, both having only the notion of presence or absence during the entire

reaction [7]. In Céu, however, internal and external events behave di�erently:

� External events can be emitted only by the environment, while internal

events only by the program.

� A single external event can be active at a time, while multiple internal

events can coexist within a reaction.

� External events are handled in a queue, while internal events follow a

stacked execution policy.

In particular, the stack-based execution policy for internal events in Céu

enables a limited but safe form of subroutines and an exception-handling

mechanism, as discussed in Section III.6.

Apart from these fundamental di�erences to Esterel, Céu introduces

�rst-class timers with a convenient syntax and predictable behavior (Sec-

tion III.5), and also �nalization blocks to safely handle memory going out

of scope (Section III.4).

IV

Demo applications

In this chapter, we present two demos that explore the high-level and

safety capabilities of Céu described in the previous chapter. Our goal is

to present full commented applications that help understanding and getting

familiar with the language. The applications are somewhat simple (70 and 170

lines), but complete enough to expose the programming techniques promoted

by Céu.

The �rst demo targets commercially available 16-bit WSN nodes, such as

micaZ and telosb1. The second demo uses the Arduino open-source platform2,

in order to experiment with custom third-party hardware. Both platforms have

low processing power and memory capacity (16Mhz CPU, 32Kb Flash, and

4Kb SRAM), showing that Céu is applicable to highly constrained platforms.

IV.1 WSN ring

In the �rst demo, we implement a �xed-ring topology with N motes

placed side-by-side which should all follow the same behavior: receive a message

with an integer counter, show it on the LEDs, wait for 1 second, increment

the counter, and forward it to the mote on its right. Because the topology

constitutes a ring, the counter will be incremented forever while traversing the

motes. If a mote does not receive a message within 5 seconds, it should blink

the red LED every 500 milliseconds until a new message is received. The mote

with id=0 is responsible for initiating the process at boot time and recovering

the ring from failures. On perceiving a failure, it should wait for 10 seconds

before retrying the communication.

Figure IV.1 implements the communicating trail, which continuously

receives and forwards the messages. The code is an endless loop that �rst

awaits a radio message (line 2), gets a pointer to its data bu�er (line 3), shows

the received counter on the LEDs (line 4), and then awaits 1s (line 5) before

1http://www.xbow.com
2http://arduino.cc

http://www.xbow.com
http://arduino.cc

Chapter IV. Demo applications 44

1 loop do
2 var _message_t∗ msg = await RADIO_RECEIVE;
3 var int∗ cnt = _Radio_getPayload(msg);
4 _Leds_set(∗cnt);
5 await 1s;
6 ∗cnt = ∗cnt + 1;
7 finalize
8 _Radio_send((_NODE_ID+1)%N, msg);
9 with

10 _Radio_cancel(msg);
11 end
12 await RADIO_SENDDONE;
13 end

Figure IV.1: Communicating trail for the WSN ring.

incrementing the counter in the message (line 6) and forwarding it to the next

mote (line 7-12).

The program uses several services provided by the underlying operating

system ([23]), which are all non-blocking C functions for LEDs and radio

manipulation.

The �nalization block (lines 7-11) ensures that regardless of how the

communicating trail is composed with the rest of the application (and even-

tually aborted by it), the msg bu�er will be safely released while waiting for a

RADIO_SENDDONE acknowledge from the radio driver.

Because this code does not handle failures, it is straight to the point and

easy to follow. Actually, this is the �nal code for this task, as error handling

is placed in a parallel trail.

To handle failures, we de�ne in Figure IV.2 a monitoring trail (lines 4-22)

in parallel with the communicating trail. Lines 8 to 20 describe the network-

down behavior. After 5 seconds of inactivity are detected in the sub-trails in

parallel (lines 6 and 8), two new activities run in parallel: one that retries

communication every 10 seconds by signaling the internal event retry (lines

8-11); and another that blinks the red LED every 500milliseconds (lines 13-17).

The trick to restore the normal behavior of the network is to await event

RADIO_RECEIVE (line 6) in the par/or (line 5) with the network-down behavior

to abort it whenever a new message is received. By surrounding everything

with a loop (line 4), we ensure that the error detection is continuous.

Finally, we implement in Figure IV.3 the initiating/retrying process that

sends the �rst message from mote with id=0. Again, we place the code (lines

6-20) in parallel with the other activities. As this process is only handled by

the mote with id = 0, we start by checking it (line 6). If this is not the case,

we simply await forever on this trail (line 19). Otherwise, the loop (lines 7-17)

45 IV.1. WSN ring

1 par do
2 <...> // COMMUNICATING TRAIL (previous code)
3 with
4 loop do
5 par/or do
6 await RADIO_RECEIVE;
7 with
8 await 5s;
9 par do

10 loop do
11 emit retry; // only captured by mote 0
12 await 10s;
13 end
14 with
15 _Leds_set(0); // clear LEDs
16 loop do
17 _Leds_led0Toggle();
18 await 500ms;
19 end
20 end
21 end
22 end
23 end

Figure IV.2: Monitoring trail for the WSN ring.

sends the �rst message as soon as the mote is turned on (line 12). It then waits

for a retry emit (line 16) to loop and resend the initial message. Remind that

event retry is emitted on network-down every 10 seconds (line 10 of previous

code).

The static analysis of Céu correctly warns about concurrent calls to

_Radio_send (line 12) vs. _Leds_set and _Leds_led0Toggle (lines 13,15 of

previous code), which all execute after the program detects 5 seconds of

inactivity (line 6 of previous code). However, because these functions a�ect

di�erent devices (i.e. radio vs. LEDs), they can be safely executed concurrently.

The following annotation (to be included in the program) states that these

speci�c functions can be called concurrently with deterministic behavior,

allowing the program to be compiled without warnings:

safe _Radio_send with

_Leds_set, _Leds_led0Toggle;

This example shows how complementary activities in an application can

be written in separate and need not to be mixed in the code. In particular,

error handling (monitoring trail) need not to interfere with regular behavior

(communicating trail), and can even be incorporated later. To ensure that

parallel activities exhibit deterministic behavior, the Céu compiler rejects

harmful concurrent C calls by default.

Chapter IV. Demo applications 46

1 par do
2 <...> // COMMUNICATING TRAIL
3 with
4 <...> // MONITORING TRAIL
5 with
6 if _NODE_ID == 0 then
7 loop do
8 var _message_t msg;
9 var int∗ cnt = _Radio_getPayload(&msg);

10 ∗cnt = 1;
11 finalize
12 _Radio_send(1, &msg);
13 with
14 _Radio_cancel(&msg);
15 end
16 await retry;
17 end
18 else
19 await FOREVER;
20 end
21 end

Figure IV.3: Retrying trail for the WSN ring.

As a �nal consideration, we can extend the idea of compositions by

combining di�erent applications together. In the context of WSNs, it is usually

di�cult to physically recover motes in a deployed network, and by combining

multiple applications in a single image, we can switch their execution remotely

via radio. The archetype in Figure IV.4 illustrates this idea. The input event

SWITCH (line 1) is used to request application switches remotely.3 Initially, the

code behaves as application 1 (lines 7-9), but is also waiting for a SWITCH request

in parallel (line 5). Whenever a new request occurs, the par/or terminates,

aborts the running application, and restarts as the requested application. The

await FOREVER statement (line 13) ensures that a terminating application does

not reach the end of the par/or and restarts itself.

The same idea can be used to reboot a mote remotely, in the case of a

strange behavior in an application.

IV.2 Spaceship game

In the next demo, a spaceship game, we control a ship that moves through

space and has to avoid collisions with meteors until it reaches the �nish line.

Although this application is not networked, it is still embedded and reactive,

using timers, buttons, and an LCD with real-time feedback. We use an Arduino

3 We are assuming the existence of an hypothetical high-level event SWITCH that abstracts
the radio protocol for requests to change the current running application.

47 IV.2. Spaceship game

1 input int SWITCH;
2 var int cur_app = 1;
3 loop do
4 par/or do
5 cur_app = await SWITCH;
6 with
7 if cur_app == 1 then
8 <...> // CODE for APP1
9 end

10 if cur_app == 2 then
11 <...> // CODE for APP2
12 end
13 await FOREVER;
14 end
15 end

Figure IV.4: Retrying trail for the WSN ring.

Figure IV.5: The �spaceship� game

connected to a third-party two-row LCD display with two buttons to exhibit

and control the spaceship. Figure IV.5 shows the picture of a running quest.

We describe the behavior of the game, along with its implementation, fol-

lowing a top-down approach. The outermost loop of the game, in Figure IV.6,

is constituted of CODE 1, which sets the game attributes such as globals code

and dt; CODE 2 with the central game loop; and CODE 3 with the �game over�

animation. Every time the loop is executed, it resets the game attributes (line

5), generates a new map (line 7), redraws it on screen (line 8), and waits for a

starting key (line 9). Then, the program executes the main logic of the game

(line 11), until the spaceship reaches the �nish line or collides with a meteor.

Depending on the result held in win, the �game over� code (line 13) may display

an animation before restarting the game.

The game attributes (CODE 1 in Figure IV.7) change depending on the

result of the previous iteration of the outermost loop. For the �rst game

execution and whenever the spaceship collides with a meteor, variable win is

Chapter IV. Demo applications 48

1 var int dt; // inverse of game speed
2 var int points; // number of steps alive
3 var int win = 0; // starting the game
4

5 loop do
6 <...> // CODE 1: set game attributes
7

8 _map_generate();
9 _redraw(x, y, points);

10 await KEY; // starting key
11

12 <...> // CODE 2: the central loop
13

14 <...> // CODE 3: game over
15 end

Figure IV.6: Outermost loop for the game.

1 // CODE 1: set game attributes
2 var int y = 0; // ship coordinates
3 var int x = 0; // restart every phase
4

5 if not win then
6 dt = 500;
7 points = 0;
8 else
9 if dt > 100 then

10 dt = dt − 50;
11 end
12 end

Figure IV.7: Sets the game attributes.

false, hence, the attributes are reset to their initial values (lines 6-7) Otherwise,

if the player reached the �nish line, then the game gets faster, keeping the

current points (lines 9-11).

The central loop of the game (CODE 2 in Figure IV.8) moves the spaceship

as time elapses and checks whether the spaceship reaches the �nish line or

collides with a meteor. The code is actually split in two loops in parallel: one

that runs the game steps (lines 3-19), and the other that handles input from

the player to move the spaceship (lines 21-29). Note that we want the spaceship

to move only during the game action, this is why we did not place the input

handling in parallel with the whole application.

The game steps run periodically, depending on the current speed of the

game (line 4). For each loop iteration, x is incremented and the current state

is redrawn on screen (lines 5-6). Then, the spaceship is checked for collision

with meteors (lines 8-11), and also with the �nish line (lines 13-16). In either

49 IV.2. Spaceship game

1 // CODE 2: the central loop
2 par/or do
3 loop do
4 await (dt)ms;
5 x = x + 1;
6 _redraw(x, y, points);
7

8 if _MAP[y][x] == ’#’ then
9 win = 0; // a collision

10 break;
11 end
12

13 if x == _FINISH then
14 win = 1; // finish line
15 break;
16 end
17

18 points = points + 1;
19 end
20 with
21 loop do
22 var int key = await KEY;
23 if key == _KEY_UP then
24 y = 0;
25 end
26 if key == _KEY_DOWN then
27 y = 1;
28 end
29 end
30 end;

Figure IV.8: The game central loop.

of the cases, the central loop terminates with win set to the proper value, also

canceling the input handling activity. The points are incremented before each

iteration of the loop (line 18).

To handle input events, we wait for key presses in another loop (line 22)

and change the spaceship position accordingly (lines 24, 27). Note that there

are no possible race conditions on variable y (i.e., lines 6,8 vs. 24,27) because

the two loops in the par/or statement react to di�erent events (i.e., time and

key presses).

After escaping the central loop, we run the code of Figure IV.9 for the

�game over� behavior, which starts an animation if the spaceship collides with

a meteor. The animation loop (lines 6-13) continuously displays the spaceship

in the two directions, suggesting that it has hit a meteor. The animation is

interrupted when the player presses a key (line 3), proceeding to the game

restart. Note the use of the _lcd object, available in a third-party C++ library

shipped with the LCD display, and used unmodi�ed in the example.

This demo makes extensive use of global variables, relying on the de-

Chapter IV. Demo applications 50

1 // CODE 3: game over
2 par/or do
3 await KEY;
4 with
5 if !win then
6 loop do
7 await 100ms;
8 _lcd.setCursor(0, y);
9 _lcd.write(’<’);

10 await 100ms;
11 _lcd.setCursor(0, y);
12 _lcd.write(’>’);
13 end
14 end
15 end

Figure IV.9: The �game over� behavior for the game.

terministic concurrency analysis guaranteed by the Céu compiler. We used a

top-down approach to illustrate the hierarchical compositions of blocks of code.

For instance, the �game over� animation (lines 6-13) is self-contained and can

be easily adapted to a new behavior without considering the other parts of the

program.

V

Evaluation

In this chapter we present a quantitative evaluation of Céu. Our assump-

tion is that when considering Céu for system-level development, programmers

would face a tradeo� between code simplicity and e�cient resource usage. For

this reason, we evaluate source code size, memory usage, and event-handling

responsiveness for a number of standardized protocols in TinyOS [39]. We

use code size as a metric for code simplicity, complemented with a qualita-

tive discussion regarding the eradication of explicit state variables for control

purposes. By responsiveness, we mean how quickly programs react to incom-

ing events (to avoid missing them). Memory and responsiveness are important

resource-e�ciency measures to evaluate the negative impact with the adop-

tion of a higher-level language. In particular, responsiveness (instead of total

CPU cycles) is a critical aspect in reactive systems, specially those with a syn-

chronous execution semantics where preemption is forbidden. We also discuss

battery consumption when evaluating responsiveness.

Our criteria to choose which language and applications to compare with

Céu are based on the following guidelines:

� Compare to a resource-e�cient programming language in terms of mem-

ory and speed.

� Compare to the best available codebase, with proved stability and

quality.

� Compare relevant protocols in the context of WSNs.

� Compare the control-based aspects of applications, as Céu is designed

for this purpose.

� Compare the radio behavior, the most critical and battery-drainer com-

ponent in WSNs.

Based on these criteria, we chose nesC as the language to compare, given

its resource e�ciency and high-quality codebase1. In addition, nesC is used

as benchmark in many systems related to Céu [14, 27, 5, 4]. In particular,

1TinyOS repository: http://github.com/tinyos/tinyos-release/

http://github.com/tinyos/tinyos-release/

Chapter V. Evaluation 52

Figure V.1: Comparison between Céu and nesC for the implemented appli-
cations.
The column group Code size compares the number of language tokens and global

variables used in the sources; the group Céu features shows the number of times each

functionality is used in each application; the group Memory usage compares ROM

and RAM consumption.

the work on Protothreads [14] is a strong reference in the WSN community,

and we adhere to similar choices in our evaluation. All chosen applications are

reference implementations of open standards in the TinyOS community [39]:

the receiving component of the CC2420 radio driver; the Trickle timer; the

SRP routing protocol; the DRIP dissemination protocol; and the routing

component of the CTP collection protocol. They are representative of the

realm of system-level development for WSNs, which mostly consists of network

protocols and low-level system utilities: a radio driver is mandatory in the

context of WSNs; the trickle timer is used as a service by other important

protocols [31, 20]; routing, dissemination, and collection are the most common

classes of protocols in WSNs.

We took advantage of the component-based model of TinyOS and all of

our implementations use the same interface provided by the nesC counterpart.

This approach has two advantages: �rst, we could reuse existing applications

in the TinyOS repository to test the protocols (e.g. RadioCountToLeds or

TestNetwork); second, sticking to the same interface forced us to retain the

original architecture and functionality, which also strengths our evaluation.

Figure V.1 shows the comparison for Code size and Memory usage

between the implementations in nesC and Céu. For memory usage, detailed in

Section V.2, we compare the binary code size and required RAM. For code size,

detailed in Section V.1, we compare the number of tokens used in the source

code. For responsiveness, detailed in Section V.3, we evaluate the capacity to

promptly acknowledge radio packet arrivals in the CC2420 driver.

V.1 Code size

We use two metrics to compare code complexity between the implemen-

tations in Céu and nesC : the number of language tokens and global variables

used in the source code. Similarly to comparisons in related work [5, 14], we

did not consider code shared between the nesC and Céu implementations, as

they do not represent control functionality and pose no challenges regarding

concurrency aspects (i.e. they are basically predicates, struct accessors, etc.).

Note that the languages share the core syntax for expressions, calls, and

53 V.2. Memory usage

�eld accessors (based on C), and we removed all verbose annotations from

the nesC implementations for a fair comparison (e.g. signal, call, command,

etc.). The column Code size in Figure V.1 shows a considerable decrease in

the number of tokens for all implementations (around at least 25%).

Regarding the metrics for number of globals, we categorized them in state

and data variables.

State variables are used as a mechanism to control the application �ow

(on the lack of a better primitive). Keeping track of them is often regarded as

a di�cult task, hence, reduction of state variables has already been proposed

as a metric of code complexity in a related work [14]. The implementations

in Céu, not only reduced, but completely eliminated state variables, given

that all control patterns could be expressed with hierarchical compositions of

activities assisted by internal-event communication.

Data variables in WSN programs usually hold message bu�ers and

protocol parameters (e.g. sequence numbers, timer intervals, etc.). In event-

driven systems, given that stacks are not retained across reactions to the

environment, all data variables must be global2. Although the use of local

variables does not imply in reduction of lines of code (or tokens), the smallest

the scope of a variable, the more readable and less susceptible to bugs the

program becomes. In the Céu implementations, most variables could be nested

to a deeper scope. The column local data variables in Figure V.1 shows the

depth of each new local variable in Céu that was originally a global in nesC

(e.g. �2;5;6� represents globals that became locals inside blocks in the 2nd, 5th,

and 6th depth level).

The columns under Céu features in Figure V.1 point out how many times

each functionality has been used in the implementations in Céu, helping to

identify where the reduction in size comes from. As an example, Trickle uses

2 timers and 3 parallel compositions, resulting in at most 6 trails active at

the same time. The use of six coexisting trails for such a small application

is justi�ed by its highly control-intensive nature, and the almost 70% code

reduction illustrates the huge gains with Céu in this context.

V.2 Memory usage

Memory is a scarce resource in motes and it is important that Céu does

not pose signi�cant overheads in comparison to nesC. We evaluate ROM and

RAM consumption by using available testing applications for the protocols in

the TinyOS repository. Then, we compiled each application twice: �rst with

2In the case of nesC, we refer to globals as all variables de�ned in the top-level of a
component implementation block, which are visible to all functions inside it.

Chapter V. Evaluation 54

the original component in nesC, and then with the new component in Céu.

Column Memory usage in Figure V.1 shows the consumption of ROM and

RAM for the generated applications. With the exception of the Trickle timer,

the results in Céu are below 10% in ROM and 5% in RAM, in comparison

with the implementations in nesC. Our method and results are similar to those

for Protothreads [14], which is an actively supported programming system for

the Contiki OS [13].

Note that the results for Trickle illustrate the footprint of the runtime

of Céu. The RAM overhead of 22% actually corresponds to only 16 bytes:

1 byte for each of the maximum 6 concurrent trails, and 10 bytes to handle

synchronization among timers. As the complexity of the application grows, this

basic overhead tends to become irrelevant. The SRP implementation shows a

decrease in RAM, which comes from the internal communication mechanism

of Céu that could eliminate a queue. Note that both TinyOS and Céu de�ne

functions to manipulate queues for timers and tasks (or trails). Hence, as our

implementations use components in the two systems, we pay an extra overhead

in ROM for all applications.

We focused most of the language implementation e�orts on RAM opti-

mization, as it has been historically considered more scarce than ROM [32].

Although we have achieved competitive results, we expected more gains with

memory reuse for blocks with locals in sequence, because it is something that

cannot be done automatically by the nesC compiler. However, we analyzed

each application and it turned out that we had no gains at all from blocks

in sequence. Our conclusion is that sequential patterns in WSN applications

come either from split-phase operations, which always require memory to be

preserved; or from loops, which do reuse all memory, but in the same way that

event-driven systems do.

V.3 Responsiveness

A known limitation of languages with synchronous and cooperative ex-

ecution is that they cannot guarantee hard real-time deadlines [12, 29]. For

instance, the rigorous synchronous semantics of Céu forbids non-deterministic

preemption to serve high priority trails. Even though Céu ensures bounded

execution for reactions, this guarantee is not extended to C function calls,

which are usually preferred for executing long computations (due to perfor-

mance and existing code base). The implementation of a radio driver purely in

Céu raises questions regarding its responsiveness, therefore, we conduct two

experiments in this section. The experiments use the COOJA simulator [15]

running images compiled to TelosB motes.

55 V.3. Responsiveness

Operation Duration

Block cypher [26, 18] 1ms
MD5 hash [18] 3ms
Wavelet decomposition [41] 6ms

SHA-1 hash [18] 8ms
RLE compression [38] 70ms
BWT compression [38] 300ms
Image processing [37] 50�1000ms

Table V.1: Durations for lengthy operations is WSNs.
Céu can perform the operations in the green rows in real-time and under high loads.

In the �rst experiment, we �stress-test� the radio driver to compare its

performance in the Céu and nesC implementations. We use 10 motes that

broadcast 100 consecutive packets of 20 bytes to a mote that runs a periodic

time-consuming activity. The receiving handler simply adds the value of each

received byte to a global counter. The sending rate of each mote is 200ms

(leading to a receiving average of 50 packets per second considering the 10

motes), and the time-consuming activity in the receiving mote runs every

140ms. Note that these numbers are much above typical WSN applications:

10 neighbours characterizes a dense topology; 20 bytes plus header data is

close to the default limit for a TinyOS packet; and 5 messages per second is

a high frequency on networks that are supposedly idle most of the time. We

run the experiment varying the duration of the lengthy activity from 1 to 128

milliseconds, covering a wide set of applications (summarized in Table V.1).

We assume that the lengthy operation is implemented directly in C and cannot

be easily split in smaller operations (e.g., recursive algorithms [12, 29]). So, we

simulated them with simple busy waits that would keep the driver in Céu

unresponsive during that period.

Figure V.2 shows the percentage of handled packets in Céu and nesC for

each duration. Starting from the duration of 6ms, the responsiveness of Céu

degrades in comparison to nesC (5% of packet loss). The nesC driver starts

to become unresponsive with operations that take 32ms, which is a similar

conclusion taken from TOSThreads experiments with the same hardware [29].

Table V.1 shows the duration of some lengthy operations speci�cally designed

for WSNs found in the literature. The operations in the group with timings up

to 6ms could be used with real-time responsiveness in Céu (considering the

proposed high-load parameters).

Although we did not perform speci�c tests to evaluate CPU usage and

battery consumption, the experiment suggests that the overhead of Céu over

Chapter V. Evaluation 56

Figure V.2: Percentage of received packets depending on the duration of the
lengthy operation.
Note the logarithmic scale on the x -axis. The packet arrival frequency is 20ms. The

operation frequency is 140ms. In the (left) green area, Céu performs similarly to

nesC. The (middle) gray area represents the region in which nesC is still responsive.

In the (right) red area, both implementations become unresponsive (i.e. over 5%

packet losses).

nesC is very low. When the radio driver is the only running activity (column

1ms, which is the same result for an addition test we did for 0ms), both

implementations loose packets with a di�erence under 3 percentage points.

This di�erence remains the same up to 4-ms activities, hence, the observed

degradation for longer operations is only due to the lack of preemption, not

execution speed. Note that for lengthy operations implemented in C, there is

no runtime or battery consumption overhead at all, as the generated code is

the same for Céu and nesC.

In the second experiment, instead of running a long activity in parallel,

we use a 8-ms operation tied in sequence with every packet arrival to simulate

an activity such as encryption. We now run the experiment varying the rate

in the 10 sending motes from 600ms to 100ms (i.e., 60ms to 10ms receiving

rate if we consider the 10 motes). Figure V.3 shows the percentage of handled

packets in Céu and nesC for each rate of message arrival. The results show

that Céu is 100% responsive up to frequency of 33 packets per second, while

nesC up to 50 packets.

The overall conclusion from the experiments is that the radio driver in

Céu performs as well as the original driver in nesC under high loads for

programs with lengthy operations of up to 4ms, which is a reasonable time

for control execution and simple processing. The range between 6ms and 16ms

o�ers opportunities for performing more complex operations, but also requires

careful analysis and testing. For instance, the last experiment shows that the

Céu driver can process in real time messages arriving every 33ms in sequence

57 V.4. Discussion

Figure V.3: Percentage of received packets depending on the sending frequency.
Each received packet is tied to a 8-ms operation. Céu is 100% responsive up to a

frequency of 30ms per packet.

with a 8-ms operation.

Note that our experiments represent a �stress-test� scenario that is atypi-

cal to WSNs. Protocols commonly use longer intervals between message trans-

missions together with mechanisms to avoid contention, such as randomized

timers [31, 20]. Furthermore, WSNs are not subject to strict deadlines, being

not classi�ed as hard real-time systems [32].

V.4 Discussion

Céu targets control-intensive applications and provides abstractions that

can express program �ow speci�cations concisely. Our evaluation shows a

considerable decrease in code size that comes from logical compositions of

trails through the par/or and par/and constructs. They handle startup and

termination for trails seamlessly without extra programming e�orts. We believe

that the small overhead in memory quali�es Céu as a realistic option for

constrained devices. Furthermore, our broad safety analysis, encompassing all

proposed concurrency mechanisms, ensures that the high degree of concurrency

in WSNs does not pose safety threats to applications. As a summary, the

following safety properties hold for all programs that successfully compile in

Céu:

� Time-bounded reactions to the environment (Sections III.1 and III.6).

� Reliable weak and strong abortion among activities (Sec-

tions III.1 and III.2).

� No concurrency in accesses to shared variables (Section III.2).

� No concurrency in system calls sharing a resource (Section III.3).

� Finalization for blocks going out of scope (Section III.4).

Chapter V. Evaluation 58

� Auto-adjustment for timers in sequence (Section III.5).

� Synchronization for timers in parallel (Section III.5).

These properties are desirable in any application and are guaranteed as

preconditions in Céu by design. Ensuring or even extracting these properties

from less restricted languages requires signi�cant manual analysis.

Even though the achieved expressiveness and overhead of Céu meet the

requirements of WSNs, its design imposes two inherent limitations: the lack

of dynamic loading which would forbid the static analysis, and the lack of

hard real-time guarantees. Regarding the �rst limitation, dynamic features are

already discouraged due to resource constraints. For instance, even object-

oriented languages targeting WSNs forbid dynamic allocation [4, 40].

To deal with the second limitation, which can be critical in the presence of

lengthy computations, we can consider the following approaches: (1) manually

placing pause statements in unbounded loops; (2) integrating Céu with a

preemptive system. The �rst option requires the lengthy operations to be

rewritten in Céu using pause statements so that other trails can be interleaved

with them. This option is the one recommended in many related work that

provide a similar cooperative primitive (e.g. pause [6], PT_YIELD [14], yield [27],

post [19]). Considering the second option, Céu and preemptive threads are not

mutually exclusive. For instance, TOSThreads [29] proposes a message-based

integration with nesC that is safe and matches the semantics of Céu external

events.

VI

The semantics of Céu

The disciplined synchronous execution of Céu, together with broadcast

communication and stacked execution for internal events, may raise doubts

about the precise execution of programs. In this chapter, we introduce a

reduced syntax of Céu and propose an operational semantics in order to

formally describe the language, eliminating imprecisions with regard to how a

program reacts to an external event. For the sake of simplicity, we focus on

the control aspects of the language, leaving out side e�ects and C calls (which

behave like in any conventional imperative language).

VI.1 Abstract syntax

// primary expressions

p ::= mem(id) (any memory access to `id')

| await(id) (await event `id')

| emit(id) (emit event `id')

| break (loop escape)

// compound expressions

| if mem(id) then p else p (conditional)

| p ; p (sequence)

| loop p (repetition)

| p and p (par/and)

| p or p (par/or)

| fin p (finalization)

// derived by semantic rules

| awaiting(id,n) (awaiting `id' since sequence number `n')

| emitting(n) (emitting on stack level `n')

| p @ loop p (unwinded loop)

Figure VI.1: Reduced syntax of Céu.

Figure VI.1 shows the BNF-like syntax for a subset of Céu that is

su�cient to describe all semantic peculiarities of the language. The mem(id)

primitive represents all accesses, assignments, and C function calls that a�ect a

memory location identi�ed by id. As the challenging parts of Céu reside on its

control structures, we are not concerned here with a precise semantics for side

Chapter VI. The semantics of Céu 60

e�ects, but only with their occurrences in programs. The special notation nop is

used to represent an innocuousmem expression (it can be though as a synonym

for mem(ε), where ε is an unused identi�er). Except for the fin and semantic-

derived expressions, which are discussed further, the other expressions map to

their counterparts in the concrete language in Figure III.1. Note that mem

expressions cannot share identi�ers with await/emit expressions.

VI.2 Operational semantics

The core of our semantics is a relation that, given a sequence number n

identifying the current reaction chain, maps a program p and a stack of events

S in a single step to a modi�ed program and stack:

〈S, p〉 −−−→
n
〈S ′, p′〉

where

S, S ′ ∈ id∗ (sequence of event identifiers : [idtop, ..., id1])

p, p′ ∈ P (as described in F igure V I.1)

n ∈ N (univocally identifies a reaction chain)

At the beginning of a reaction chain, the stack is initialized with the

occurring external event ext (S = [ext]), but emit expressions can push new

events on top of it (we discuss how they are popped further).

We describe this relation with a set of small-step structural semantics

rules, which are built in such a way that at most one transition is possible at

any time, resulting in deterministic reaction chains. The transitions rules for

the primary expressions are as follows:

〈S, await(id)〉 −−→
n
〈S, awaiting(id, n)〉 (await)

〈id : S, awaiting(id,m)〉 −−→
n
〈id : S, nop〉, m < n (awaiting)

〈S, emit(id)〉 −−→
n
〈id : S, emitting(|S|)〉 (emit)

〈S, emitting(|S|)〉 −−→
n
〈S, nop〉 (emitting)

An await is simply transformed into an awaiting that remembers the

61 VI.2. Operational semantics

current external sequence number n (rule await). An awaiting can only transit

to a nop (rule awaiting) if its referred event id matches the top of the stack

and its sequence number is smaller than the current one (m < n). An emit

transits to an emitting holding the current stack level (|S| stands for the stack
length), and pushing the referred event on the stack (in rule emit). With the

new stack level |S|+1, the emitting(|S|) itself cannot transit, as rule emitting

expects its parameter to match the current stack level. This trick provides the

desired stack-based semantics for internal events.

Proceeding to compound expressions, the rules for conditionals and

sequences are straightforward:

val(id, n) 6= 0
〈S, (if mem(id) then p else q)〉 −−→

n
〈S, p〉 (if-true)

val(id, n) = 0
〈S, (if mem(id) then p else q)〉 −−→

n
〈S, q〉 (if-false)

〈S, p〉 −−→
n
〈S ′, p′〉

〈S, (p ; q)〉 −−→
n
〈S ′, (p′ ; q)〉 (seq-adv)

〈S, (mem(id) ; q)〉 −−→
n
〈S, q〉 (seq-nop)

〈S, (break ; q)〉 −−→
n
〈S, break〉 (seq-brk)

Given that our semantics focuses on control, rules if-true and if-false

are the only to querymem expressions. The �magical� function val receives the

memory identi�er and current reaction sequence number, returning the current

memory value. Although the value is arbitrary, it is unique in a reaction chain,

because a given expression can execute only once within it (remember that

loops must contain awaits which, from rule await, cannot awake in the same

reaction they are reached).

The rules for loops are analogous to sequences, but use `@' as separators

to properly bind breaks to their enclosing loops:

Chapter VI. The semantics of Céu 62

〈S, (loop p)〉 −−→
n
〈S, (p @ loop p)〉 (loop-expd)

〈S, p〉 −−→
n
〈S ′, p′〉

〈S, (p @ loop q)〉 −−→
n
〈S ′, (p′ @ loop q)〉 (loop-adv)

〈S, (mem(id) @ loop p)〉 −−→
n
〈S, loop p〉 (loop-nop)

〈S, (break @ loop p)〉 −−→
n
〈S, nop〉 (loop-brk)

When a program �rst encounters a loop, it �rst expands its body in

sequence with itself (rule loop-expd). Rules loop-adv and loop-nop are

similar to rules seq-adv and seq-nop, advancing the loop until they reach a

mem(id). However, what follows the loop is the loop itself (rule loop-nop).

Note that if we used `;' as a separator in loops, rules loop-brk and seq-

brk would con�ict. Rule loop-brk escapes the enclosing loop, transforming

everything into a nop.

The rules for parallel and compositions force transitions on the left branch

p to occur before transitions on the right branch q (rules and-adv1 and

and-adv2). Then, if one of the sides terminate, the composition is simply

substituted by the other side (rules and-nop1 and and-nop2):

63 VI.2. Operational semantics

isBlocked(n, a : S, awaiting(b,m)) = (a 6= b ∨ m = n)

isBlocked(n, S, emitting(s)) = (|S| 6= s)

isBlocked(n, S, (p ; q)) = isBlocked(n, S, p)

isBlocked(n, S, (p @ loop q)) = isBlocked(n, S, p)

isBlocked(n, S, (p and q)) = isBlocked(n, S, p) ∧ isBlocked(n, S, q)

isBlocked(n, S, (p or q)) = isBlocked(n, S, p) ∧ isBlocked(n, S, q)

isBlocked(n, S,_) = false (mem, await,

emit, break, if, loop)

Figure VI.2: The recursive predicate isBlocked is true only if all branches in
parallel are hanged in awaiting or emitting expressions that cannot transit.

〈S, p〉 −−→
n
〈S ′, p′〉

〈S, (p and q)〉 −−→
n
〈S ′, (p′ and q)〉 (and-adv1)

isBlocked(n, S, p) , 〈S, q〉 −−→
n
〈S ′, q′〉

〈S, (p and q)〉 −−→
n
〈S ′, (p and q′)〉 (and-adv2)

〈S, (mem(id) and q)〉 −−→
n
〈S, q〉 (and-nop1)

〈S, (p and mem(id))〉 −−→
n
〈S, p〉 (and-nop2)

〈S, (break and q)〉 −−→
n
〈S, (clear(q) ; break)〉 (and-brk1)

isBlocked(n, S, p)
〈S, (p and break)〉 −−→

n
〈S, (clear(p) ; break)〉 (and-brk2)

The deterministic behavior of the semantics relies on the isBlocked

predicate, de�ned in Figure VI.2 and used in rule and-adv2, requiring the

left branch p to be blocked in order to allow the right transition from q to

q′. An expression becomes blocked when all of its trails in parallel hang in

awaiting and emitting expressions.

The last two rules and-brk1 and and-brk2 deal with a break in each of

the sides in parallel. A break should terminate the whole composition in order

Chapter VI. The semantics of Céu 64

clear(fin p) = p

clear(p ; q) = clear(p)

clear(p @ loop q)) = clear(p)

clear(p and q) = clear(p) ; clear(q)

clear(p or q) = clear(p) ; clear(q)

clear(_) = mem(id)

Figure VI.3: The function clear extracts fin expressions in parallel and put
their bodies in sequence.

to escape the innermost loop (aborting the other side). The clear function

in the rules, de�ned in Figure VI.3, concatenates all active fin bodies of

the side being aborted (to execute before the and rejoins). Note that there

are no transition rules for fin expressions. This is because once reached, an

fin expression only executes when it is aborted by a trail in parallel. In

Section VI.3(c), we show how an fin is mapped to a �nalization block in

the concrete language. Note that there is a syntactic restriction that an fin

body cannot emit or await�they are guaranteed to completely execute within

a reaction chain.

Most rules for parallel or compositions are similar to and compositions:

〈S, p〉 −−→
n
〈S ′, p′〉

〈S, (p or q)〉 −−→
n
〈S ′, (p′ or q)〉 (or-adv1)

isBlocked(n, S, p) , 〈S, q〉 −−→
n
〈S ′, q′〉

〈S(p or q)〉 −−→
n
〈S ′, (p or q′)〉 (or-adv2)

〈S, (mem(id) or q)〉 −−→
n
〈S, clear(q)〉 (or-nop1)

isBlocked(n, S, p)
〈S, (p or mem(id))〉 −−→

n
〈S, clear(p)〉 (or-nop2)

〈S, (break or q) −−→
n
〈S, (clear(q) ; break)〉 (or-brk1)

isBlocked(n, S, p)
〈S, (p or break)〉 −−→

n
〈S, (clear(p) ; break)〉 (or-brk2)

65 VI.3. Concrete language mapping

For a parallel or, the rules or-nop1 and or-nop2 must terminate the

composition, and also apply the function clear to the aborted side, in order to

properly �nalize it.

A reaction chain eventually blocks in awaiting and emitting expressions

in parallel trails. If all trails hangs only in awaiting expressions, it means that

the program cannot advance in the current reaction chain. However, emitting

expressions should resume their continuations of previous emit in the ongoing

reaction, they are just hanged in lower stack indexes (see rule emit). Therefore,

we de�ne another relation that behaves as the previous if the program is not

blocked, and, otherwise, pops the stack:

〈S, p〉 −−→
n
〈S ′, p′〉

〈S, p〉 ===⇒
n
〈S ′, p′〉

isBlocked(n, s : S, p)

〈s : S, p〉 ===⇒
n
〈S, p〉

To describe a reaction chain in Céu, i.e., how a program behaves in reaction to

a single external event, we use the re�exive transitive closure of this relation:

〈S, p〉 ∗
===⇒

n
〈S ′, p′〉

Finally, to describe the complete execution of a program, we need multiple

�invocations� of reaction chains, incrementing the sequence number:

〈[e1], p〉 ∗
==⇒

1
〈[], p′〉

〈[e2], p′〉 ∗
==⇒

2
〈[], p′′〉

...

Each invocation starts with an external event at the top of the stack and

�nishes with a modi�ed program and an empty stack. After each invocation,

the sequence number is incremented.

VI.3 Concrete language mapping

Although the reduced syntax presented in Figure VI.1 is similar to

the concrete language in Figure III.1, there are some signi�cant mismatches

between Céu and the formal semantics that require some clari�cation. In this

section, we describe an informal mapping between the two.

Most statements from Céu map directly to the formal semantics, e.g.,

if 7→ if, ';' 7→ ′;′ , loop 7→ loop, par/and 7→ and, par/or 7→ or. (Again,

we are not considering side-e�ects, which are all mapped to the mem semantic

construct.)

Chapter VI. The semantics of Céu 66

(a) await and emit

The await and emit primitives of Céu are slightly more complex in

comparison to the formal semantics, as they support communication of values

between emits and awaits. In the two-step translation below, we start with

the program in Céu, which communicates the value 1 between the emit and

await in parallel (left-most code). In the intermediate translation, we include

the shared variable e_ to hold the value being communicated between the two

trails in order to simplify the emit. Finally, we convert the program into the

equivalent in the formal semantics, translating side-e�ect statements intomem

expressions:

par/or do
<...>
emit e => 1;

with
v = await e;
_printf("%d\n",v);

end

par/or do
<...>
e_ = 1;
emit e;

with
await e;
v = e_;
_printf("%d\n",v);

end

<...> ; mem ; emit(e)
or

await(e) ; mem ; mem

Note that a similar translation is required for external events, i.e., each

external event has a corresponding variable that is explicitly set by the

environment before each reaction chain.

(b) First-class timers

To encompass �rst-class timers, we need a special TICK event that should

be intercalated with each other event occurrence in an application:

〈[TICK], p〉 ∗
==⇒

1
〈[], p′〉

〈[e1], p′〉 ∗
==⇒

2
〈[], p′′〉

〈[TICK], p′′〉 ∗
==⇒

3
〈[], p′′′〉

〈[e2], p′′′〉 ∗
==⇒

4
〈[], p′′′′〉

...

The TICK event has an associated variable TICK_ (as illustrated in the

previous section) with the time elapsed between the two occurrences of external

events.

67 VI.3. Concrete language mapping

The translation in two steps from a timer await to the semantics is as

follows:

dt = await 10ms; var int tot = 10000;

loop do

await TICK;

tot = tot − TICK_;

if tot <= 0 then

dt = tot;

break;

end

end

mem;

loop(

await(TICK);

mem;

if mem then

mem;

break

else

nop

)

(c) Finalization blocks

The biggest mismatch between Céu and the formal semantics is regard-

ing �nalization blocks, which require more complex modi�cations in the pro-

gram for a proper mapping using the fin semantic construct. The code that

follows uses a finalize to safely _release the reference to ptr kept after the

call to _hold:

do

var int∗ ptr = <...>;

await A;

finalize

_hold(ptr);

with

_release(ptr);

end

await B;

end

In the translation to the semantics, the �rst required modi�cation is to

catch the do-end termination to run the �nalization code. For this, we translate

the block into a par/or with the original body in parallel with a fin to run

the �nalization code:

par/or do

var int∗ ptr = <...>;

await A;

_hold(ptr);

await B;

with

{ fin

_release(ptr); }

end

Chapter VI. The semantics of Céu 68

In this intermediate code (mixing the syntaxes), the fin body will

execute whenever the par/or terminates, either normally (after the await B)

or aborted from an outer composition (rules and-brk1, and-brk2, or-nop1,

or-nop2, or-brk1, and or-brk2 in the semantics). However, the fin will also

(incorrectly) execute even if the call to _hold is not reached in the body due to

an abort before awaking from the await A. To deal with this issue, for each fin

we need a corresponding �ag to keep track of code that needs to be �nalized:

1 f_ = 0;

2 par/or do

3 var int∗ ptr = <...>;

4 await A;

5 _hold(ptr);

6 f_ = 1;

7 await B;

8 with

9 { fin

10 if f_ then

11 _release(ptr);

12 end }

13 end

The �ag is initially set to false (line 1), avoiding the �nalization code to

execute (lines 9-12). Only after the call to _hold (line 5) that we set the �ag

to true (line 6) and enable the fin body to execute. The complete translation

from the original example in Céu is as follows:

mem; // f_ = 0

(

mem; // ptr = <...>

await(A);

mem; // _hold(ptr)

mem; // f_ = 1

await(B);

or

fin

if mem then // if f_

mem // release _ptr

else

nop

)

VII

The implementation of Céu

The compilation process of a program in Céu is composed of three main

phases, as illustrated in Figure VII.1:

Figure VII.1: Compilation process: from the source code in Céu to the �nal
binary.

Parsing The parser of Céu is written in LPeg [24], a pattern matching library

that also recognize grammars, making it possible to write the tokenizer

and grammar with the same tool. The source code is then converted to

an abstract syntax tree (AST) to be used in further phases. This phase

may be aborted due to syntax errors in the Céu source �le.

Temporal analysis This phase detects inconsistencies in Céu programs,

such as unbounded loops and the forms of non-determinism. It also makes

some �classical� semantic analysis, such as building a symbol table for

checking variable declarations. However, most of type checking is delayed

to the last phase to take advantage of GCC's error handling. Therefore,

this phase needs to annotate the C output with #line pragmas that

match the original �le in Céu. This phase must output code in C, given

how tied Céu is to C by design.

Final generation The �nal phase packs the generated C �le with the Céu

runtime and platform-dependent functionality, compiling them with gcc

and generating the �nal binary. The Céu runtime includes the scheduler,

timer management, and the external C API. The platform �les include

libraries for I/O and bindings to invoke the Céu scheduler on external

events.

Chapter VII. The implementation of Céu 70

In the sections that follow, we discuss the most sensible parts of the com-

piler considering our design, such as the temporal analysis, runtime scheduler,

and the external API.

VII.1 Temporal analysis

As introduced, the temporal analysis phase detects inconsistencies in

Céu programs. Here, we focus on the algorithm that detects non-deterministic

access to variables, as presented in Section III.2.

For each node representing a statement in the program AST, we keep

the set of events I (for incoming) that can lead to the execution of the node,

and also the set of events O (for outgoing) that can terminate the node.

A node inherits the set I from its direct parent and calculates O according

to its type:

� Nodes that represent expressions, assignments, C calls, and declarations

simply reproduce O = I, as they do not await;

� An await e statement has O = {e}.

� A break statement has O = {} as it escapes the innermost loop and

never terminate (see also loop below);

� A sequence node (;) modi�es each of its children to have In = On−1.

The �rst child inherits I from the sequence parent, and the set O for the

sequence node is copied from its last child, i.e., O = On.

� A loop node includes its body's O on its own I (I = I ∪ Obody), as the

loop is also reached from its own body. The union of all break statements'

O forms the set O for a loop.

� An if node has O = Otrue ∪Ofalse.

� A parallel composition (par/and / par/or) may terminate from any of its

branches, hence O = O1 ∪ ... ∪On.

With all sets calculated, any two nodes that perform side e�ects and

are in parallel branches can have their I sets compared for intersections.

If the intersection is not the empty set, they are marked as suspicious (see

Section III.2).

Figure VII.2 reproduces the second code of Figure III.5 and shows the

corresponding AST with the sets I and O for each node. The event . (dot)

represents the �boot� reaction. The assignments to y in parallel (lines 5,8 in

the code) have an empty intersection of I (lines 6,9 in the AST), hence, they

do not con�ict. Note that although the accesses in lines 5, 11 in the code (lines

71 VII.2. Memory layout

6,11 in the AST) do have an intersection, they are not in parallel and are also

safe.

input void A, B;
var int y;
par/or do

await A;
y = 1;

with
await B;
y = 2;

end
await A;
y = 3;

1 Stmts I={.} O={A}
2 Dcl_y I={.} O={.}
3 ParOr I={.} O={A,B}
4 Stmts I={.} O={A}
5 Await_A I={.} O={A}
6 Set_y I={A} O={A}
7 Stmts I={.} O={B}
8 Await_B I={.} O={B}
9 Set_y I={B} O={B}

10 Await_A I={A,B} O={A}
11 Set_y I={A} O={A}

Figure VII.2: A program with a corresponding AST describing the sets I and
O. The program is safe because accesses to y in parallel have no intersections
for I.

VII.2 Memory layout

Céu favors a �ne-grained use of trails, being common the use of trails that

await a single event. For this reason, Céu does not allocate per-trail stacks;

instead, all data resides in �xed memory slots�this is true for the program

variables as well as for temporary values and �ags needed during runtime.

Memory for trails in parallel must coexist, while statements in sequence can

reuse it. Céu reserves a single static block of memory to hold all memory slots,

whose size is the maximum the program uses at a given time. A given position

in the memory may hold di�erent data (with variable sizes) during runtime.

Translating this idea to C is straightforward [28, 5]: memory for blocks

in sequence are packed in a struct, while blocks in parallel, in a union. As an

example, Figure VII.3 shows a program with corresponding memory layout.

Each variable is assigned a unique id (e.g. a_1) so that variables with the same

name can be distinguished. The do-end blocks in sequence are packed in a

union, given that their variables cannot be in scope at the same time, e.g.,

MEM.a_1 and MEM.b_2 can safely share the same memory address. The example

also illustrates the presence of runtime �ags related to the parallel composition,

which also reside in reusable slots in the static memory.

VII.3 Trail allocation

The compiler extracts the maximum number of trails a program can have

at the same time and creates a static vector to hold runtime information about

Chapter VII. The implementation of Céu 72

input int A, B, C;
do

var int a = await A;
end
do

var int b = await B;
end
par/and do

await B;
with

await C;
end

union { // sequence
int a_1; // do_1
int b_2; // do_2
struct { // par/and

u8 _and_3: 1;
u8 _and_4: 1;

};
} MEM ;

Figure VII.3: A program with blocks in sequence and in parallel, with
corresponding memory layout.

them. Again, trails that cannot be active at the same time can share memory

slots in the static vector.

At any given moment, a trail can be awaiting in one of the following

states: INACTIVE, STACKED, FIN, or in any event de�ned in the program:

enum {

INACTIVE = 0,

STACKED,

FIN,

EVT_A, // input void A;

EVT_e, // event int e;

<...> // other events

}

All terminated or not-yet-started trails stay in the INACTIVE state and

are ignored by the scheduler. A STACKED trail holds its associated stack level

and is delayed until the scheduler runtime level reaches that value again. A FIN

trail represents a hanged �nalization block which is only scheduled when its

corresponding block goes out of scope. A trail waiting for an event stays in the

state of the corresponding event, also holding the sequence number (seqno) in

which it started awaiting. A trail is represented by the following struct:

struct trail_t {

state_t evt;

label_t lbl;

union {

unsigned char seqno;

stack_t stk;

};

};

The �eld evt holds the state of the trail (or the event it is awaiting);

the �eld lbl holds the entry point in the code to execute when the trail is

73 VII.3. Trail allocation

1 input void A;
2 event void e;
3 // TRAIL 0 − lbl Main
4 par/and do
5 // TRAIL 0 − lbl Main
6 await e;
7 // TRAIL 0 − lbl Awake_e
8 // TRAIL 0 − lbl ParAnd_chk
9 with

10 // TRAIL 1 − lbl ParAnd_sub_2
11 await A;
12 // TRAIL 1 − lbl Awake_A_1
13 emit e;
14 // TRAIL 1 − lbl Emit_e_cont
15 // TRAIL 1 − lbl ParAnd_chk
16 end
17 // TRAIL 0 − lbl ParAnd_out
18 await A;
19 // TRAIL 0 − lbl Awake_A_2

enum {
Main = 1, // ln 3
Awake_e, // ln 7
ParAnd_chk, // ln 8, 15
ParAnd_sub_2, // ln 10
Awake_A_1, // ln 12
Emit_e_cont, // ln 14
ParAnd_out, // ln 17
Awake_A_2 // ln 19

};

Figure VII.4: Static allocation of trails and entry-point labels.

scheduled; the third �eld depends on the evt �eld and may hold the seqno for

an event, or the stack level stk for a STACKED state.

The size of state_t depends on the number of events in the application;

for an application with less than 253 events (plus the 3 states), one byte

is enough. The size of label_t depends primarily on the number of await

statements in the application�each await splits the code in two and requires

a unique entry point in the code for its continuation. Additionally, split & join

points for parallel compositions, emit continuations, and �nalization blocks

also require labels. The seqno will eventually over�ow during execution (every

256 reactions). However, given that the scheduler traverses all trails in each

reaction, it can adjust them to properly handle over�ows (actually 2 bits to hold

the seqno would be already enough). The stack size depends on the maximum

depth of nested emissions and is bounded to the maximum number of trails,

e.g., a trail emits an event that awakes another trail, which emits an event that

awakes another trail, and so on�the last trail cannot awake any trail, because

they will be all hanged in a STACKED state. In WSNs applications, the size of

trail_t is typically only 3 bytes (1 byte for each �eld).

(a) Code generation

The example in Figure VII.4 illustrates how trails and labels are statically

allocated in a program. The program has a maximum of 2 trails, because the

par/and (line 4) can reuse TRAIL 0, and the join point (line 16) can reuse

both TRAIL 0 and TRAIL 1. Each label is associated with a unique identi�er

Chapter VII. The implementation of Céu 74

1 while (<...>) { // scheduler main loop
2 trail_t∗ trail = <...> // choose next trail
3 switch (trail−>lbl) {
4 case Main:
5 // activate TRAIL 1 to run next
6 TRLS[1].evt = STACKED;
7 TRLS[1].lbl = ParAnd_sub_2; // 2nd trail of par/and
8 TRLS[1].stk = current_stack;
9

10 // code in the 1st trail of par/and
11 // await e;
12 TRLS[0].evt = EVT_e;
13 TRLS[0].lbl = Awake_e;
14 TRLS[0].seq = current_seqno;
15 break;
16

17 case ParAnd_sub_2:
18 // await A;
19 TRLS[1].evt = EVT_A;
20 TRLS[1].lbl = Awake_A_1;
21 TRLS[1].seq = current_seqno;
22 break;
23

24 <...> // other labels
25 }
26 }

Figure VII.5: Generated code for the program of Figure VII.4.

in the enum. The static vector to hold the two trails in the example is de�ned

as

trail_t TRLS[2];

In the �nal generated C code, each label becomes a switch case working

as the entry point to execute its associated code. Figure VII.5 shows the

corresponding code for the program of Figure VII.4. The program is initialized

with all trails set to INACTIVE. Then, the scheduler executes the Main label in

the �rst trail. When the Main label reaches the par/and, it �stacks� the 2nd

trail of the par/and to run on TRAIL 1 (line 5-8) and proceeds to the code

in the 1st trail (lines 10-15), respecting the deterministic execution order. The

code sets the running TRAIL 0 to await EVT_e on label Awake_e, and then

halts with a break. The next iteration of the scheduler takes TRAIL 1 and

executes its registered label ParAnd_sub_2 (lines 17-22), which sets TRAIL 1

to await EVT_A and also halts.

Regarding cancellation, trails in parallel are always allocated in subse-

quent slots in the static vector TRLS. Therefore, when a par/or terminates, the

scheduler sequentially searches and executes FIN trails within the range of the

par/or, and then clears all of them to INACTIVE at once. Given that �nalization

75 VII.4. The external C API

blocks cannot contain await statements, the whole process is guaranteed to ter-

minate in bounded time. Escaping a loop that contains parallel compositions

also trigger the same process.

VII.4 The external C API

As a reactive language, the execution of a program in Céu is guided

entirely by the occurrence of external events. From the implementation per-

spective, there are three external sources of input into programs, which are all

exposed as functions in a C API:

ceu_go_init(): initializes the program (e.g. trails) and executes the �boot�

reaction (i.e., the Main label).

ceu_go_event(id,param): executes the reaction for the received event id

and associated parameter.

ceu_go_wclock(us): increments the current time in microseconds and runs

a reaction if any timer expires.

Given the semantics of Céu, the functions are guaranteed to take a

bounded time to execute. They also return a status code that says if the Céu

program has terminated after the reactions. Further calls to the API have no

e�ect on terminated programs.

The bindings for the speci�c platforms are responsible for calling the

functions in the API in the order that better suit their requirements. As

an example, it is possible to set di�erent priorities for events that occur

concurrently (i.e. while a reaction chain is running). However, a binding must

never interleave or run multiple functions in parallel. This would break the

Céu sequential/discrete semantics of time.

As an example, Figure VII.6 shows our binding for TinyOS which maps

nesC callbacks to input events in Céu. The �le ceu.h (included in line 3)

contains all de�nitions for the compiled Céu program, which are further

queried through #ifdef's. The �le ceu.c (included in line 4) contains the

main loop of Céu pointing to the labels de�ned in the program. The callback

Boot.booted (lines 6-11) is called by TinyOS on mote startup, so we initialize

Céu inside it (line 7). If the Céu program uses timers, we also start a periodic

timer (lines 8-10) that triggers callback Timer.fired (lines 13-17) every 10

milliseconds and advances the wall-clock time of Céu (line 15)1. The remaining

1We also o�er a mechanism to start the underlying timer on demand to avoid the �battery
unfriendly� 10ms polling.

Chapter VII. The implementation of Céu 76

lines map pre-de�ned TinyOS events that can be used in Céu programs, such

as the light sensor (lines 19-23) and the radio transceiver (lines 25-36).

77 VII.4. The external C API

1 implementation
2 {
3 #include "ceu.h"
4 #include "ceu.c"
5

6 event void Boot.booted () {
7 ceu_go_init();
8 #ifdef CEU_WCLOCKS
9 call Timer.startPeriodic(10);

10 #endif
11 }
12

13 #ifdef CEU_WCLOCKS
14 event void Timer.fired () {
15 ceu_go_wclock(10000);
16 }
17 #endif
18

19 #ifdef _EVT_PHOTO_READDONE
20 event void Photo.readDone (uint16_t val) {
21 ceu_go_event(EVT_PHOTO_READDONE, (void∗)val);
22 }
23 #endif
24

25 #ifdef _EVT_RADIO_SENDDONE
26 event void RadioSend.sendDone (message_t∗ msg) {
27 ceu_go_event(EVT_RADIO_SENDDONE, msg);
28 }
29 #endif
30

31 #ifdef _EVT_RADIO_RECEIVE
32 event message_t∗ RadioReceive.receive (message_t∗ msg) {
33 ceu_go_event(EVT_RADIO_RECEIVE, msg);
34 return msg;
35 }
36 #endif
37

38 <...> // other events
39 }

Figure VII.6: The TinyOS binding for Céu.

VIII

Related work

Figure VIII.1 presents an overview of work related to Céu, pointing

out supported features which are grouped by those that reduce complexity

and those that increase safety. The line Preemptive represents asynchronous

languages with preemptive scheduling [9, 29], which are summarized further.

The remaining lines enumerate languages with goals similar to those of Céu

that follow a synchronous execution semantics.

Many related approaches allow events to be handled in sequence through

a blocking primitive, overcoming the main limitation of event-driven systems

(column 1 [14, 5, 33, 4, 27]). As a natural extension, most of them also keep the

state of local variables between reactions to the environment (column 2). In

addition, Céu introduces a reliable mechanism to interface local pointers with

the system through �nalization blocks (column 8). Given that these approaches

use cooperative scheduling, they can provide deterministic and reproducible

execution (column 5). However, as far as we know, Céu is the �rst system to

extend this guarantee for timers in parallel.

Synchronous languages �rst appeared in the context of WSNs through

OSM [28] and Sol [27], which provide parallel compositions (column 3) and

distinguish themselves from multi-threaded languages by handling thread

destruction seamlessly [35, 7]. Compositions are fundamental for the simpler

reasoning about control that made possible the safety analysis of Céu. Sol

detects in�nite loops at compile time to ensure that programs are responsive

(column 6). Céu adopts the same policy, which �rst appeared in Esterel.

Internal events (column 4) can be used as a reactive alternative to shared-

memory communication in synchronous languages, as supported in OSM [28].

Céu introduces a stack-based execution that also provides a restricted but

safer form of subroutines.

nesC provides a data-race detector for interrupt handlers (column 7),

ensuring that �if a variable x is accessed by asynchronous code, then any access

of x outside of an atomic statement is a compile-time error� [19]. The analysis

of Céu is, instead, targeted at synchronous code and points more precisely

when accesses can be concurrent, which is only possible because of its restricted

Chapter VIII. Related work 80

Figure VIII.1: Table of features found in work related to Céu.
The languages are sorted by the date they �rst appeared in a publication. A gray

background indicates where the feature �rst appeared (or a contribution if it appears

in a Céu cell).

semantics. Furthermore, Céu extends the analysis for system calls (commands

in nesC) and control con�icts in trail termination. Although nesC does not

enforce bounded reactions, it promotes a cooperative style among tasks, and

provides asynchronous events that can preempt tasks (column 6), something

that cannot be done in Céu.

On the opposite side of concurrency models, languages with preemptive

scheduling assume time independence among processes and are more appro-

priate for applications involving algorithmic-intensive problems. Preemptive

scheduling is also employed in real-time operating systems to provide response

predictability, typically through prioritized schedulers [9, 16, 17, 29]. The

choice between the two models should take into account the nature of the

application and consider the trade-o� between safe synchronization and pre-

dictable responsiveness.

IX

Conclusion

We presented Céu, a system-level programming language targeting

control-intensive WSN applications. Céu is based on a synchronous core that

combines parallel compositions with standard imperative primitives, such as

sequences, loops and assignments. Our work has three main contributions:

� A resource-e�cient synchronous language that can express control spec-

i�cations concisely.

� The stack-based execution policy for internal events as a powerful

broadcast communication mechanism.

� A wide set of compile-time safety guarantees for concurrent programs

that are still allowed to share memory and access the underlying platform

in �raw C�.

We argue that the dictated safety mindset of our design does not lead to

a tedious and bureaucratic programming experience. In fact, the proposed

safety analysis actually depends on control information that can only be

inferred based on high-level control-�ow mechanisms (which results in more

compact implementations). Furthermore, Céu embraces practical aspects for

the context of WSNs, providing seamless integration with C and a convenient

syntax for timers.

As far as we know, Céu is the �rst language with stack-based internal

events, which allows to build rich control mechanisms on top of it, such as

a limited form of subroutines and exception handling. In particular, Céu's

subroutines compose well with the other control primitives and are safe, with

guaranteed bounded execution and memory consumption.

We presented two complete demos to show how typical patterns in WSNs

such as sampling, timeout and concurrency can be easily implemented. They

also explore parallel compositions for specifying complementary activities in

separate. Communication among activities can either use internal events or

safe access to global variables.

Our evaluation compares several implementations of widely adopted

WSN protocols in Céu to nesC , showing a considerable reduction in code

Chapter IX. Conclusion 82

size with a small increase in resource usage. On the way to a more in-depth

qualitative approach, we have been teaching Céu as an alternative to nesC

in hands-on WSN courses in a high school for the past two years (and also

in two universities in short courses). Our experience shows that students are

capable of implementing a simple multi-hop communication protocol in Céu

in a couple of weeks.

We presented a formal semantics for the control aspects of Céu and

discuss how they are implemented in C. The resource-e�cient implementation

of Céu is suitable for constrained sensor nodes and imposes a small memory

overhead in comparison to handcrafted event-driven code.

We believe that the strong position in favor of shared-memory con-

currency is also a contribution of the thesis: �rst because although syn-

chronous languages emerged in the early eighties, we are not aware of derived

work allegedly addressing this issue; second because the current trend in the

programming-languages community is towards the adoption of more pure func-

tional languages and message-passing concurrency to get rid of shared memory,

which is in the opposite direction of Céu.

Bibliography

[1] A. Adya et al. Cooperative task management without manual stack

management. In ATEC'02, pages 289�302. USENIX Association, 2002. I,

II.2, III.1(b)

[2] I. F. Akyildiz et al. Wireless sensor networks: a survey. Computer

Networks, 38(4):393�422, 2002. I

[3] Albert Benveniste et al. The synchronous languages twelve years later. In

Proceedings of the IEEE, volume 91, pages 64�83, Jan 2003. I, II.2

[4] Bergel et al. Flowtalk: language support for long-latency operations in em-

bedded devices. IEEE Transactions on Software Engineering, 37(4):526�

543, 2011. II, V, V.4, VIII

[5] Alexander Bernauer and Kay Römer. A comprehensive compiler-assisted

thread abstraction for resource-constrained systems. In Proceedings of

IPSN'13, Philadelphia, USA, April 2013. II, V, V.1, VII.2, VIII

[6] G. Berry. The Esterel-V5 Language Primer. CMA and Inria, Sophia-

Antipolis, France, June 2000. Version 5.10, Release 2.0. III.7, V.4

[7] Gérard Berry. Preemption in concurrent systems. In FSTTCS, volume

761 of Lecture Notes in Computer Science, pages 72�93. Springer, 1993.

III.1(b), III.1(c), III.7, VIII

[8] Gérard Berry and Georges Gonthier. The ESTEREL synchronous pro-

gramming language: design, semantics, implementation. Science of Com-

puter Programming, 19(2):87�152, 1992. II.2

[9] Shah Bhatti et al. MANTIS OS: an embedded multithreaded operating

system for wireless micro sensor platforms. Mob. Netw. Appl., 10:563�579,

August 2005. I, II.3, VIII

[10] F. Boussinot and R. de Simone. The Esterel language. Proceedings of the

IEEE, 79(9):1293�1304, Sep 1991. I, II.2, III.1(a)

Bibliography 84

[11] Nathan Cooprider, Will Archer, Eric Eide, David Gay, and John Regehr.

E�cient memory safety for TinyOS. In Proceedings of SenSys'07, pages

205�218. ACM, 2007. I

[12] Cormac Du�y et al. A comprehensive experimental comparison of event

driven and multi-threaded sensor node operating systems. JNW, 3(3):57�

70, 2008. V.3

[13] Dunkels et al. Contiki - A Lightweight and Flexible Operating System

for Tiny Networked Sensors. In Proceedings of LCN'04, pages 455�462,

Washington, DC, USA, 2004. IEEE Computer Society. I, V.2

[14] Dunkels et al. Protothreads: simplifying event-driven programming of

memory-constrained embedded systems. In Proceedings of SenSys'06,

pages 29�42. ACM, 2006. I, II, II.2, II.3, V, V.1, V.2, V.4, VIII

[15] Joakim Eriksson et al. Cooja/mspsim: interoperability testing for wireless

sensor networks. In Proceedings of SIMUTools'09, page 27. ICST, 2009.

V.3

[16] Muhammad Farooq and Thomas Kunz. Operating systems for wireless

sensor networks: A survey. Sensors, 11(6):5900�5930, 2011. VIII

[17] FreeRTOS. Freertos homepage. http://www.freertos.org. VIII

[18] Prasanth Ganesan et al. Analyzing and modeling encryption overhead for

sensor network nodes. In Proceedings of WSNA'03, pages 151�159. ACM,

2003. V.3

[19] David Gay et al. The nesC language: A holistic approach to networked

embedded systems. In PLDI'03, pages 1�11, 2003. I, II, II.2, II.3, V.4,

VIII

[20] Omprakash Gnawali et al. Collection tree protocol. In Proceedings of

SenSys'09, pages 1�14. ACM, 2009. V, V.3

[21] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous

data-�ow programming language LUSTRE. Proceedings of the IEEE,

79:1305�1320, September 1991. II.2

[22] David Harel. Statecharts: A visual formalism for complex systems. Science

of Computer Programming, 8(3):231�274, June 1987. II.2

[23] Hill et al. System architecture directions for networked sensors. SIGPLAN

Notices, 35:93�104, November 2000. I, II.2, IV.1

http://www.freertos.org

85 Bibliography

[24] Roberto Ierusalimschy. A text pattern-matching tool based on parsing

expression grammars. Softw. Pract. Exper., 39:221�258, March 2009. VII

[25] Christian L. Jacobsen et al. Concurrent event-driven programming in

occam-pi for the Arduino. In CPA '11, volume 68, pages 177�193, June

2011. II.1

[26] Chris Karlof et al. Tinysec: a link layer security architecture for wireless

sensor networks. In Proceedings of SenSys'04, pages 162�175. ACM, 2004.

V.3

[27] Marcin Karpinski and Vinny Cahill. High-level application development is

realistic for wireless sensor networks. In Proceedings of SECON'07, pages

610�619, 2007. I, II, V, V.4, VIII

[28] Oliver Kasten and Kay Römer. Beyond event handlers: Programming

wireless sensors with attributed state machines. In Proceedings of IPSN

'05, pages 45�52, April 2005. I, II, II.2, VII.2, VIII

[29] Kevin Klues et al. Tosthreads: thread-safe and non-invasive preemption

in tinyos. In Proceedings of SenSys'09, pages 127�140, New York, NY,

USA, 2009. ACM. V.3, V.4, VIII

[30] E. A. Lee. The problem with threads. Computer, 39(5):33�42, 2006. I

[31] Phil Levis et al. Trickle: A self-regulating mechanism for code propaga-

tion and maintenance in wireless networks. In Proceedings of NSDI'04,

volume 4, page 2, 2004. V, V.3

[32] Philip Levis. Experiences from a decade of TinyOS development. In Pro-

ceedings of OSDI'12, pages 207�220, Berkeley, CA, USA, 2012. USENIX

Association. I, V.2, V.3

[33] William P. McCartney and Nigamanth Sridhar. Abstractions for safe

concurrent programming in networked embedded systems. In Proceedings

of SenSys'06, pages 167�180, New York, NY, USA, 2006. ACM. I, II, VIII

[34] Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting coroutines.

ACM TOPLAS, 31(2):6:1�6:31, February 2009. II.2

[35] ORACLE. Java thread primitive deprecation. http://docs.

oracle.com/javase/6/docs/technotes/guides/concurrency/

threadPrimitiveDeprecation.html, 2011. III.1(b), VIII

http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
http://docs.oracle.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

Bibliography 86

[36] Dumitru Potop-Butucaru et al. The synchronous hypothesis and syn-

chronous languages. In R. Zurawski, editor, Embedded Systems Handbook.

2005. I, III.1

[37] Mohammad Rahimi et al. Cyclops: in situ image sensing and interpre-

tation in wireless sensor networks. In Proceedings of SenSys'05, pages

192�204. ACM, 2005. V.3

[38] Christopher M Sadler and Margaret Martonosi. Data compression al-

gorithms for energy-constrained devices in delay tolerant networks. In

Proceedings of SenSys'06, pages 265�278. ACM, 2006. V.3

[39] TinyOS TEPs. http://docs.tinyos.net/tinywiki/index.php/TEPs,

2013. I, III.4, V

[40] Ben L Titzer. Virgil: Objects on the head of a pin. In ACM SIGPLAN

Notices, volume 41, pages 191�208. ACM, 2006. V.4

[41] Ning Xu et al. A wireless sensor network for structural monitoring. In

Proceedings of SenSys'04, pages 13�24. ACM, 2004. V.3

http://docs.tinyos.net/tinywiki/index.php/TEPs

	Safe System-level Concurrency on Resource-Constrained Nodes with Céu
	Abstract
	Contents
	Introduction
	Overview of programming models
	Asynchronous model
	Synchronous model
	Programming models in WSNs

	The design of Céu
	The execution model of Céu
	Shared-memory concurrency
	Integration with C
	Local scopes and finalization
	First-class timers
	Internal events
	Differences to Esterel

	Demo applications
	WSN ring
	Spaceship game

	Evaluation
	Code size
	Memory usage
	Responsiveness
	Discussion

	The semantics of Céu
	Abstract syntax
	Operational semantics
	Concrete language mapping

	The implementation of Céu
	Temporal analysis
	Memory layout
	Trail allocation
	The external C API

	Related work
	Conclusion

