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Tese (Doutorado em Informática) - Pontif́ıcia Universi-
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Abstract

Skyrme, Alexandre Rupert Arpini; Rodriguez, Noemi de La
Rocque; Ierusalimschy, Roberto. Safe Record Sharing in Dy-
namic Programming Languages. Rio de Janeiro, 2015. 77p.
DSc Thesis — Departmento de Informática, Pontif́ıcia Universi-
dade Católica do Rio de Janeiro.

Dynamic programming languages have become increasingly popular and

have been used to implement a range of applications. Meanwhile, multi-

core processors have become the norm, even for desktop computers and

mobile devices. Therefore, programmers must turn to parallelism as a

means to improve performance. However, concurrent programming remains

difficult. Besides, despite improvements in static languages, we find dynamic

languages are still lacking in concurrency support. In this thesis, we argue

that the main problem with concurrent programming is unpredictability –

unexpected program behaviors, such as returning out-of-thin-air values. We

observe that unpredictability is most likely to happen when shared memory

is used. Consequently, we propose a concurrency communication model to

discipline shared memory in dynamic languages. The model is based on

the emerging concurrency patterns of not sharing data by default, data

immutability, and types and effects (which we turn into capabilities). It

mandates the use of shareable objects to share data. Besides, it establishes

that the only means to share a shareable object is to use message passing.

Shareable objects can be shared as read-write or read-only, which allows

both individual read-write access and parallel read-only access to data. We

implemented a prototype in Lua, called luashare, to experiment with the

model in practice, as well as to carry out a general performance evaluation.

The evaluation showed us that safe data sharing makes it easier to allow

for communication among threads. Besides, there are situations where

copying data around is simply not an option. However, enforcing control

over shareable objects has a performance cost, in particular when working

with nested objects.

Keywords
Concurrency. Multithreading. Lua. Communication. Sharing.
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Resumo

Skyrme, Alexandre Rupert Arpini; Rodriguez, Noemi de La
Rocque; Ierusalimschy, Roberto. Compartilhamento Seguro de
Registros em Linguages de Programação Dinâmicas. Rio
de Janeiro, 2015. 77p. Tese de Doutorado — Departmento de In-
formática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Linguagens de programação dinâmicas estão cada vez mais populares e já

foram utilizadas para desenvolver uma ampla gama de aplicações. Enquanto

isso, processadores multi-núcleo se tornaram padrão, mesmo em computa-

dores pessoais e dispositivos móveis. Dessa forma, os programadores pre-

cisam recorrer ao paralelismo para aprimorar o desempenho de seus progra-

mas. Entretanto, a programação concorrente permanece dif́ıcil. Adicional-

mente, a despeito de avanços em linguagens estáticas, avaliamos que lingua-

gens dinâmicas ainda carecem de suporte adequado à concorrência. Nesta

tese argumentamos que o principal problema da programação concorrente é

a imprevisibilidade – comportamentos inesperados de programas, tais como

retornar valores descabidos. Observamos que a imprevisibilidade é mais

provável quando memória compartilhada é utilizada. Consequentemente,

propomos um modelo de comunicação para concorrência que visa disci-

plinar o compartilhamento de memória em linguagens dinâmicas. O modelo

é baseado nos padrões emergentes de concorrência de não compartilhar da-

dos por padrão, imutabilidade de dados e tipos e efeitos (que transformamos

em capacidades). Ele demanda a utilização de objetos compartilháveis para

compartilhar dados e utiliza troca de mensagens para comunicação entre

fluxos de execução. Objetos compartilháveis podem ser compartilhados ape-

naspara leitura ou para leitura e escrita, o que permite acesso individual de

escrita e acessos paralelos de leitura. Implementamos um protótipo em Lua

para experimentar com o modelo na prática, bem como para conduzir uma

avaliação geral de desempenho. A avaliação demonstra que há benef́ıcios na

utilização de memória compartilhada, mas ao mesmo tempo revela que os

controles utilizados para assegurar a disciplina ocasionam um impacto de

desempenho.

Palavras-chave
Concorrência. Multithreading. Lua. Comunicação. Compartil-

hamento.
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(. . . ) a folk definition of insanity is to do the
same thing over and over again and to expect
the results to be different. By this definition,
we in fact require that programmers of mul-
tithreaded systems be insane. Were they sane,
they could not understand their programs.

Edward A. Lee, The Problem with Threads.
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1
Introduction

In this thesis we propose a communication model for dynamic program-

ming languages to support safe record sharing among concurrent execution

flows. The proposed model builds on the emerging concurrency patterns of

not sharing data by default, data immutability, and types and effects (which

we turn into capabilities). It should make concurrent programming less error-

prone, which is a necessary step to promote parallelism as a means to increase

software performance. Moreover, it should fill a gap in concurrency support for

dynamic languages, which despite their popularity, still mostly rely on concur-

rency constructs that are hard to use correctly.

For over a decade processor manufacturers have been shifting from

increasing clock speeds to supporting parallel execution within the same

chip. Multi-core processors are now the norm, even for desktop computers

and mobile devices. The main consequence of this paradigm shift is that

programmers must now turn to parallelism as a means to improve performance,

a development that has been referred to as the concurrency revolution [69].

An evidence of the importance of parallelism is presented in a survey on

parallel programming conducted for Intel [19]: it shows that, among surveyed

software developers, 56% considered parallel programming was important to

their software and 26% considered it was critical.

However, despite the need for parallelism to improve performance, con-

current programming remains difficult [45, 57, 59, 69] and programmers still

struggle with fundamental concurrency problems [23, 48]. Consider, for exam-

ple, a survey conducted at Microsoft [28] that randomly selected 10% of all

employees responsible for development, test and program management, and

polled them with regards to concurrency use. The survey shows that 54.3%

of respondents had to deal with concurrency bugs on a monthly, or less, ba-

sis and that 72.9% of respondents considered concurrency bugs were hard to

reproduce. Notorious concurrency bugs have already been responsible for se-

vere real-world consequences: the malfunctioning of a computerized radiation

therapy machine called the Therac-25, which resulted in serious injuries and

even deaths [46], the NASDAQ Stock Market glitch on Facebook’s Initial Pub-
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lic Offering (IPO), which resulted in as much as U$13 million in losses [42],

and the 2003 northeastern USA power outage, which affected 60 million peo-

ple [44]. This evidences that to allow programmers to exploit the potential of

multi-core processors to improve performance, we must make concurrent pro-

gramming less error-prone, i.e., we must make it simpler for programmers to

write correct, safe concurrent applications.

1.1 Dynamic Programming Languages

To our knowledge, emerging concurrency patterns have been primarily

explored in static programming languages. Meanwhile, dynamic programming

languages thrive in popularity, as evidenced by their high ranking in pro-

gramming languages popularity indexes. Despite their popularity, dynamic

languages still lag behind in concurrency support. It is true that most of them

already include at least some concurrency support. Nevertheless, this support

is often limited, not allowing them to benefit from parallel execution, and is

based on constructs for synchronization and communication that can be sim-

ple to understand conceptually but are hard to use correctly. Moreover, the

commitment to promoting safe record sharing certainly has not appealed as

much to dynamic languages as it has to static languages.

Creating a concurrency communication model that emphasizes safety for

dynamic languages may appear paradoxical. Since dynamic languages com-

monly use dynamic typing and rely on code interpretation, this could suggest

flexibility should always be prioritized over safety in these languages. That is a

misconception. Firstly, it is not true that dynamic languages always prioritize

flexibility: the wide adoption of automatic memory management, for instance,

clearly evidences a concern about safety. Secondly, code interpretation allows

for plenty of control over execution, as faults can be handled timely and ap-

propriately by the language’s runtime environment. It is often easier to debug

programs written in interpreted languages.

Concurrency bugs, however, stand for the exact opposite: unsafety and

lack of control. We must face that, on average, they are more troublesome

than most common bugs that affect serial programs. They typically depend

on specific execution interleavings to appear and can lead to behaviors that

are hard to reason about. Therefore, the real paradox is to have concurrency

support that lacks safety and control in dynamic programming languages.
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1.2 Nondeterminism and Unpredictability

The main characteristic that distinguishes concurrent programming from

sequential programming is probably also what troubles programmers the most:

the need for communication among execution flows, both for synchronization

and for exchanging data, combined with the asynchronous nature of parallel

execution. It can be challenging for programmers to reason about the execution

of concurrent programs, since they must consider the execution interleaving

and the influence of all communication among execution flows. Consequently,

developing correct concurrent programs is hard.

The literature commonly points at the inherent nondeterminism of

concurrency as the culprit [4, 7, 48, 57, 73] for the difficulties in reasoning

about, testing and debugging concurrent programs. However, there is no

consensus on the semantics of nondeterminism for concurrency. Different

definitions and types of nondeterminism are used throughout the literature [4,

10, 20, 49], none of which is widely accepted.

Besides the semantic ambiguity, there is another problem with blam-

ing the difficulties of concurrent programming on nondeterminism: not all in-

stances of behaviors that can be considered nondeterministic are troublesome.

For instance, a common definition of determinism is to generate the same out-

put when given the same input [7, 11, 20, 34]. According to that definition,

some well-known algorithms can be considered nondeterministic by design [11],

such as branch-and-bound solvers and mesh refinement methods. Regardless

of not always generating the same output when given the same input, these

algorithms still produce results that belong to a well-defined set. For a sim-

ple example of an application that can be considered nondeterministic and

yet works as expected, consider an airline reservation system that processes,

in parallel, requests from multiple customers wishing to reserve seats on the

same flights. Depending on the order in which requests are processed, the

flights will be filled up differently, i.e., nondeterministically. Nevertheless, as

long as reservations are consistent, the nondeterministic behavior is acceptable

and expected, due to the asynchronous nature of parallel execution.

Overall, after analyzing the literature, we concluded that the term nonde-

terminism is used to refer to two different aspects of concurrent programming,

in fact, to two different types of nondeterministic behaviors. The first aspect

refers to behaviors that are inherent to the asynchronous nature of parallel

execution. It essentially encompasses schedule ordering: executing the same

concurrent application, with the same input, multiple times, can result in dif-

ferent orderings but yet produce correct output. The second aspect refers to

DBD
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completely unexpected behaviors that compromise an application’s reliabil-

ity, such as returning out-of-thin-air values. It encompasses, for instance, the

behavior of C and C++ programs in the presence of race conditions [12] —

according to the C11 and C++11 standards, the results of race conditions

are undefined; in practice, this means that “any behavior whatsoever is al-

lowed” [13].

Concurrency discussions commonly mention both types of nondetermin-

istic behaviors together, without any explicit distinction regarding how much

each of them contributes to making concurrent programming hard. This lack

of distinction may give the impression that these two types are equivalent or

that they contribute equally to making concurrent programming hard. How-

ever, that is not the case. Conceptually, the two types of behaviors are fun-

damentally different: while the first type is mostly focused on the ordering of

intermediate program steps that do not have observable external effects, the

second is focused on reliability and program correctness (both of which are

directly related to observable external effects). Even though both types con-

tribute to making concurrent programs hard to reason about, clearly the second

type represents a greater evil: while different execution orderings can increase

the number of potential interleavings, unexpected behaviors can produce re-

sults that make absolutely no sense, are extremely hard to track and can be

literally impossible to reproduce. While some concurrent programs could ben-

efit from having some guarantees about their intermediate steps, as evidenced

by related research [7, 4, 58], all concurrent programs could benefit from elim-

inating unexpected behaviors. In this thesis, we consider that the first type

of nondeterministic behavior is unavoidable [13] and harmless when compared

to the second type. Therefore, we are only concerned with the second type of

nondeterministic behavior, the one that makes applications unreliable and is

clearly evil.

Since the type of nondeterministic behavior we are interested in is the

one related to unexpected behaviors, or behaviors that cannot be predicted

by the programmer, we propose using the term unpredictability instead. This

term better conveys a key concept in our research and its use allows us to avoid

the semantic ambiguity associated with nondeterminism. In this thesis, we say

a program is unpredictable when it can exhibit unexpected behaviors, such

as returning out-of-thin-air-values. An unpredictable program is inherently

unreliable and ultimately incorrect.

It is true that, besides unpredictability, concurrency presents other

challenges to programmers, such as avoiding deadlocks, starvation and other

liveness hazards. However, in this thesis, we choose to focus on unpredictability,
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as we understand it is the main reason why concurrent programs are hard

to develop, test and debug. Unpredictability must be eliminated to make it

simpler for programmers to write concurrent applications correctly.

1.3 The Cause of Unpredictability

Now that we have established our interest in unpredictability, we need to

look into what causes it in concurrent programs. We begin this investigation

by highlighting an essential safety property in concurrency: atomicity. An

operation, or set of operations, is said to be atomic when its execution is

indivisible and irreducible. No intermediate states or side effects of atomic

operations are visible until execution is completed, or in other words, atomic

operations provide isolation.

Atomicity can be provided at different granularity levels. Database man-

agement systems, for instance, ensure that all statements within a transaction

are executed as a single atomic operation. Some programming languages also

support atomicity. The C11 and C++11 standards, for instance, introduced

atomic types as a template class that can be used to provide simple atomic

operations for different standard data types. On the lowest level, some proces-

sors support atomic instructions, such as compare-and-swap (CAS), which can

compare and change the contents of a memory location in a single step.

In theory, programmers should always be aware of the granularity level

of the provided atomicity and should implement concurrency controls accord-

ingly. However, in practice, reasoning about atomicity is hard and there is

often a mismatch between the atomicity expected by programmers and the

atomicity effectively provided. This mismatch leads programmers to imple-

ment incorrect synchronization among execution flows, which in turn results

in unpredictability when applications are executed.

To further understand how incorrect synchronization is related to unpre-

dictability, we must first recall and briefly explain the two standard models [2]

used for communication among execution flows in concurrent programs: shared

memory and message passing. Shared memory is often regarded as having bet-

ter performance [59, 72, 74], while message passing is often regarded as being

less error-prone [45, 59, 69, 74, 71]. Both models can be used as an implemen-

tation technique and as a communication abstraction offered to programmers:

just as it is possible to offer a shared-memory abstraction in a distributed

environment which relies on an underlying message-passing scheme for com-

munication, it is also possible to offer a message-passing abstraction imple-

mented with shared-memory synchronization primitives in a multiprocessed

environment.
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Message passing can refer either to an architecture model for parallel

computers or to a communication model [74] – for the purpose of the present

discussion, we are only interested in the latter. In message passing, execution

flows communicate with each other by sending and receiving messages. Message

addressing usually relies either on unique execution flow identification or on

decoupled communication channels (or mailboxes). Message passing has at

least two prominent advantages over shared memory: it can easily be used

as an abstraction for both local and distributed communication and, as long

as explicit operations are used, it makes communication among execution

flows localized and explicit in the code. The latter makes reasoning about

a program’s execution easier, as the points in code where nondeterministic

behavior can occur are clear. Despite its advantages, message passing also has

its drawbacks. Message passing involves copying data between different address

spaces, leading to large overheads as the transmitted data grow in size. The

semantics of message transmission, which is related to the performance impact

caused by data transmission, are often unclear, for instance with regards to

the transmission of complex objects or data structures.

Synchronization and data exchange in message passing are implemented

with the same standard operations: send and receive. This means that sending

or receiving a message presents an opportunity both for synchronization and

for data exchange. Since synchronization in message passing typically occurs

on a per-message basis, it is reasonable to assume that the granularity of

the expected atomicity is also per-message, i.e., that each message should

be handled atomically. This assumption is straightforward and presents an

atomicity model that is easy to reason about when implementing concurrency

controls. In this case, unpredictability is still possible: consider, for example,

an operation that must execute atomically but requires several messages to

be exchanged before it can complete. Nevertheless, since unmet atomicity

expectations in standard message passing are less common, unpredictability

is unlikely.

In shared memory, execution flows communicate with each other by

means of shared records1 that are written to and read from locations in a global

address space. Shared memory is conceptually easier to use and understand.

It offers a quick communication method, because data does not need to be

copied among different address spaces. However, since multiple execution flows

can potentially access the same shared record simultaneously, programmers

must use available synchronization primitives to control concurrency. These

1A record, as defined by Hoare [40], is a computer representation of an object of interest
in a model created to solve a problem.
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primitives are complex to use and error-prone, making it hard for programmers

to pinpoint the proper placement for them. Also, it is hard to determine

whether an arbitrary operation accesses a shared record, as programming

languages often do not explicitly distinguish these records. In particular, when

referential semantics is used, it is difficult to control how and when each

execution flow accesses shared records. Thus, we can conclude that shared

memory is easier to use but only as long as correctness is not a concern; using

shared memory safely is definitely not easy.

Synchronization in shared memory can rely on a variety of mechanisms

that implement two basic types of synchronization [2]: mutual exclusion and

conditional synchronization. Unlike in message passing, the granularity of the

expected atomicity in shared memory is often unclear. Consider, for instance,

a simple operation to increment an integer counter in a standard C program:

x++. Although it might look like a single operation and thus lead programmers

to expect atomic execution, in fact this operation can be broken into at least

three lower-level instructions that are executed independently: load the value

of x from memory into a register, increment the value in the register, store the

updated value in memory.

Incorrect synchronization with shared memory can be commonly found

in concurrent applications. A study on real-world concurrency bugs [48] that

analyzed a total of 105 bugs in open-source software, classified 74 of the bugs as

having incorrect synchronization2 as their root cause. This evidences that when

shared memory is used, unmet atomicity expectations are more common and

thus unpredictability is more likely. Consider a simple example: a standard

C or C++ program, with two threads that both increment by one a global

integer counter initially set to 0, without resorting to any synchronization

primitives, and prints the result on the screen. The program obviously has a

synchronization problem and it would be fair to say it is nondeterministic if

the only results it could print would be 1 and 2. However, as we mentioned

previously, the C11 and C++11 standards state that such cases have undefined

behavior. This means that depending on the compiler and the execution

platform, this simple program could output essentially anything [12], such as

42.

It should be clear by now that to eliminate unpredictability we must

discipline communication among execution flows to prevent unmet atomicity

expectations, i.e., to make it easier for programmers to implement proper

synchronization. We have argued that although unpredictability can happen

2Although the study defines two bug categories, both of them can be related to the basic
types of synchronization: atomicity violations relate to mutual exclusion and order violations
relate to conditional synchronization.
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in spite of which communication model is used, it is more likely to happen

when shared memory is used. An obvious, but perhaps naive, approach would

be to simply discard shared memory altogether and concentrate all our efforts

in disciplining message passing. The reason why this would not be appropriate

is that we would be left with the drawbacks of message passing: performance

loss due to overheads for data transmission and potentially intricate semantics

for the transmission of complex objects.

An evidence that shared memory should not be entirely discarded is that

even programming languages that provide communication models based in

message passing, sometimes also include the means to enable data sharing.

Examples of such languages include Erlang and Scala. Erlang, which uses

message passing for inter-process communication, includes the ets (built-

in term storage), dets [21] (disk-based term storage) and mnesia [55] (a

distributed database management system) modules, all of which allow for

shared data. Scala, which supports the actor model, allows references to be

transmitted between actors [63], thus allowing data to be shared.

Instead of discarding shared memory, we propose implementing proper

language-level mechanisms to make it easier for programmers to use shared

memory safely. In other words, we second the opinion that disciplined shared-

memory [1, 12] should be promoted to make it easier for programmers to write

correct concurrent applications with acceptable performance.

1.4 Disciplined Shared Memory

In this thesis, we propose promoting disciplined shared memory by

creating a communication model that can combine the benefits of shared

memory and of message passing, as we will explain next. The first and most

important property of our communication model is that it should prevent

unpredictability to facilitate developing, testing and debugging concurrent

programs. It should also keep communication localized and explicit, like in

message passing, to simplify reasoning about program execution. It should

allow for data exchange among execution flows with satisfactory performance,

like in shared memory, since that is a key concern in concurrency. Last, but

not least, it should provide specific, well-defined constructs for communication

and should compel programmers to use them properly, treating violations

adequately. In short, the model should provide structured communication [67],

as that is a necessary step to allow programmers to more easily write correct

concurrent applications.

Even more important than what a programming language or library offers

to programmers, is what it prevents them from doing. The same survey on
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parallel programming conducted for Intel [19] that we cited earlier, shows that

while determining where parallelization should occur for maximum benefit

is ranked as the first most beneficial feature for parallel programming tools,

avoiding incorrect (or unexpected) results when parallelization is used is ranked

second.

Such a strict enforcement approach may limit flexibility, as it is common

for programmers to try to improve performance by circumventing standard

communication patterns [75]. Still, this is a matter of choosing between

flexibility and simplicity, a choice programmers are commonly faced with.

We can make an analogy with memory management, regarding the choice

between manual and automatic memory management [30]. For a long time,

programmers despised automatic memory management as too slow for real

applications; currently, many programmers and programming languages adopt

it, making dangling pointers and memory leaks things of the past. Concurrency

must do a similar transition.

The status quo of concurrent programming — namely preemptive mul-

tithreading with shared memory — emphasizes the ability to quickly intro-

duce concurrency in a program over safety. Most average programmers would

probably agree that while introducing concurrency in an existing sequential

program can be a simple task, ensuring the correctness of a concurrent pro-

gram rarely can. Likewise, most average programmers probably feel it is easier

to program in imperative languages than in purely functional languages. Nev-

ertheless, purely functional languages are praised for producing more reliable

code [64]. Communication models must emphasize safety, even at some cost,

to make it simpler for programmers to write concurrent applications correctly.

1.5 Previous Work

In this thesis we are interested in designing a concurrency communication

model that allows for safe record sharing while preventing unpredictability.

Before we started working on our model, we did an extensive literature

survey [67] for recent approaches that were related to safe record sharing and

could be built upon. We found at least three promising approaches: no default

sharing, data immutability and types and effects.

The first approach, not sharing data by default, is the most fundamental

to promote disciplined shared memory and thus to our communication model.

When data is not shared by default, it is possible to compel programmers

to correctly use constructs that allow for concurrency control and can pre-

vent unpredictability. Also, when data must be shared explicitly, it is easier
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to reason about program execution with regards to communication among ex-

ecution flows. Examples of programming languages that take this approach

include Erlang, which uses single assignment variables and message passing

for communication, and D, which uses thread-local variables by default.

The second approach, data immutability, has a very straightforward use

for concurrency: it allows data to be freely shared among execution flows.

Since immutable data is never updated, concurrent accesses do not require

synchronization and thus ensuring atomicity is not an issue. Moreover, it allows

communication models’ implementations to decide whether to pass data by

value or by reference [43]. Nevertheless, exclusively using immutability may not

be practical as it could impose a performance bottleneck caused by the need to

create a new object every time an existing object needs to be changed. On the

other hand, the coexistence of mutable and immutable data makes it harder

to reason about program execution and allows for incorrect synchronization

when there is no enforcement that only immutable data can be shared. Several

authors have explored immutability in their research [8, 24, 29, 33]. Examples

of programming languages that support immutability include D, Clojure and

F#.

The third approach, types and effects, is used by Bocchino et al. [9] to

develop the Deterministic Parallel Java (DPJ) project, which employs an effect

system to partition memory into regions and then control concurrent access to

each region. It is also used by Heumann, Adve and Wang [39], who propose a

concurrent programming model based on dynamically created tasks that have

programmer-specified effects and run on a scheduler that enforces that tasks

with conflicting effects cannot be executed concurrently. Other examples of

tasks and effects applied to concurrency include the works of Lu et al. [50], who

propose a type and effect system to control what effects may occur in parallel

and whether they interfere with each other, and of Flanagan and Qadeer [22],

who implement a type system that uses effects to specify and verify atomic

methods in multithreaded Java.

1.6 Contributions

To sum up, in this thesis we propose a concurrency communication model

for dynamic programming languages that provides structured communication

by supporting safe record sharing among multiple execution flows running

on the same machine. The proposed model builds on emerging concurrency

patterns and should eliminate unpredictability, as this is a fundamental step

to make concurrent programming less error-prone and allow for parallelism as

a means to improve performance. We experiment with the proposed model
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using the Lua programming language, which is an ideal testbed as it has a

small code-base and simple, well-defined, semantics. Nevertheless, we have not

conceived the model to rely on any exclusive Lua features, therefore it should

be possible to use with other dynamic programming languages as well.

The expected contributions of this thesis are the following:

1. A new concurrency communication model for dynamic programming

languages designed to allow for safe record sharing and a discussion about

what it takes to implement it.

2. A prototype implementation of our model in Lua that allows for safe

data sharing among parallel Lua threads.

1.7 Organization

The remainder of this thesis is organized as described next. In Chap-

ter 2 we identify emerging concurrency patterns, besides discussing related

implementations and research work pertaining both to static and to dynamic

languages. In Chapter 3, we introduce our communication model, explain its

key concepts and discuss what it took to implement it in Lua. In Chapter 4

we provide an evaluation of our model using the prototype we implemented in

Lua. Finally, in Chapter 5 we present some closing remarks.
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2
Emerging Concurrency Patterns

In this chapter we discuss emerging concurrency patterns we have iden-

tified in the literature and in practice. Then, we examine how these patterns

are supported in static and in dynamic programming languages. Parts of this

chapter, in particular the discussion about the emerging patterns and the anal-

ysis of how dynamic languages support them, are based in an article [68] we

published on the same topic. We start the discussion with a brief introduction

about multiprocessing and multithreading.

Conventionally, concurrency support is offered either in the form of

multiprocessing, with fork-like functions, or of multithreading. Multiprocessing

support ensures that it is technically possible to execute code in parallel.

Nevertheless, most implementations offer only a thin layer that calls operating

system inter-process communication methods, such as sockets, pipes and

shared memory regions. These methods, since they are low-level, usually

require more effort from programmers to implement communication among

execution flows in applications. Besides, the cost of creating and destroying

processes can make multiprocessing unsuitable for applications with large

quantity of simultaneous execution flows or dynamic workloads that demand

the creation and destruction of execution flows during runtime. Since we want

to make it simpler for programmers to write correct concurrent applications

and to avoid a performance overhead in our communication model when

execution flows are created and destroyed during runtime, multiprocessing is

not a suitable choice. Thus, we focus on multithreading.

The most popular form of multithreading is preemptive multithreading

with shared memory, which is supported by a variety of programming lan-

guages and commonly used in concurrent applications. In this form of multi-

threading, context switches are not controlled by programmers and can occur

at any point during a program’s execution. Communication and synchroniza-

tion among execution flows relies on shared memory and concurrency con-

trol is normally implemented with mutual exclusion, condition variables and

semaphores. Preemptive multithreading with shared memory is commonly as-

sociated with many of the complexities [45, 57, 59, 69] that make concurrent
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programming hard. Still, there is a growing interest in developing new, im-

proved, concurrency patterns, especially with regards to safe data sharing. We

surveyed recent implementations and research work to identify these patterns,

which we talk about next.

The first and most important pattern we have identified is no-default

sharing. It implies no data is shared among execution flows unless explicitly

requested by the programmer. This is a fundamental pattern, as it serves as the

basis for safe data sharing. Only when data is not shared by default, a discipline

for sharing can be enforced by the programming language and thus language-

based mechanisms can be used to ensure safety. Moreover, explicit data sharing

helps programmers reason about program execution, since it allows them to

more easily identify, when analyzing source code, where shared data access can

occur.

The second pattern we have identified is types and effects [56]. Type

systems [25, 62] allow programming languages, by means of type checking, to

automatically detect certain program misbehaviors and ensure some invariants

are maintained throughout a program’s execution. Type and effect systems

build on type systems to include effects, which are annotated properties of

the semantics of programs that extend type definitions. An effect is normally

expressed by an action, which describes what is being done, and by a region,

which describes where the action is taking place. Simple examples of effects

can include, for instance, memory operations, where the actions would be read,

write, allocate and free, and the regions would the points in a program where

these operations are performed. In concurrency, types and effects can be used

to control concurrent access to shared data. For example, operations on shared

data could be mapped as effects and the type system could prevent calls that

operate on the same shared data, or calls with conflicting effects, to execute

in parallel.

Type and effect systems are suitable for static programming languages,

which usually have static typing, but not for dynamic languages, which usually

have dynamic typing. Still, the same base concept of controlling concurrent

access to shared data also resulted in a pattern that is more suitable for

dynamic languages: data ownership. The data ownership pattern prevents

conflicting accesses by assigning an owner to each piece of shared data and

enforcing that only the execution flow that owns the data may access it.

Ownership of shared data can be transferred to allow multiple execution flows

to access the data throughout a program’s execution.

The third pattern we have identified is data immutability, which is not

a concurrency pattern by itself, but represents an important building block
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as it provides a simple, yet effective, way to safely share data. Immutability

should not be mistaken for constants: while constants are associated with single

values that cannot be changed, immutability is associated with data structures

or objects that, as a whole, including all contained values, cannot be changed.

No synchronization is needed to access immutable objects, which makes

them inherently thread-safe. Also, it is easier to ensure object consistency when

working with immutability, since the object essentially only admits a single

state after initialization. Immutability makes the choice between passing an

object by value or by reference come down to an implementation matter. It

allows message passing semantics to be implemented without copying data [43],

i.e., it allows references to immutable data be passed as if they were copies of

the same data. The main disadvantage of immutability is the need to create

a new object each time an existing immutable object must be altered, which

can be a performance bottleneck. Also, working exclusively with immutable

data requires programmers to change development paradigms employed in

imperative languages, where patterns commonly rely on altering data.

The fourth pattern we have identified are futures, which explore asyn-

chronous computations that can potentially be executed in parallel. A future [3]

works like a read-only view for the resulting value of a computation that will

be executed at some point in time during a program’s execution. Futures are

generally used for asynchronous, non-blocking, parallel computations. Imple-

mentations usually allow execution flows to check whether a future’s compu-

tation is complete or to wait for its completion to retrieve its value, sometimes

they also allow the use of callbacks to avoid blocking while waiting for a fu-

ture to complete. The term future is sometimes used interchangeably with the

term promise [26]. Still, a promise in fact works like a single-assignment con-

tainer that completes a future. Futures and promises are not directly related

to data sharing, as a language could support either of them and still allow for

unsafe data sharing. Still, it is a relevant emerging pattern as it structures a

mechanism for asynchronous parallel tasks.

In the following sections, we look at some programming languages and

research work that support the emerging patterns we have identified. We

consider both static and dynamic programming languages. Since there are

no formal, or widely accepted, definitions for static and dynamic languages,

we present, at the beginning of the following sections, the characteristics that

are generally used to define each of these types of programming languages.
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2.1 Static Programming Languages

Static programming languages are generally defined by static typing.

Their implementations usually rely on compiling code, rather than interpreting

it. Examples of static languages include C and C++, Java, Haskell, F# and

D.

C and C++ implementations conforming to the C99 and C++03 stan-

dards do not include native concurrency support. Multithreading is commonly

supported by means of the POSIX thread library (pthreads), on POSIX-

compliant operating systems, and of the Win32 threads API on Microsoft op-

erating systems. However, the latest C and C++ standards, C11 and C++11,

include some native concurrency features.

For starters, the C11 and C++11 standards support preemptive multi-

threading with shared memory, including mutual exclusion (locks) and condi-

tion variables for synchronization. They also support atomic data types, which

are primitive data types that allow for atomic access. Apart from the atomic

access, which is only guaranteed for single instructions, atomic read-modify-

write operations are also provided for atomic data types. Among the emerging

concurrency patterns we have identified, the C11 and C++11 standards only

support futures and promises.

Java supports preemptive multithreading with shared memory. Synchro-

nization in Java can be implemented with standard locks and condition vari-

ables, as well as with Java monitors1. From the emerging concurrency patterns

we have identified, Java only supports futures. Nevertheless, Java has been used

as the basis for the exploration of other patterns, as we will discuss next.

In particular, the usefulness of immutability in Java has been discussed

by different authors [8, 24, 29]. Still, defining and enforcing immutability in an

object-oriented language like Java, which supports referential semantics and

allows for both mutable and immutable data, is not a simple matter. Some

evidences of the complexities associated with immutability in Java can be

found in a number of related research papers [33, 31, 32, 60, 14, 76, 6].

An example of immutability applied to concurrency in Java is presented

by Boyapati et al. [15], who propose a type system to prevent data races

and deadlocks, using ownership types [17] to associate objects with protection

mechanisms. Each protection mechanism is defined as part of a variable’s

type and may either refer to the lock used to control access to the object

pointed by the variable or indicate that the object may be freely accessed by

multiple execution flows. The latter case implies that the object is immutable,

1Java monitors differ from the original monitor concept [35, 36] as there is no enforcement
that shared variables can only be accessed with monitor methods [37].
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or it is only accessible by a single execution flow, or the variable holds a

unique pointer to the object. Although rather focused on the ordered use of

locks, this work is pertinent to our research as it uses immutability as part of

its protection mechanisms and it enforces that objects are associated with a

protection mechanism.

Apart from immutability, Java has also been used to explore types and

effects. Bocchino et al. [9], for instance, developed the Deterministic Parallel

Java (DPJ) project, which employs an effect system to partition memory into

regions and then control concurrent access to each region. The same effect

system for Java is also used by Heumann, Adve and Wang [39]. They propose

a concurrent programming model based on dynamically created tasks that have

programmer-specified effects and run on a scheduler that enforces that tasks

with conflicting effects cannot be executed concurrently. Yet another work that

explores types and effects in Java is presented by Flanagan and Qadeer [22],

who implement a type system that uses effects to specify and verify atomic

methods in multithreaded Java.

While immutability is still finding its way to imperative programming

languages, like Java, it has been long used as a standard in functional lan-

guages. One of the most popular Haskell compilers (the Glascow Haskell Com-

piler – GHC), for instance, includes a concurrency extension that exploits

immutability. Concurrent Haskell [61] provides primitive types and operations

that allow concurrent execution flows to be created, synchronized and to com-

municate. Since data is immutable by default in Haskell, execution flows can

share data simply by using the same variables. An underlying synchronization

mechanism ensures lazy expressions are only evaluated by one execution flow;

if other execution flows try to evaluate an expression that is already being eval-

uated, they are blocked until the first execution flow finishes evaluating and

overwriting the expression with its value. Concurrent Haskell also provides a

mutable state variable, by means of monads, to allow execution flows to share

data — Peyton Jones et al. [61] outline the reasons why such mechanism is

needed, which evidence some of the limitations of concurrent programming

exclusively with immutable data.

Even programming languages that are not purely functional, but are

strongly inspired in functional programming, have exploited immutability.

Consider, for instance, the F# programming language. It is built on the .NET

framework, which includes a number of concurrency features, such as standard

preemptive multithreading, parallel asynchronous tasks and parallel data

structures. All variables in F# are immutable by default, which allows them to

be freely shared. Nevertheless, F# does not preclude mutable variables, which
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must be declared by using the mutable keyword. Using immutable variables by

default and requiring programmers to explicitly declare variables as mutable

can help minimizing the risk of improper shared data manipulation, as it sets

a safe standard. Still, it is up to programmers, once a variable is declared as

mutable, to ensure proper synchronization for concurrent access.

Another example of programming language that, inspired by functional

languages, explores immutability is the D programming language. Although

it supports preemptive multithreading, it does not rely on global variables

and standard shared memory synchronization constructs for communication

among threads. All variables in D, by default, are local to threads. There are

two ways to share data among threads in D: message passing and explicitly

shared variables. Message passing is the preferred way to share data in D,

it allows a thread to send data to another thread, which is specified by a

unique thread identifier (tid). However, D places a restriction on what data

can be sent in messages: only non-pointer, explicitly shared or immutable

variables are allowed. Explicitly shared variables must be declared with the

shared type modifier and can only be manipulated with a special set of

atomic operations, provided by D. In practice, this means D enforces safe

data sharing. Moreover, it shows that, besides immutability, D supports the

no-default sharing emerging pattern.

2.2 Dynamic Programming Languages

Dynamic programming languages are generally defined by dynamic typ-

ing and by the existence of an eval-like function, i.e., by the ability to dynami-

cally execute code in the same environment of the program itself. Their imple-

mentations usually rely on interpreting code, rather than compiling it. Exam-

ples of dynamic languages include PHP, Python, Ruby, Lua, Perl, JavaScript

and Clojure.

PHP includes, among its Process Control Extensions, a POSIX Threads

(pthreads) extension that provides an object-oriented API for userland mul-

tithreading. It supports mutual exclusion and condition variables, as well as

Java-inspired synchronization constructs like synchronized code blocks and

the wait and notify methods. Notes included in the PHP manual warn users

against sharing resources among contexts; they also state that restrictions and

limitations are necessary to provide a stable environment when pthreads is

used. Among popular dynamic languages, PHP is the one that offers the most

basic concurrency support.

The reference implementations for Python (CPython) and Ruby (MRI)

support userland threads that are mapped to system threads. They include
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standard shared memory synchronization constructs such as mutual exclusion

and condition variables (Ruby and Python), as well as semaphores (Python).

Despite their multithreading support, parallel execution in Python and

Ruby is severely hampered, because both of them include a Global Interpreter

Lock (GIL). The GIL is a mutual exclusion lock used by the interpreter which

only allows a single userland thread to execute at a time. It simplifies imple-

mentation, as all code is inherently thread-safe, but it can be a performance

bottleneck, resulting in performance degradation when more threads are used

to run a script. The only way to circumvent the GIL is to use alternative

language implementations, such as Jython and IronPython (for Python), and

JRuby and Rubinius (for Ruby). These alternative implementations, though,

do not seem to have mainstream adoption.

Python, in addition to standard preemptive multithreading, supports

futures, one of the emerging patterns we have identified. It does so with

its concurrent.futures module, which allows the asynchronous execution

of callables using either a pool of threads or a pool of processes.

Ruby, in addition to standard preemptive multithreading, supports co-

operative (or collaborative) multithreading by means of fibers. This form of

multithreading is not designed to support parallel execution, but rather to al-

low for explicitly coordinated threads which take turns to execute. Fibers are

lightweight userland threads scheduled cooperatively that cannot be executed

in parallel.

Lu, Ji and Scott used Ruby to develop Deterministic Parallel Ruby

(DPR) [51], a library for Ruby that provides parallel constructs with a focus

on ensuring determinism. Among provided constructs are isolated futures,

which are futures with a deterministic behavior. To ensure determinism, DPR

requires that isolated futures represent pure functions (i.e., a function that

always generates the same outputs when given the same inputs and has no

observable side effects) and that the arguments to these functions are passed

by deep copy, to prevent concurrent changes. The motivation for DPR closely

relates to our own, i.e., to make it simpler for programmers to write correct

concurrent applications. Nevertheless, the approach taken by DPR is to ensure

determinism, which is a strong property that can be costly, in terms of usability

and performance, to obtain. In our research, as we discussed previously, we

strive for predictability, which is cheaper to obtain and will make it significantly

easier for programmers to write correct concurrent applications.

The Lua programming language is another example of a dynamic lan-

guage that, like Ruby, supports cooperative multithreading. Lua supports

coroutines, which follow the same paradigm as fibers in Ruby, i.e., they are
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lightweight userland threads scheduled cooperatively that cannot be executed

in parallel.

Lua allows a somewhat obvious approach to implement the no-default

sharing pattern: not sharing anything at all. For a C application to interact

with Lua, it must first create a Lua state, a data structure that defines the state

of the interpreter and keeps track of global variables, among other interpreter-

related information. States are independent, i.e., they do not share data. The

Lua C API allows C applications to create and manipulate multiple states at

a time. In addition, when Lua code is loaded in a Lua state, its execution can

be controlled just like a coroutine: it can be suspended (yielded) and resumed.

The combination of multiple independent states and system threads allows for

the implementation of Lua libraries for concurrent programming that support

parallel execution.

Examples of such libraries include luaproc [66] and Lua Lanes [53]. The

luaproc library implements the concept of Lua processes, which are lightweight

execution flows of Lua code able to communicate only by message passing. Each

Lua process runs in its own Lua state and thus no data is shared by default. A

set of workers, system threads implemented in C with pthreads, are responsible

for executing Lua processes. There is no direct relation between workers

and Lua processes, they are independent from each other (N:M mapping).

Workers repeatedly take a Lua process from a ready queue and run it either to

completion or until a potentially blocking operation is performed, in which case

the corresponding process can be suspended and placed in a blocked queue.

The only operations that are potentially blocking in luaproc are the standard

message passing primitives: send and receive.

Message addressing in luaproc relies on communication channels and Lua

processes have no unique identifiers. Each message carries a tuple of values with

basic Lua data types. More complex or structured data can be transmitted

either by serializing it beforehand or by encoding it as a string of Lua code

that will be later executed by the receiving process.

The Lua Lanes library, like luaproc, uses multiple Lua states to host

independent execution flows of Lua code (or lanes). However, unlike luaproc,

in Lua Lanes each execution flow of Lua code is associated with a single system

thread, i.e., there is a 1:1 mapping.

Communication among lanes is based on Linda [27], i.e., on tuple spaces.

Each tuple in Lua Lanes must have a number, string or boolean as its key.

Basic Lua data types, with the exception of coroutines, can be used as values in

tuples. Two operation sets are available for lanes to interact with tuple spaces.

The send and receive operations are analogous to the out and in operations
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in Linda. The send operation queues a tuple; the receive operation consumes

a tuple specified by a key. The set and get operations are used to access a

tuple without queuing or consuming it. The set operation writes a value to a

tuple specified by a key; it overwrites existing values and clears queued tuples

with the same key. The get operation is analogous to the rd operation in

Linda, i.e., it reads the value of a tuple specified by a key without consuming

the tuple.

Another example of dynamic language that does not share data by

default is Perl 5, which supports multithreading through its threads module.

It provides interpreter-based threads (or simply ithreads), which are userland

threads that are mapped 1:1 to system threads and scheduled preemptively.

For each new thread, Perl creates a new interpreter instance and copies all the

existing data from the current thread. This results in no data being shared

among threads, i.e., all variables are local to threads by default. It also results

in a higher cost to create threads, since all thread data must be copied.

Despite not sharing data by default, Perl 5 allows variables to be ex-

plicitly shared through the threads::shared module. It allows programmers

to create shared variables with shared attribute or with the share function.

The module supports sharing scalars, arrays, and hashes, as well as references

to these data types. Only scalars and references to shared variables can be

assigned to shared arrays and hash elements.

Nevertheless, the only guarantee that Perl provides for shared variables is

that their internal state will not become corrupt in case of conflicting accesses.

Applications are still vulnerable to data races when multiple threads access

shared data without proper synchronization. The threads::shared module

provides two constructs for synchronization: locks and condition variables.

Locks are implemented with the lock function, which places an advisory lock

on a shared variable. An advisory lock does not prevent other threads from

accessing the shared variable unless they first try to lock the same variable,

in which case their execution is suspended until the variable is unlocked.

There is no unlock function, a locked variable is automatically unlocked when

the lock goes out of scope, i.e., when the code block from where it was

called finishes executing. The Perl 5 tutorial on threads cautions programmers

against standard synchronization constructs (such as locks) and recommends

instead the Thread::Queue module, which provides thread-safe queues and

frees programmers the complexities associated with the synchronization of

shared data access.

A remarkable exception to conventional concurrency support in dynamic

languages is JavaScript. Albeit a popular language, it does not support
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multiprocessing or traditional multithreading. Unlike other dynamic languages

cited in this section, JavaScript was developed for client-side scripting, which

probably explains why it lacks such low-level concurrency support.

Concurrency in JavaScript is based on web workers, which are defined

in a draft HTML5 specification. Web workers are intended to run scripts in

the background while the main (user-interface) thread responsible for handling

visual elements and user interaction is executed. They cannot directly interfere

with the user-interface, as that could lead to race conditions with the user-

interface thread. For each new web worker, a new JavaScript Virtual Machine

(VM) instance running on a new system thread is created. This results in

no data being shared among web workers, i.e., in no default data sharing,

an emerging concurrency pattern we have identified. Still, it also results in a

higher cost to create them.

Web workers can communicate by means of message passing and

JavaScript employs data ownership, another emerging concurrency pattern,

to control concurrent access to objects whose references are shared through

messages. Messages can be exchanged among web workers by means of mes-

sage channels, and between web workers and their spawning scripts simply by

posting messages directly to each other. The default method to send a mes-

sage among web workers is to use cloning, i.e., to create a copy of the data

comprised in the message. Alternatively, instead of cloning, messages can be

sent by transferring ownership (sometimes also referred to as transferable ob-

jects), i.e., by sending a reference to an object. This approach has the benefit

of avoiding the overhead to copy objects. Since data cannot be owned by more

than one execution flow at a time, the sending web worker loses access to data

once it transfers its ownership and any access attempt results in an exception.

JavaScript was used as a platform for the development of the River

Trail data-parallel programming API [38], which explores a particular kind

of immutability. River Trail introduces a new parallel array data type

(ParallelArray) with a set of methods that define array processing patterns

(map, combine, reduce, scan, filter and scatter). Operations in individ-

ual elements in a ParallelArray can be executed in parallel by specifying a

processing pattern and an elemental function, which defines the operation to

be performed. To increment by one all elements of a ParallelArray in par-

allel, for instance, a programmer could use the map processing pattern and an

elemental function that receives a single array element and returns its value

incremented by one. Elemental functions cannot communicate directly with

each other, but they have read-only access to the global state. When elemen-

tal functions are executing, the parent execution flow is suspended and thus
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it does not change its own (global) state. Since neither the parent execution

flow, nor child execution flows spawned to run elemental functions, change

the global state while elemental functions are running, River Trail calls this

approach temporal immutability.

Clojure is a dialect of LISP, it runs on the Java Virtual Machine and

builds on the Java concurrency support to offer a robust infrastructure for

multithreaded programming. Although Clojure is a compiled language, it has

features commonly found in dynamic languages and so it can be considered

(and promotes itself) as a dynamic language. More interestingly, Clojure was

designed to support concurrency. Both futures and promises are supported in

Clojure, which uses an API similar to the one included in Java’s package

java.util.concurrent. However, Clojure is better known for its strong

support to data immutability.

Clojure is inspired in functional programming languages and, as such,

provides strong support for immutability. It offers a range of immutable

persistent data structures (lists, vectors, sets, and maps). Only references

mutate in Clojure, and they do so in a controlled way. Clojure supports four

different types of mutable references to its immutable data structures: Vars,

Refs, Agents and Atoms. They differ in how they are changed. Changes to Vars

are isolated on a per-thread basis. Changes to Refs must be executed within

transactions, using Clojure’s Software Transactional Memory (STM) system.

Refs allow for synchronous, coordinated state changes. Agents must receive

functions (called actions, in Clojure), with message passing style semantics, to

perform changes. Actions are executed asynchronously and can alter an agent’s

state. Each agent works by sequencing operations to a data structure instance.

Agents allow for asynchronous, independent state changes. Finally, changes

to Atoms must be executed by using simple atomic operations (swap and

compare-and-set). Atoms allow for synchronous, independent state changes.
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3
A Communication Model for Safe Record
Sharing

We have argued that disciplined data sharing can make it easier for

programmers to write correct concurrent applications. In this chapter we

discuss a concurrency communication model that we propose to allow for safe

record sharing in dynamic programming languages. We begin by explaining

the model itself and then discuss how we implemented a prototype in Lua to

experiment with the model in practice.

3.1 Model Description

Although emerging concurrency patterns are finding their way to script-

ing languages, there is still room for improvement. As we have shown in the

previous chapter, even scripting languages that embrace emerging concurrency

patterns have their limitations. Besides, recent research such as River Trail (for

JavaScript) and Deterministic Parallel Ruby (DPR) indicate that promoting

safe data sharing in scripting languages is a pressing matter.

In this chapter we present a brief rationale for how we have combined

the emerging concurrency patterns discussed in the previous chapter to create

our concurrency communication model. We also explain the model itself and

examine its key concepts.

(a) Combining Emerging Concurrency Patterns

The first and most important pattern that programming languages

should adopt to allow for safe data sharing is no-default data sharing. However,

not sharing data by default should not be confused with not sharing data at

all. As we mentioned in Chapter 1, concurrent applications can benefit from

data sharing. In particular, data sharing provides better performance (because

data does not need to be copied) and it is easier1 to use.

1We use the term “easier” here with the same meaning as we defined in Chapter 1: posing
no difficulty as long as correctness is not a concern.
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No-default data sharing allows programmers to more easily identify where

shared data is accessed and it facilitates the implementation of language-based

concurrency control mechanisms to access shared data. Ultimately, no-default

data sharing diminishes the chances of programmers inadvertently introducing

data races in applications. Nevertheless, it does not eliminate data races. Take,

for instance, Perl 5: by default data is local to each thread, but programmers

may still declare shared data and access it without proper synchronization.

We propose that, in addition to requiring programmers to explicitly

declare shared data, communication among execution flows should be localized

and explicit. This combination allows programmers to more easily identify, in

source code, which data is shared and how it is accessed. It simplifies reasoning

about programs execution, as we have mentioned in 1.4, which is an important

step towards making it easier to write correct concurrent applications.

One way to make communication explicit and localized that is consistent

with the dynamic nature of scripting languages is to combine data sharing

with message passing, as JavaScript does. More than simply using messages

to transfer data, JavaScript uses it to transfer ownership rights: web workers

can transfer the ownership of a shared object, via message passing, to allow

another web worker to write to that object. Ownership rights, a form of

data ownership, uses the same base concept of types and effects that we

mentioned in Chapter 2. It works well for read-write accesses, but is not

suitable for the common case of read-only access. To allow multiple web workers

to read a shared object, a programmer must either sequentially transfer the

object’s ownership, precluding parallelism, or clone the object multiple times,

impacting performance.

A simple and effective approach to allow multiple execution flows to

read shared data is to use immutability. Recall that immutable objects are

inherently thread-safe and can be freely shared. Therefore, we propose using

immutability as a complement to data ownership. Combining immutability

with data ownership allows both for parallel read-only access and for safe,

disciplined, read-write access to shared data.

Recall, as we discussed in Chapters 1 and 2, that using data immutability

by itself may not be a viable choice. Working exclusively with immutable data

can cause a performance bottleneck due to the need to create new objects to

alter existing objects. Also, it requires programmers to change programming

patterns commonly employed in imperative languages which rely on altering

data. That is why it is beneficial to support both mutable and immutable data

sharing.
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(b) Safe Record Sharing

Our model combines the benefits of no-default data sharing, ownership

rights and immutability to allow for safe data sharing in dynamic languages.

Because we adhere to no-default data sharing, by default all data is local to

execution flows. The only means to share data among execution flows is to use

shareable objects. Regular (local) objects can never be shared.

The only means to share a shareable object is message passing. We keep

communication localized and explicit as only one execution flow at a time

can write to a shareable object and allowing other execution flows to access

changed objects always requires sharing the object. This simplifies reasoning

about program execution. We avoid the performance cost usually associated

with message passing, as we do not need to copy data between different address

spaces. Moreover, since the only means to share data is to use shareable

objects with message passing, we are effectively providing specific, well-defined

constructs for communication, while compelling programmers to use them.

We build on ownership rights by combining it with immutability to

improve flexibility. We propose expressing this combination by means of

dynamically assigned capabilities [18]. Capabilities express the set of rights

that execution flows have over shareable objects. Each reference to a shareable

object has an associated capability. We define two basic capabilities: read-

write (mutable) and read-only (immutable). The lack of capabilities means

the execution flow has no access to an object. When an execution flow creates

a shareable object, by default it has a reference with the read-write capability

for the new object.

An execution flow can share an object by sending it to another execution

flow via message passing. When it does so, the sender must choose whether the

object should be sent as read-write or as read-only. When sending a shareable

object, the following rules apply:

– when sending an object as read-write, the sender loses access to the

object and the receiver gains read-write access to the object, as shown

in figure 3.1;

– when sending an object as read-only, the object becomes immutable;

the sender loses write access and the receiver gains read-only access, as

shown in figure 3.2.

Sending a shareable object as read-write in our model leaves the sender

with an invalid reference to the object that cannot be used anymore. Observe

that multiple objects in the same thread might include a reference to a

shareable object and they will all be unable to use it after the object is sent as
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read-write

shareable  object

Figure 3.1: Sending a shareable object as read-write causes the sender to lose
access and the receiver to gain read-write access.

read-write

local object shareable  object

EXECUTION FLOW 1 EXECUTION FLOW 2

send read-only
read-only

read-write

local object shareable object

EXECUTION FLOW 1 EXECUTION FLOW 2

read-only

shareable object

Figure 3.2: Sending a shareable object as read-only causes the sender to lose
write access and the receiver to gain read-only access.

read-write, as illustrated in figure 3.3. Invalidating the reference to an object

after it is sent as read-write is necessary to prevent the sender from accessing

the object while the object is potentially being written by the receiver. Also,

observe that in our model immutability cannot be reversed. Once an object

becomes immutable, it cannot become mutable again. Using messages to assign

capabilities is aligned with the nature of dynamic languages, as access control

is performed during runtime.

Shareable objects can hold immutable values (strings, numbers and

booleans) and other shareable objects. Nesting shareable objects does not

cause capabilities to be inherited. Moreover, when shareable objects are nested,

all of their capabilities must be considered when attempting to share them.

Therefore, the following rules apply:

– to send an object as read-write, the object and all its inner objects must

have the read-write capability;

– to send an object as read-only, the object and all its inner objects can

either have the read-only capability or the read-write capability; all

objects with the read-write capability will become read-only after the

object is sent, as shown in figure 3.4;
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read-write
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read-write

shareable object

EXECUTION FLOW 1 EXECUTION FLOW 2

read-only

shareable object

read-write

X

local object

X
Figure 3.3: Sending a shareable object as read-write invalidates its reference
in the sender. Other objects that might include that reference will not be able
to use it anymore.

read-write

shareable object
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read-only

read-write

shareable object

EXECUTION FLOW 1 EXECUTION FLOW 2

read-only
read-only

read-write

read-only

read-only read-only

shareable object

Figure 3.4: When shareable objects are nested, sending an outer object as
read-only makes all objects read-only.

Overall, our model provides the means for disciplined data sharing. It

keeps communication localized and explicit; it defines shareable objects, a

specific construct for data sharing that works according to well-defined rules;

and last, but not least, it compels programmers to use capabilities to ensure

safe concurrent access to shared data. In addition, our model can be used as a

building block for higher-level concurrency patterns.

3.2 Model Implementation

As part of our research, we implemented a prototype to experiment with

the proposed concurrency communication model using the Lua [41] program-

ming language. Lua is a lightweight multi-paradigm dynamic programming

language. It is dynamically typed, supports collaborative multithreading and

performs automatic memory management. Lua also provides a C API that

allows programmers to use Lua code to extend C applications, as well as to

use C code to create new functions for Lua.

The prototype is called luashare. Its implementation is divided in two

DBD
PUC-Rio - Certificação Digital Nº 1012678/CA



Chapter 3. A Communication Model for Safe Record Sharing 38

parts, one inside the interpreter and another outside the interpreter. The

prototype allows multiple threads in Lua to be executed in parallel and to

safely share data. It uses the following API:

newthread(string code)

Creates a new Lua thread that will execute the specified string of Lua

code. Returns true when it is successful and nil plus an error message

when it fails.

getnumworkers()

Returns the number of active workers (system threads).

setnumworkers(number n)

Sets the number of active workers (system threads). Raises an error when

it fails.

send(string chan name, string capability,

immutable values|shareable object, ...)

Sends shareable objects with specified capability and immutable values

(strings, numbers and booleans) to the specified channel. Multiple share-

able objects and immutable values can be sent at once. Returns true

when it is successful and nil plus an error message when it fails. Blocks

when there is no matching receive on the same channel.

receive(string chan name, boolean asynchronous)

Receives shareable objects and immutable values from the specified

channel. When the optional argument asynchronous is true, it does

not block waiting for a matching send on the same channel. Returns

shareable objects and immutable values sent to channel when it is

successful and nil plus an error message when it fails.

newchannel(string chan name)

Creates a new channel with the specified name. Returns true when it is

successful and nil plus an error message when it fails.

delchannel(string chan name)

Deletes the channel with the specified name. Returns true when it is

successful and nil plus an error message when it fails.

newobj(table t)

Creates a shareable object using the values in the specified table. Returns

a reference to the object when it is successfully and nil plus an error

message when it fails.
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getcapability(shareable object obj)

Returns the capability associated with a reference to a shareable object.

Raises an error when it fails.

wait()

Waits until all Lua threads have finished executing. Should only be called

from the main Lua thread.

As a starting point for the implementation outside the interpreter, we

used luaproc. We presented a brief overview of luaproc in Section 2.2, when

we discussed examples of dynamic languages that employ the no-default

sharing concurrency pattern. Luaproc allows parallel execution of Lua code

and provides a communication model that closely matches the one that we

are proposing. However, it lacks the support for data sharing and capabilities,

which are central to our communication model. Before we discuss how we

modified luaproc to suit our needs, we must recall how it works and explain

its architecture in more detail.

(a) Luaproc

Luaproc is a concurrency library, developed in C, for Lua. It is imple-

mented entirely outside the interpreter, allowing it to be used with the standard

Lua interpreter. The key concept luaproc implements is that of Lua processes.

Each Lua process is an execution flow of Lua code and multiple Lua processes

can run in parallel. Like operating system processes, Lua processes are inde-

pendent from each other, they do not share data.

Luaproc implements Lua processes with Lua states. A Lua state is a

data structure that defines the state of the Lua interpreter, and keeps track

of global variables and other interpreter-related information. Luaproc explores

two properties of Lua states to implement Lua processes. The first property is

that the Lua C API allows C applications to create and manipulate multiple

states at a time. The second property is that Lua states do not share data

among them.

Each Lua process in luaproc has its own Lua state, i.e., there is a one-

to-one relation between Lua processes and Lua states. Using independent Lua

states is a natural design choice for luaproc, as states do not share data and the

communication model implemented by luaproc precludes shared data. Other

than a design choice, using independent Lua states actually makes it very

difficult to support data sharing, as it would require implementing a distributed

garbage collector. Observe that if a Lua state was allowed to reference data in

DBD
PUC-Rio - Certificação Digital Nº 1012678/CA



Chapter 3. A Communication Model for Safe Record Sharing 40

another state, a garbage collection cycle in the state where the data is stored

could lead to data corruption.

Lua processes are executed by a set of workers, which are system threads

implemented with the POSIX thread library (pthreads). Workers and Lua

processes are independent from each other. This N:M mapping between system

threads and user threads is a common concurrency pattern [70, 65]. Typically

it relies on a smaller number of system threads (usually just enough to allow

all processor cores to be used) and a greater number of user threads (as many

as needed by the application). Each worker in luaproc continuously retrieves

a Lua process from a ready queue and executes it until it completes, blocks

or yields. Even though workers can execute multiple Lua processes in parallel,

only a single worker at a time can access an individual Lua process and its

corresponding Lua state.

Lua processes communicate by using message passing. Because Lua pro-

cesses are implemented with independent Lua states, which do not share data

among them, luaproc must supply its own functions to allow for communi-

cation. Therefore, luaproc provides the send and receive functions. These

functions work by copying immutable values (strings, numbers and booleans)

between Lua states. Messages are addressed to communication channels. Each

channel is identified by a distinct name and a Lua process only needs to know

a channel’s name to be able to use it.

The send and receive functions are the only potentially blocking

operations provided by luaproc. When a Lua process tries to send a message

to a channel where there are no Lua processes waiting to receive a message,

its execution is suspended until there is a corresponding receive operation on

the channel. The same happens when a Lua process tries to receive a message

from a channel where there are no Lua processes waiting to send a message.

Figure 3.5 presents an architecture overview of luaproc. The figure shows

six Lua processes (A-F) and four workers (1-4). While four of the Lua processes

(A, B, D and F) are being executed by workers, the remaining two are waiting

to be executed in a ready queue. Moreover, two Lua processes (A and B) are

communicating by using channel ’ch’. This figure illustrates the key points that

we have explained in this section and that are essential for understanding how

we used luaproc to implement the part of our prototype which is outside the

interpreter.

(b) Implementation Outside the Interpreter

Part of our prototype is implemented outside the interpreter. We used

luaproc as a starting point to implement it. However, recall that luaproc does
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Figure 3.5: An architecture overview of luaproc.

not support data sharing, which is central to the communication model we are

proposing. Consequently, our first concern was how to allow for data sharing

with luaproc.

Lua supports multithreading with coroutines, which we briefly talked

about in Section 2.2. Coroutines are lightweight userland threads scheduled

cooperatively; they cannot be executed in parallel. Each coroutine in Lua has

its own runtime stack. A coroutine can suspend its execution only by explicitly

calling a yield function. Once a coroutine starts executing, it will run until it

terminates or yields. Global variables in Lua are shared among coroutines.

Therefore, despite the lack of support for parallel execution, we looked into

coroutines as a promising base to introduce data sharing in luaproc.

To understand how multithreading in Lua works, we must take a closer

look at the implementation of Lua states. Each Lua state comprises a global

state and one or more local states. A local state stores the runtime stack of

a coroutine — since the runtime stack is essentially what defines a coroutine,

a local state is a coroutine. The global state stores all data that is shared

by coroutines created inside the same Lua state: garbage collection control

variables, a hash table to intern strings, a table that holds global variables,

among others. Having a shared global state allows coroutines inside the same

Lua state to share global variables in Lua.
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We modified luaproc to use coroutines inside the same Lua state instead

of independent Lua states. While luaproc implements Lua processes with

independent Lua states that do not share data, luashare implements threads

inside the same Lua state so that it has a shared global state. This was the most

fundamental change we performed in luaproc. It satisfies a central property of

our model, which is to support data sharing, while retaining the benefits of

the original communication model, based on message-passing.

This fundamental change, however, introduced a fundamental problem.

Observe that threads in luashare are executed by workers, just like Lua

processes in luaproc. Nevertheless, unlike processes in luaproc, threads in

luashare are inside the same Lua state (as we want to share data). This means

that there are multiple local states (one of each thread) and a single global

state shared among threads. Therefore, while in luaproc each worker could

only access a single Lua state at a time, in luashare all workers access the

same shared global state. That is why we had to provide concurrency control

to the global state.

Having modified luaproc to support data sharing, we then continued to

use it for message transmission in luashare. While luaproc has to copy data

between Lua states, luashare can simply exchange data between threads us-

ing the shared global state. Thus, we changed the behavior of the send and

receive functions in luashare accordingly. Nevertheless, to make communica-

tion in luashare comply with our model, we needed to implement shareable

objects and capabilities.

We implemented shareable objects with tables in Lua. The table type

defines an associative array that can be indexed with any Lua value and

can hold values of any type. Because tables are the only data-structuring

mechanism provided by Lua, they were an obvious choice for us to implement

shareable objects. Luckily, tables proved to be flexible enough to suit our needs.

A shareable object is simply a table that holds the values that compose the

object and an associated capability. Recall that shareable objects can only

hold immutable values (strings, numbers and booleans) and other shareable

objects, as we explained in the previous section.

Because shareable objects, as their names imply, are intended to be

shared among threads, we must control access to ensure concurrency safety.

To do so, we used a Lua feature that allows the behavior of operations over

individual tables to be changed. In particular, we defined our own functions to

handle the indexing access operation, which happens when a value in a table is

accessed, and the indexing assignment operation, which happens when a value

in a table is assigned. Our functions enforce capabilities and prevent unsafe
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concurrent access.

Besides controlling access to shareable objects, we must also control how

they are shared. The modified send function in luashare sends only shareable

objects and it requires programmers to specify how objects should be shared

(either read-write or read-only). The function checks whether objects and

nested objects have the necessary capabilities before sending them.

Recall that in luashare multiple workers access the shared global state.

That is why we must implement concurrency controls to prevent data corrup-

tion in the Lua state that holds it. However, that cannot be done outside the

interpreter, as it requires access to the internal data that defines the global

state in Lua. That is why we needed to modify the Lua interpreter, which is

what we discuss in the next section.

Before we move on, though, we present an architecture overview of

luashare in figure 3.6. The figure shows three Lua threads (A-C) being executed

by three workers (1-3). It also shows that all threads (L) are inside the same

Lua state and thus share the same global state (G).

LA

Global state (G)

Local states (L)

LB LC

Lua state

worker1 worker3worker2

G

Figure 3.6: An architecture overview of luashare.

(c) Implementation Inside the Interpreter

Luashare creates multiple threads inside the same Lua state. Recall that

threads inside the same Lua state share the same global state, which is what

allows them to share data and thus explains why we chose this implementation
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strategy. To ensure that we had proper concurrency control, we had to look

into the global state, which is implemented by the Lua interpreter.

The global state is a graph. Each node in this graph represents some

data in C. More importantly, most of the nodes have a one-to-one relation with

objects in Lua. We exploited this relation to implement concurrency control for

the global state. To understand how, we must first consider garbage collection

in more detail.

In garbage collection parlance, systems are divided in two parts. The

first part, called the collector, executes the garbage collection code; it discovers

unused memory and reclaims it. The second part, called the mutator, executes

the user code2; it allocates objects and mutates (changes) them.

In Lua, the mutator is the Lua application being executed by the

interpreter. Consequently, the only objects it mutates are Lua objects. Because

our implementation outside the interpreter controls concurrent access to these

objects (using shareable objects and capabilities) and there is a direct relation

between data in C and data in Lua, concurrency control for the corresponding

data in C is not necessary. Therefore, for all nodes in the global state that have

a one-to-one relation with objects in Lua, luashare provides the concurrency

control.

We need to provide concurrency control in C for the collector, whose

inner workings we cannot control from Lua, and for any global state data that

does not have a one-to-one relation with objects in Lua. When not performing

a collection cycle, the garbage collector uses a number of fields in the global

state to control its activities, in particular to keep track of object creation.

We used mutual exclusion to control concurrent access these fields, as we will

explain later in this section. In addition, while performing a collection cycle, the

garbage collector can potentially access any object in Lua; therefore, it should

not be executed in parallel with other threads. To prevent data corruption, we

implemented a synchronization barrier to stop all threads before performing a

collection cycle.

Once a thread decides it must perform a collection cycle, it stops at the

barrier and waits for all other threads. After all threads have stopped at the

barrier, a single thread then resumes its execution and performs a collection

cycle. Once the thread finishes the cycle, it notifies the remaining threads

that were waiting at the barrier that they can resume execution. The notified

threads skip the garbage collection cycle, which has already been performed,

and continue executing. We do not expect the barrier to have a significant

2From the point of view of the garbage collector, the mutator contains “all the rest” of
the system, including the user code.
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performance impact. However, we are aware that in case a thread is blocked

executing an I/O operation, it will hold back all the other threads in the

barrier. As this is a very particular scenario, we explicitly chose not to deal

with it in the scope of this work.

Besides providing concurrency control for the garbage collector, we also

had to provide concurrency control for the data in the global state that had

no direct relation with objects in Lua. We analyzed each of the fields that

compose the global state structure, which defines the header of the graph, to

determine how they were used. For each field, we took one of the following

three approaches:

1. if the field was written to only once (during the Lua state initialization)

then we did nothing about it;

2. else, if the field did not need to be global, then we moved it from the

global state structure to the local state structure;

3. else, we used mutual exclusion to control concurrent access.

Overall, we moved three fields from the global state structure to the

local state structure, we did nothing about eight fields that were written to

only once and we had to use mutual exclusion to prevent concurrent access

to the remaining 23 fields. Out of these 23 remaining fields, 22 were used to

control garbage collection and one was used to store a hash table.

We provided concurrency control to these 23 fields with three standard

POSIX mutual exclusion variables (pthread_mutex_t). The first mutual ex-

clusion variable (mutex) controls the concurrent execution of functions that

handle Lua objects and thus update fields used to control the garbage collec-

tor. It is complementary to the synchronization barrier which we talked about

earlier in this section. These functions concentrate accesses to most of the 23

fields of the global state that needed concurrency control. There were only two

exceptions, that we handled with the other two mutexes. The second mutex

controls concurrent access to a hash table that is used to store the hashes of

strings created in Lua. Finally, the third mutex controls concurrent updates

to a counter that the Lua garbage collector uses to determine when it should

perform a collection cycle.

(d) A Simple Example Application

Now that we have explained how we implemented luashare, we can

present a simple example of a how an application that uses it looks like.
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Listing 3.1 shows the source code for a simple application, along with some

inline comments.

As the listing shows, we begin by loading the part of luashare that is

implemented outside the interpreter (line 2) and by increasing the number of

workers, or system threads, to two (line 5). Next, we create a communication

channel (line 8) and two shareable objects (lines 11 and 12). Then we create a

new thread (lines 17 to 31) that will receive the two objects (lines 21 and 23),

print the values stored in each of them (lines 25 and 26), update a value in

one of the objects (line 28) and then send the updated object back (line 30).

To create the thread, we pass a string of Lua code that will be executed as an

argument to the newthread function – the [[ and ]] symbols can be used to

define literal strings in Lua.

After creating the communication channel, the shareable objects and a

thread, we begin to share objects. We share the first shareable object as read-

only (line 34) and then, right after, we try to change one of its values (line 37)

just to check we are not allowed to. Next, we share the second shareable object

as read-write (line 41) and, right after, we try to read one of its values (line

44), again to check that we are not allowed to. Finally, we receive the updated

shareable object (line 48) and print its values (line 51).

Listing 3.2 shows the output that results from executing the application

with luashare. Observe that we receive errors when trying to update a shareable

object as read-only and when trying to access a shareable object sent as read-

write (lines 2 and 3). Also, observe that the value in the shareable object that

was shared as read-write was correctly updated (line 6).

(e) Development Experience

During the development of our prototype implementation we were faced

with common difficulties that are typical of concurrency with preemptive

multithreading and shared memory. In this section we present a brief and

informal report on some of these difficulties, as well as how we handled them,

as they evidence some of the problems that we are trying to solve with our

research.

The first and most time-consuming problem we had to deal with were

data races. Throughout the development of our prototype, we were faced with

a multitude of unexpected program behaviors that would appear at different

points in code, often resulting in segmentation faults. Most of the time it

would be nearly impossible to reproduce these behaviors consistently. We used

standard debugging tools, such as the GNU debugger (GDB) and the tools
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1 -- load luashare

2 luashare = require "luashare"

3

4 -- create an additional worker

5 luashare.setnumworkers (2)

6

7 -- create a communication channel

8 luashare.newchannel (" a_channel ")

9

10 -- create two shareable objects

11 a_so = luashare.newobj{x=31, y=33, z=7}

12 another_so = luashare.newobj {"ping"}

13

14 -- create a new lua thread that will receive a read -only shareable object

15 -- and try to write to it and then will receive a read -write object , write

16 -- to it and send the updated object back.

17 luashare.newthread ([[

18 -- load luashare

19 luashare = require"luashare"

20 -- receive the first object

21 a_recv_so = luashare.receive (" a_channel ")

22 -- receive the second object

23 another_recv_so = luashare.receive (" a_channel ")

24 -- print received values

25 print(" a_recv_so :\t", a_recv_so.x, a_recv_so.y, a_recv_so.z)

26 print(" another_recv_so :", another_recv_so [1])

27 -- change a value in the shareable object received as read -write

28 another_recv_so [1] = "pong"

29 -- send the updated object back

30 luashare.send(" a_channel", "rw", another_recv_so)

31 ]])

32

33 -- share the first inner object as read -only

34 luashare.send(" a_channel", "ro", a_so)

35

36 -- try to change the object sent as read -only

37 ret , err = pcall( function () a_so.x=32 end )

38 if (not ret) then print(err) end

39

40 -- share the second inner object as read -write

41 luashare.send(" a_channel", "rw", another_so)

42

43 -- try to read the object sent as read -write

44 ret , err = pcall( function () print(another_so [1]) end )

45 if (not ret) then print(err) end

46

47 -- receive the updated object that was shared as read -write

48 an_updated_so = luashare.receive (" a_channel ")

49

50 -- read the updated value

51 print(" an_updated_so :\t", an_updated_so [1])

52

53 -- wait until all threads have finished

54 luashare.wait()

Listing 3.1: A simple example application implemented using luashare.

1 $ luashare simple.lua

2 cannot change an immutable object

3 cannot access shareable object (sent rw)

4 a_recv_so: 31 33 7

5 another_recv_so: ping

6 an_updated_so: pong

7 $

Listing 3.2: The output that results from executing the simple application
implemented using luashare.
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included in the Valgrind framework, as well as a lot of print debugging, to try

to understand and deal with these behaviors as best as we could.

Although debugging is an integral part of programming, what differen-

tiates concurrency bugs from regular bugs is the time it takes to understand

and fix them. While making the changes to allow multiple threads in Lua to

run in parallel took a few days, understanding and fixing all the data races we

encountered took weeks. Besides, even after we implemented a potential fix, it

was difficult to ensure that all possible execution interleavings that could lead

to the race were covered.

Other than data races, we also had to deal with many deadlocks.

The advantage of deadlocks over data races is that deadlocks are always

immediately visible when they occur. Most deadlocks we identified were caused

by multiple functions in a call path trying to lock the same mutex. Although

conceptually simple to understand, dealing with this problem in practice

proved to be demanding. Even when working with a single mutex, we had

to reason about multiple function call paths and most functions in Lua are

recursive, which makes matters worse.

A common workaround we employed when dealing with deadlocks was

to implement two versions of the same function: while one version locked the

mutex before executing the function’s body, the other version simply executed

the function’s body without locking the mutex. The first version could be used

by functions that did not lock the mutex beforehand, while the second version

could be used by functions that did lock the mutex beforehand.

Another cause for deadlocks were multiple mutexes being locked in

different orders. In this case, not only the problem is simple to understand,

but so is the conceptual solution: to ensure that mutexes are always locked in

the same order. Nevertheless, applying the solution in practice was not simple,

mostly because each mutex was locked by a different set of functions. Besides,

reasoning about deadlocks that involve multiple mutexes is generally harder

than reasoning about those that only involve a single lock. In our experience,

even when working with a small number of mutexes, complexity escalates

quickly.
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4
Evaluation

In this chapter we evaluate the proposed communication model in

practice, using luashare. The evaluation consisted of the implementation and

execution of an artificial benchmark application, as well of a few real-world

applications, using luashare. Our goal was to have an idea of how using

shareable objects facilitates safe data sharing and to analyze the performance

of our implementation. In the first section we present some general and more

informal remarks about the evaluation and then, in the following section, we

detail the results of the performance analysis.

4.1 General Analysis

Overall, our experience with luashare as users was better than our

experience as its developers. While we had to deal with a number of intricate

data races that were time consuming to debug when developing luashare,

all of the concurrency errors we had to deal with when using luashare were

straightforward and quick to debug. Common errors we had to deal with when

using luashare included unmatched send and receive operations, forgetting to

define a capability when sending objects, mistakenly sending incorrect values

and using incorrect channel names. Observe that all of these errors revolve

around, or at least are evidenced by, calls to the send and receive operations,

which are used for communication among threads. Because these calls are

explicit and localized in code, it is easier to debug errors such as the ones we

encountered.

The ability to use strings to index values in shareable objects makes it

intuitive to access specific values in objects. Besides, being able to use shared

data makes it easier to implement communication among execution flows, as

there is no need to serialize and deserialize data every time it needs to be

shared. More importantly, because shared data does not need to be copied

among threads, luashare has better scalability when working with large data

sets that need to be accessed by multiple threads.

Still regarding communication, we found that the use of capabilities
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to control access to shared data was intuitive. Moreover, we found that

even though capabilities strictly define how shared data can be accessed,

they still provide enough flexibility to allow for different communication

strategies. When using domain decomposition, for example, at least the

following alternatives for communication among threads can be used:

– each thread receives the whole input data set as a read-only shareable

object, creates and fills a new shareable object with its partial results

and then sends back this object as read-only (or read-write);

– each thread receives a part of the input data set as a read-write shareable

object, fills this shareable object with its partial results (by changing its

values in-place) and sends it back as read-write (or read-only).

Likewise, when using functional decomposition, for example to implement a

pipeline, each thread in the pipeline can receive a read-write shareable object

with the results of previous stages of the pipeline, fill this shareable object

with its results (by changing its values in-place) and send it as read-write to

the next thread in the pipeline.

Enforcing disciplined data sharing in luashare, however, comes at a cost.

In particular:

– to create a shareable object, we must check the types of all values it is

supposed to hold; if there are tables among these values, we must traverse

them;

– to send a message, we must check whether all values contained in the

message are shareable objects; we must also check whether each shareable

object has the appropriate capability to be shared as specified and, when

necessary, change capabilities accordingly; if there are nested shareable

objects among these values, we must traverse them.

Observe that after a shareable object is created and before it is shared, we do

not control how the object is manipulated. Therefore it is possible, for instance,

to insert a value of an unsupported type in a shareable object after the object

is created. However, luashare will not allow such object to be shared.

The lack of control over how shareable objects are manipulated before

they are shared demands stricter controls for effectively sharing them. That is

why, besides checking messages to ensure they only contain shareable objects,

we must also check values inside each shareable object before allowing them to

be shared. Having stricter controls to share objects while relaxing control over

how they are locally manipulated by each thread means that it is comparatively
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more expensive, in terms of performance, to share an object than it is to

manipulate it.

We could have taken a different approach and implemented stricter

controls for local object manipulation while relaxing controls to effectively

share them. Nevertheless, our experience during the evaluation showed us that

the number of times a shareable object is accessed typically outweighs the

number of times it is shared. Thus, from a performance point of view, it makes

more sense to make accesses as fast as possible and to transfer the burden of

control to the point when objects are effectively shared.

Regardless of the fact that it makes sense to have stricter controls

when sharing objects, this approach has a drawback. When sharing a nested

shareable object, all its inner objects must be traversed, which can be slow

depending on the number of objects and their sizes. Since nesting is a

common technique to implement data structures such as graphs and trees,

this represents a limitation in luashare.

A possible work-around for that limitation is to use regular Lua tables to

create data structures and then use shareable objects to hold coarser-grained

parts of the structures that will be shared. Consider, for example, a square

matrix with N rows. Intuitively, a programmer would probably store each row

in a different Lua table and store all the row tables in a single table. However,

instead of using a shareable object for each row, the programmer could use a

single shareable object to hold multiple rows, reducing the number of shareable

objects to make communication faster.

Independently of where controls are applied, the overall performance of

luashare is invariably very sensitive to how these controls are implemented.

Consider, for example, a scenario where every time a shareable object is

accessed a function must be called to check the object’s capability. The function

can potentially be called many times during the execution of a program that

uses large shareable objects. Therefore, changing the function to include or

exclude a single operation or function call, for instance, can have a significant

impact in the performance of the program.

In practical terms, throughout the evaluation, we managed to reduce

the times to read values from and write values to shareable objects by up to

10 times with very simple changes to the routines that enforce capabilities.

Examples of such changes include removing string concatenation operations

and storing references within functions instead of using function calls to

retrieve them. In the end, access times to shareable objects were, in order

of magnitude, comparable to access times to regular Lua tables. We discuss

performance in more details in the next section.
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4.2 Performance Analysis

We conducted a performance evaluation to assess the performance of our

implementation and to verify that our model can be used in practice. To do

so, we implemented and executed the following applications with luashare:

Black and Scholes — a financial application, ported from the PARSEC [5]

benchmark suite, that calculates the prices for a portfolio of European

options analytically with the Black-Scholes partial differential equation;

FASTA Parser — an application to search a FASTA1 sequence for patterns;

CAPTCHA Filter — an application to filter CAPTCHA2 images to make

it easier to perform automatic optical character recognition (OCR).

We selected these applications because they explore different paralleliza-

tion and data partitioning patterns. Black and Scholes explores sharing struc-

tured data as read-only among threads that read different pieces of shared data.

The FASTA Parser explores sharing unstructured data as read-only among

threads that read the same piece of shared data. The CAPTCHA filter ex-

plores sharing data as read-write among threads that work as pipeline.

While searching for real-world applications to implement, we analyzed

applications from two benchmark suites: PARSEC [5] and the Java OpenMP

(JOMP) version of the Java Grande Forum Benchmark Suite (JGF) [16]. We

ported the Black and Scholes application from PARSEC. It is the simplest ap-

plication included in the suite. We chose not to use the remaining applications

in PARSEC because they were too complicated to port. We chose not to use

any applications from the JGF suite because they all use the same paralleliza-

tion strategy, which is to partition data and have threads access disjoint sets of

data, and we already explore that case with the Black and Scholes application.

Apart from the real-world applications, we also implemented an artificial

benchmark application to specifically analyze the performance of sharing

objects. This application, which we called ping-pong, reads data from a file

and uses it to create a shareable object. Then, it creates two threads that send

the object to each other, back and forth, a number of times.

For each application, except ping-pong because it would not make sense,

we implemented a serial version using standard Lua and parallel versions using

both luashare and luaproc. Unless explicitly stated, we always took the same

1The FASTA format is text-based format, used in bioinformatics, for representing either
nucleotide sequences or peptide sequences

2CAPTCHA stands for “Completely Automated Public Turing test to tell Computers
and Humans Apart”. CAPTCHA images show distorted texts that users must type to prove
they are humans to a computer system.
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approach to decompose data or functions when parallelizing applications with

luashare and luaproc. When we needed to serialize data in luaproc, we used

the luabins library [54].

We used the serial version of the applications to compare the standard

Lua interpreter with the modified interpreter used in luashare. During our

evaluation, we observed no significant differences in execution times. This

suggests that, as we predicted, the barrier we used to synchronize garbage

collection generally does not imply a significant performance impact.

We executed all applications in a server with four Intel R© Xeon R© Pro-

cessors E5-2690 v2 (25M Cache, 3.00GHz), for a total of 40 cores, 128GB

RAM and 600GB SA-SCSI 15K RPM hard drives in RAID 1. The server had

Ubuntu Linux 14.04 LTS Trusty Tahr (64 bit) installed with only essential ser-

vices running. Each application was executed five times and we used the means

to consolidate results. We also calculated the relative standard deviations. In

the following subsections we discuss the results for each application.

(a) Ping-pong Benchmark

The ping-pong application is an artificial benchmark application we

implemented to evaluate the performance of communication among threads

in luashare and processes in luaproc. It reads data from an input file then

creates two execution flows that send input data to each other continuously

for a number of times. Because only one execution flow at a time is active, we

executed this application using a single system thread.

We implemented two versions of the ping-pong application. The first

version reads input from an ASCII file and uses the file contents to define the

data that will be used for communication among execution flows. In luashare,

we place input data in a shareable object, together with some metadata (such

as the number of times data should be shared among threads and what

capability should be used for sharing). In luaproc, we simply send a string

with the input data. We executed this first version using as input two different

files, a small one with 1,022 bytes and a larger one with 4,139,780 bytes. Also,

when using luashare, we shared data as read-only and as read-write, to check

whether there are significant differences in execution times.

We executed the application gradually increasing the number of times

data should be exchanged among execution flows. We estimated the data

throughput using the total execution times, input sizes and number of times

data was exchanged among execution flows. Table 4.1 presents the results for

luashare and luaproc.
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Suite Capability Input size (bytes) Throughput (GB/s) σ (%)

luashare read-only 1,022 0.11 0.64
4,139,780 460.12 0.25

read-write 1,022 0.07 1.00
4,139,780 289.69 1.27

luaproc - 1,022 0.94 1.12
- 4,139,780 5.65 0.87

Table 4.1: Throughput for communication among execution flows in luashare
and luaproc.

As we can observe, for the small file, luaproc has a higher throughput.

That is explained by the fact that creating a shareable object has an overhead

which, in this case, is probably creating a bottleneck. For the large input

file, luashare has a much higher throughput than luaproc. The throughput

difference reflects the cost of copying, instead of sharing, data. We can

also observe that, when using luashare, sharing data as read-only results in

higher throughput. That difference can be explained by looking at how we

implemented sharing.

To share an object, we must first traverse all its values to check that there

are only supported data types. To share an object as read-only we must also

set the capability to read-only and block write access to the object. To share

an object as read-write, we must also check whether the object has the read-

write capability and then invalidate the reference to that object. Setting the

read-only capability and blocking write access essentially takes less operations

to perform than checking for write access and invalidating references. Since

sharing is executed many times in this benchmark, even a few operations more

or less can impact performance. Therefore, because sharing an object as read-

write is comparatively more expensive, throughput is lower.

The second version of the ping-pong application reads input from a

structured ASCII file. To keep things simple, we reused code from the Black

and Scholes application to read options data from a file. Input data, just like

the original Black and Schole application, is stored in shareable objects. Recall

that options data is represented in a matrix, therefore we nest shareable objects

to store it. We executed the second version with the same input set as we used

for the first version. However, instead of measuring file sizes in bytes, we look

at how many options each file describes: the small (1,022 bytes) file describes

16 options, while the larger file (4,139,780 bytes) describes 65,536 options. We

did implement this second version for luaproc, as we understood it would not

make sense to compare the throughout for sending shareable objects and for

DBD
PUC-Rio - Certificação Digital Nº 1012678/CA



Chapter 4. Evaluation 55

sending serialized tables.

Like we did with the first version, we gradually increased the number of

times data should be exchanged among execution flows. Then, we estimated

the data throughput using the total execution times, input sizes and number

of times data was exchanged among execution flows. This time, though, we

measured throughput in objects shared per second instead. Table 4.2 presents

the results.

Capability Input size Cycles Throughput σ (%)
(shareable objects) (#send/recv) (objects/s)

read-only 16 1,000 63,670 1.03%
10,000 62.661 1.30%
100,000 62.763 0.65%

65,536 1 21.644 1.92%
10 45,610 1.40%
100 51.352 2.74%

read-write 16 1,000 49.133 1.21%
10,000 49.941 1.04%
100,000 49.804 2.33%

65,536 1 17.892 1.27%
10 33.756 1.51%
100 35,590 2.43%

Table 4.2: Throughput for sharing shareable objects among threads in luashare.

As we can observe, once more the throughput for sharing data as read-

write is lower than the throughout for sharing it as read-only. We have already

explained, previously in this subsection, why that happens. We can also observe

that, as expected, the throughput is higher when working with a smaller

number of objects. Moreover, we can observe that as we increase the number

of cycles when working with the large input, throughput does not change

significantly.

Besides evaluating the performance of communication, we took advantage

of the ping-pong application to evaluate the performance cost of enforcing

safe concurrent access to shareable objects. To do so, we developed a fork

of luashare using the same implementation inside the kernel, but changing

the implementation outside the kernel to remove all controls over shareable

objects. More precisely, we stopped checking whether shareable objects only

held immutable values and shareable objects, as well as we stopped checking

capabilities to control access to shareable objects (although we do set them

accordingly). Then, just like in the previous test, we executed the ping-pong
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application that reads data from a structured ASCII file and estimated the

data throughput in objects shared per second. Table 4.3 presents the results.

Capability Input size Cycles Throughput σ (%) Speedup
(shareable (#send/recv) (objects/s)
objects)

read-only 16 1,000 566.667 0.00% 8.90
10,000 532.915 1.31% 8.50
100,000 529.101 2.61% 8.43

65,536 1 97.186 1.49% 4.52
10 321.102 2.64% 7.04
100 458.621 2.34% 8.93

read-write 16 1,000 177.083 5.71% 3.60
10,000 175.983 2.82% 3.52
100,000 178.216 2.90% 3.58

65,536 1 54.478 2.13% 3.04
10 122.134 2.71% 3.62
100 150.857 3.32% 4.24

Table 4.3: Throughput for sharing shareable objects among threads in luashare
with no controls to prevent unsafe concurrent access to shareable objects.

As we can observe, throughput increases significantly when controls are

removed. The last column in table 4.3 shows that speedups relative to the

standard luashare, with all controls enabled, range from just over three times to

almost nine times. Speedups are higher when sharing objects as read-only. That

can be explained by the fact that sharing an object as read-only is cheaper,

in terms of performance, than sharing as read-write – when we share objects

as read-only we reuse references, while when we share as read-write we create

new references for each object. Therefore, the cost of control when sharing

objects as read-only contributes more significantly to the total execution time

than when sharing as read-write. Overall, the results in table 4.3 evidence, as

we have stated before, that control comes at a cost.

(b) Black and Scholes Benchmark

We ported the Black and Scholes application implemented in C in the

PARSEC benchmark suite to Lua. The application prices a portfolio of options

with the Black-Scholes partial differential equation (PDE). It uses a synthetic

input, provided with PARSEC, that is based on the replication of 1,000 real

options. The input consists of a structured ASCII file, where each line provides

information divided in nine columns about an option.
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After reading the input, the application then calculates the prices for

each option 100 times3. In the serial version, the application simply iterates

over all options and calculates their prices individually. In the parallel version,

the application divides options among threads and each thread calculates the

prices for a different range of options. Despite the division of responsibilities,

all threads receive all input data.

In luashare, input data is read by a master thread into shareable objects

which are then shared with worker threads that calculate the prices. Results

are also returned from worker threads to the master thread by using shareable

objects. Both input data and results are shared as read-only. In this case, the

master thread only prints results, so it really does not make any difference

whether results are shared as read-only or read-write. In luaproc, we simply

used regular Lua tables instead of shareable objects and serialized them for

communication among processes.

We built our own input set, based on the input provided with PARSEC,

containing three files with 10,000, 100,000 and 1,000,000 options. Observe that

PARSEC uses a file with 65,536 options as its big data set4. For each input

file in our set, we executed the serial application and the parallel applications

with different number of workers.

Figure 4.1 presents the speedups observed in luaproc and luashare. All of

the execution times we measured had relative standard deviations from 0.66%

to 6.65%.

As we can observe, increasing the number of workers in luashare yields

speedups from around 2x up to just over 3.5x. Meanwhile, increasing the

number of workers in luaproc yields speedups from around 2x up to just over 9x.

So, while increasing the number of workers up to a point does yield a speedup

in luashare, using more workers progressively slows down execution times. To

understand why that happened, we must analyze how threads communicate in

the application.

The initial input data, which consists of one line per option with nine

columns each, is read as a whole from a file. However, after being read, part

of the data is separated to be shared in six different shareable objects. Each

shareable object corresponds to a columns in the input file. Therefore, there

are six shareable objects, each with a number of values equal to the number

of options in the input file (10,000, 100,000 or 1,000,000 in our input set).

The master thread must share each of these objects with each worker thread.

Recall that the options are divided among worker threads, so as we increase the

3This number is hard-coded in the PARSEC implementation.
4In PARSEC input data sets are divided according to their size.
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Figure 4.1: Speedups observed when running the Black and Scholes application
with multiple workers and different inputs using luashare and luaproc. Higher
results are better.

number of workers, we also increase the number of times objects are shared.

Consider, for example, an input size of 1,000,000 options and 32 workers.

The master thread will share six objects, each with 1,000,000 values, with

32 threads.

As we have discussed previously in this section, we chose to implement

stricter controls to share objects, while relaxing controls to access objects.

Remember that before sharing an object we must check all its values to ensure

there are only supported types. The results of this benchmark evidence the cost

of such approach. When using more than 8 workers, the master thread takes

too long to distribute data to worker threads. Therefore, worker threads delay

their execution waiting for data and the master thread becomes a bottleneck

as it cannot share data fast enough to keep worker threads busy.

(c) FASTA Parser Benchmark

The FASTA Parser is an application inspired by similar existing appli-

cations to search for patterns in FASTA sequences. It essentially works like a

pattern matching application: it reads input data from one file and patterns

to be searched from another file, then it searches the input for the patterns.

Sequences are very long strings containing letters and patterns, in our imple-

mentation, are any text matching patterns supported by Lua.

We built our own input set based in real sequences. It comprises the
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complete genome of a bacteria, a string with 5,801,598 characters, a shotgun

sequence of the genome of a rodent, a string with 77,654,946 characters, and

finally a shotgun sequence of a human chromosome, a string with 250,522,664

characters. We chose a random sequence (TTAGGAAA) that yielded matches

in all three sequences in our set. When experimenting with multiple patterns,

we simply repeated the same pattern multiple times.

In our implementation using luashare, a master thread reads the search

patterns and the entire input sequence as a whole. Then, it places the sequence

in a shareable object that has two values: the name of the sequence (a short

string), and the sequence itself (a very long string). Next, the master thread

creates worker threads and shares the sequence a read-only with each of the

worker threads. It then continuously creates a new searcher thread and sends a

single pattern to the created thread. Once a searcher thread receives a pattern,

it searches for it in the input sequence and stores results in a local table. After

it finishes searching for a pattern, it places consolidated search results in a

shareable object which is shared with the master thread.

In our implementation using using luaproc, we work with the sequence

and its name as two separate strings. The master thread sends these strings

and then a pattern to each worker thread. After searching for the pattern, each

worker sends the matching results back as a serialized table.

Figures 4.2, 4.3 and 4.4 present the speedups observed in luaproc and

luashare. All the execution times we measured had relative standard deviations

of up to 10.02%.

As we can observe, increasing the number of workers in luashare yields

speedups up to just over 14x when searching the small (bacteria) sequence, 9x

when searching the medium (rodent) sequence and 8x when searching the large

(human) sequence. Meanwhile, increasing the number of workers in luaproc

yields speedups up to just over 5x when searching the small sequence, just

over 7x when searching the medium sequence and almost 8x when searching

the large sequence.

The speedups for luashare are clearly higher than luaproc when searching

the small sequence, in particular as we increase the number of patterns. Recall

that we create one thread per pattern, so when searching for 500 patterns

we create 500 threads. In Lua, creating a thread (as luashare does) is faster

than creating a new Lua state (as luaproc does to create its Lua processes).

Therefore, that contributes to the higher speedups when using luashare. Notice

that, as we increase the size of the input sequence, the difference between

luashare and luaproc reduces as the time needed to search for patterns

influences more significantly the total execution time.
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Figure 4.2: Speedups observed when running the FASTA Parser application
with multiple workers and searching for a different number of patterns in
a bacteria genome sequence using luashare and luaproc. Higher results are
better.
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Figure 4.3: Speedups observed when running the FASTA Parser application
with multiple workers and searching for a different number of patterns in a
rodent genome sequence using luashare and luaproc. Higher results are better.

In this test we worked with large inputs and a higher number of threads

(one per pattern), therefore besides measuring total execution times we also

measured memory use. Figure 4.5 presents the memory use observed in luaproc

and luashare. The relative standard deviations were up to 5.97%.
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Figure 4.4: Speedups observed when running the FASTA Parser application
with multiple workers and searching for a different number of patterns in a
human genome sequence using luashare and luaproc. Higher results are better.
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Figure 4.5: Memory use observed when running the FASTA Parser application
to search for a different number of patterns in genome sequences using luashare
and luaproc. Lower results are better.

As we can observe, luaproc consistently uses more memory than luashare.

Increasing by 10x the number of patterns in luashare barely increases memory.

Meanwhile, in luaproc it increases memory use by a factor that ranges from

5.5x to 9.5x. In addition, even when working with a small number of patterns,

luashare uses less memory than luaproc. The higher memory use in luaproc
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can be explained by the fact that when it copies the input sequence to send it

to each worker thread. Therefore, since each worker thread searches for a single

pattern, luaproc must copy the input sequence a number of times equal to the

number of patterns. When searching for 500 patterns in the human (large)

genome sequence, this results in around 120GB of used memory.

We can conclude that luashare has better scalability than luaproc when

working with large input data sets that must be shared among multiple threads.

Although we did not exceed the available memory (128GB) in the server with

our benchmark, we were close. Based on what we observed, we can safely

infer that if we had less available memory or a combination of larger input

data sets and more search patterns, we would have run out of memory and

execution times would increase significantly (due to thrashing). Therefore,

more generally, we can conclude that there are cases where copying data around

is simply not an option – the programmer must either share data or change

the parallelization strategy (for instance to use a limited number of worker

threads that search for multiple patterns).

(d) CAPTCHA Filter Benchmark

The CAPTCHA Filter is an application that applies different filters to a

CAPTCHA image to make it easier to process the text contained in the image

with optical character recognition (OCR). It uses a pipeline to apply filters

sequentially to images. In our implementation we apply the following filters,

respectively:

1. grayscale, which converts the image colors to a range of shades of gray,

preparing it for the next filters;

2. binary threshold, which converts the image colors to either black or white

according to the brightness of each pixel, to eliminate noise;

3. Gaussian blur, which clouds the image and makes it appear as if it is

viewed through a translucent screen, to reduce detail;

4. binary threshold, same as above, applied a second time to eliminate more

noise;

5. invert, which converts black to white and white to black, to change

contrast.

Figure 4.6 shows an example of how an input image looks like after passing

each of the filters in our application.
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Original image Grayscale Threshold 1

Invert Threshold 2 Blur

Figure 4.6: Sample results from sequentially applying each of the filters
implemented in the CAPTCHA Filter application.

The parallel implementation of the application creates a worker thread

per filter, as well as an additional worker thread that saves images after they

have been processed, for a total of six worker threads. A master thread reads

input images and send them, sequentially, to the first worker thread. Each

worker applies a filter to the image it receives and sends a modified image to

the next worker.

We work with a very simple image format, the portable pixmap format

(PPM). A PPM file essentially contains a small ASCII header file which is

followed by binary data that defines the color of each pixel in the image. We

chose this format due to its simplicity, which allows images to be manipulated

with simple Lua code, i.e., without external libraries.

In luashare, we used shareable objects to store images. Each image object

had among its values image metadata (such as height, width and type) and

a nested shareable object with the values of the red, green and blue color

components of each pixel in the image. Each worker thread receives an image

as read-write, modifies it and then shares the modified image as read-write

with the next thread.

Figure 4.7 presents the speedups observed in luaproc and luashare. The

maximum relative standard deviation we observed was 9%, although most

standard deviations were below 4%.

As we can observe, luashare was actually slower than the serial version of

the application. Meanwhile, luaproc showed speedups of around 1.5x, peaking

at almost 2x for 32 workers processing 1,000 images. It may appear counter-

intuitive that increasing the number of workers does not increase speedups

significantly. However, in our experience, it is difficult to obtain good speedups

with pipelines, except in very particular cases.

We attribute the slowdown in execution times cause by luashare to

the overhead associated with creating shareable objects to store images and

with sharing these objects among worker threads. Observe that two shareable
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Figure 4.7: Speedups observed when running the CAPTCHA Filter application
with multiple workers and processing a different number of input images using
luashare and luaproc. Higher results are better; results lower than 1 mean
execution times slower than the serial version of the application.

objects must be created for each image and that each image must be shared

at least six times.
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5
Conclusion

In this thesis we have proposed a concurrency communication model for

safe record sharing in dynamic languages. The model defines shareable objects

as the only means to share data among threads and message passing as the

only means to share a shareable object. Each reference to a shareable object

has an associated capability that defines the set of rights a thread has over the

object. The model defines two mutually exclusive capabilities: read-only and

read-write. When an object is shared as read-only, it becomes immutable and

cannot be written anymore. When an object is shared as read-write, references

to the object in the thread that is sharing the object are invalidated. A read-

write shareable object can only be accessed by a single thread at a time; a read-

only shareable object can be accessed simultaneously by multiple threads. In

other words, a shareable object admits either a single valid read-write reference

or multiple valid read-only references.

Concurrency control in our model is implemented entirely during runtime

and does not rely on any type information. When a thread shares a shareable

object with another thread, a new reference to the shareable object is created

and a capability is dynamically assigned to that reference. Each thread has its

own reference and corresponding capability to access a shareable object. Using

dynamically assigned capabilities during runtime to control concurrency is the

key to make the model well-suited for dynamic languages.

The main benefit of our model is that it provides structured communi-

cation, which is a necessary step to make it easier for programmers to write

correct, safe concurrent applications. It prevents unpredictability by taking

away from programmers the burden of synchronizing access to shared data.

It keeps communication localized and explicit, by requiring programmers to

explicitly declare shared data and controlling concurrent access to shared data.

It also provides specific, well-defined constructs for communication, while com-

pelling programmers to use them. Recall that the only means for threads to

communicate is to use message passing and the only means to share data is to

use shareable objects.

Using our model to implement a concurrent application requires reason-
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ing about how information can be structured in terms of shareable objects, as

they are the fundamental building block for communication among threads.

Moreover, it requires considering whether, or rather which, shareable objects

will need write access. Because message passing is the only means to share a

shareable object, and thus for threads to communicate, synchronization in our

model must be performed by matching send and receive operations. Examples

of how a concurrent application can be structured using our model include: a

main thread reads a large data set into a shareable object, shares it as read-

only with other threads and receives the results of data processing back in

shareable objects; a main thread reads a large data set into multiple shareable

objects, shares each object as read-write with other threads and waits until the

threads have finished writing back the results of data processing; or multiple

threads organized as a pipeline where each thread processes a shareable object

and then sends it as read-write to the next thread.

We implemented a prototype of the proposed concurrency model using

Lua. The prototype, which we called luashare, was implemented both inside

and outside the Lua interpreter. As part of our research, we are interested in

studying how the choice between implementing concurrency with a library

or a programming language is made [57]. In luashare, however, there was

not really a choice. We had to modify the Lua interpreter as we needed to

provide concurrency control for data that was only visible from within the

interpreter. In particular, we had to provide concurrency control to the Lua

garbage collector.

Introducing concurrency in an existing language is never as elegant as

designing a language from scratch with concurrency in mind. Nevertheless,

designing a language that provides proper concurrency support and makes

it easier for programmers to write correct concurrent applications is not a

simple task. In our experience, using a library is the preferable approach to

introduce concurrency in an existing language. Consider, as an example, the

luaproc concurrency library for Lua. It is implemented entirely outside the Lua

interpreter and allows for multithreading in Lua.

While implementing luashare we were faced with many problems com-

monly associated with the combination of preemptive multithreading and

shared memory. In particular we had to deal with a number of data races,

a typical concurrency problem. What sets data races apart from typical prob-

lems programmers face when programming is how difficult and time consuming

it is to debug them. Indeed, to make it easier for programmers to write correct

concurrent applications we must get rid of data races. And to do so, we must

eliminate unpredictability.
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We used luashare to evaluate the proposed model from the point of view

of a user. During the evaluation our perception was that, despite the difficulties

to implement luashare, we managed to successfully abstract the common

complexities associated with data sharing from the user. When implementing

applications with luashare, the problems we had to deal with were mostly

inherent to message passing (such as inadvertently sharing incorrect data or not

matching send and receive operations). Moreover, we found that capabilities

were intuitive to use and did not restrict parallelization patterns.

The ability to share data makes communication among threads more

straightforward when using structured data. While in luashare we simply used

shareable objects to hold structured data, in luaproc we had to serialize data

before sending it. Besides, we observed that sometimes copying data around is

simply not an option. When working with large data sets that must be accessed

by multiple threads, it is imperative to be able to share data among threads.

During the evaluation, we observed that allowing multiple threads to access

large input data as read-only was a common pattern.

The biggest limitation we found during the evaluation of luashare was

the performance cost of enforcing concurrency controls in shareable objects.

As we have discussed, deciding where and how to implement such controls is

a complex issue. On the one hand, having stricter control over how objects

are locally manipulated by threads increases access times but allows for faster

sharing. On the other hand, having stricter control over sharing, the approach

that we took, makes sharing slower but access times are lower. Because

the routines used to implement such controls can potentially be executed

many times as objects are accessed and shared, adding or removing a single

operation can have a significant performance impact on overall execution time.

Unfortunately, all controls come at a price. We cannot expect to make correct

concurrent programming easier if we are not ready to pay it.

Another important limitation, which is related to how shareable objects

are controlled, is how nesting works in luashare. Because programmers can

keep references to objects within shareable objects, we must assume they can

use them to store unsupported data types. Therefore, when we share a nested

object, we must check all the object’s values, as well as all the inner objects

values, to ensure they hold only supported data types. This delays sharing

nested objects, which is a concern since using nested objects is a common

technique to store structured data. During the evaluation we clearly saw a

performance impact caused by sharing nested objects.

Observe that the limitations we identified are related to how we imple-

mented luashare. They do not invalidate the proposed communication model
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or suggest the model needs changes in the short-term. In fact, we think the

model should be further researched and the implementation could be improved.

Therefore, in the next section we provide some suggestions for future work.

5.1 Future Work

The first and perhaps more pressing matter that should be analyzed,

regarding the implementation, is how shareable objects are controlled. This

involves evaluating where and how controls should be implemented. One

approach that should be investigated is splitting the control cost between local

object manipulation and object sharing. In this approach, there would be strict

controls for writing values to shareable objects. Therefore, we would be able to

prevent users from storing unsupported data types. This would make writing

values slower, but would make sharing faster, as we would not need to check

the type of every value before sharing.

Improving how shareable objects are controlled also relates to nesting.

As we explained earlier, currently users can keep references to objects within

shareable objects. Because we cannot trust that objects were safely manipu-

lated locally, we must check all of their values before sharing them. One way

to remove the need to check nested objects would be to allow objects to be

created within objects without allowing the user to have inner object refer-

ences. In other words, it would become possible to create shareable objects

that only exist within other objects. Therefore, nested objects could be shared

as a whole, without the need to check every inner object. Observe that splitting

control, as proposed in the previous paragraph, would also improve nesting,

as when sharing an object we would be sure it only contains supported data

types. In this case, since we would have to change capabilities recursively any-

way, we could store a list of inner shareable objects to remove the need to

iterate over all values of the (outer) object looking for them.

Another limitation of the implementation that could be looked into is

the lack of support to share the userdata type. This type represents a raw

block of memory and is used to store arbitrary C data in Lua variables. It is

commonly employed by Lua libraries. For example, a socket in LuaSocket [52]

and a pattern in LPeg [47] are both userdata. Therefore, it would be useful

to evaluate whether it is possible to share userdata among threads by using a

scheme similar to the one we used in luashare implement shareable objects.

Another potential problem with the implementation which we observed

and briefly talked about is blocking during I/O operations. Recall that we use

a barrier to synchronize threads before executing a garbage collection cycle.

Therefore, if a thread blocks executing an I/O operation, all other threads
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will have to wait at the barrier and the entire application will ultimately be

delayed. It would be opportune to look into the possibility of implementing

asynchronous I/O operations in luashare, to prevent blocking threads.

Last, but not least, we consider the proposed communication model high-

level enough that it abstracts data sharing complexities from users, but yet

low-level enough that it lends itself to being used as a building block for

higher-level concurrency abstractions. Although during the evaluation we only

worked with the basic constructs provided by luashare, further research could

go into evaluating if and how the model can be used to build other concurrency

constructs. It would also be interesting to see how well it can be implemented

in dynamic languages other than Lua.
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