
puc.pdf

André Murbach Maidl

Typed Lua: An Optional Type System for Lua

TESE DE DOUTORADO

Thesis presented to the Programa de Pós Graduação em In-
formática of the Departamento de Informática, PUC–Rio as par-
tial fulfillment of the requirements for the degree of Doutor em
Informática

Advisor : Prof. Roberto Ierusalimschy
Co–Advisor: Prof. Fabio Mascarenhas de Queiroz

Rio de Janeiro
April 2015

puc.pdf

André Murbach Maidl

Typed Lua: An Optional Type System for Lua

Thesis presented to the Programa de Pós Graduação em In-
formática, of the Departamento de Informática do Centro
Técnico Cient́ıfico da PUC–Rio, as partial fulfillment of the re-
quirements for the degree of Doutor.

Prof. Roberto Ierusalimschy
Advisor

Departmento de Informática — PUC–Rio

Prof. Fabio Mascarenhas de Queiroz
Co–Advisor

UFRJ

Prof. Ana Lúcia de Moura
Departamento de Informática — PUC-Rio

Prof. Edward Hermann Haeusler
Departamento de Informática — PUC-Rio

Prof. Anamaria Martins Moreira
UFRJ

Prof. Roberto da Silva Bigonha
UFMG

Prof. José Eugênio Leal
Coordinator of the Centro Técnico Cient́ıfico da PUC–Rio

Rio de Janeiro, April 10th, 2015

All rights reserved.

André Murbach Maidl

Aqui vai o meu resume.

Bibliographic data
Maidl, André Murbach

Typed Lua: An Optional Type System for Lua / André
Murbach Maidl; advisor: Roberto Ierusalimschy; co–advisor:
Fabio Mascarenhas de Queiroz. — 2015.

?? f. : il. ; 30 cm

Tese (Doutorado em Informática) - Pontif́ıcia Universi-
dade Católica do Rio de Janeiro, Rio de Janeiro, 2015.

Inclui bibliografia.

1. Informática – Teses. 2. Linguagens de script. 3. Lua.
4. Sistemas de tipos. 5. Sistemas de tipos opcionais. 6.
Tipagem gradual. I. Ierusalimschy, Roberto. II. Queiroz, Fabio
Mascarenhas de. III. Pontif́ıcia Universidade Católica do Rio
de Janeiro. Departmento de Informática. IV. T́ıtulo.

CDD: 004

Acknowledgments

Abstract

Maidl, André Murbach; Ierusalimschy, Roberto; Queiroz, Fabio
Mascarenhas de. Typed Lua: An Optional Type System for
Lua. Rio de Janeiro, 2015. ??p. DSc Thesis — Departmento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Dynamically typed languages such as Lua avoid static types in favor of

simplicity and flexibility, because the absence of static types means that

programmers do not need to bother with abstracting types that should be

validated by a type checker. In contrast, statically typed languages provide

the early detection of many bugs, and a better framework for structuring

large programs. These are two advantages of static typing that may lead

programmers to migrate from a dynamically typed to a statically typed

language, when their simple scripts evolve into complex programs.

Optional type systems allow combining dynamic and static typing in the

same language, without affecting its original semantics, making easier this

code evolution from dynamic to static typing. Designing an optional type

system for a dynamically typed language is challenging, as it should feel

natural to programmers that are already familiar with this language.

In this work we present and formalize the design of Typed Lua, an optional

type system for Lua that introduces novel features to statically type

check some Lua idioms and features. Even though Lua shares several

characteristics with other dynamically typed languages such as JavaScript,

Lua also has several unusual features that are not present in the type system

of these languages. These features include functions with flexible arity,

multiple assignment, functions that are overloaded on the number of return

values, and the incremental evolution of record and object types. We discuss

how Typed Lua handles these features and our design decisions. Finally, we

present the evaluation results that we achieved while using Typed Lua to

type existing Lua code.

Keywords
Scripting languages. Lua. Type systems. Optional type systems.

Gradual typing.

Resumo

Maidl, André Murbach; Ierusalimschy, Roberto; Queiroz, Fabio
Mascarenhas de. Typed Lua: um sistema de tipos opcional
para Lua. Rio de Janeiro, 2015. ??p. Tese de Doutorado —
Departamento de Informática, Pontif́ıcia Universidade Católica do
Rio de Janeiro.

Linguagens dinamicamente tipadas, tais como Lua, não usam tipos estáticos

em favor de simplicidade e flexibilidade, porque a ausência de tipos estáticos

significa que programadores não precisam se preocupar em abstrair tipos que

devem ser validados por um verificador de tipos. Por outro lado, linguagens

estaticamente tipadas ajudam na detecção prévia de diversos bugs e também

ajudam na estruturação de programas grandes. Tais pontos geralmente são

vistos como duas vantagens que levam programadores a migrar de uma

linguagem dinamicamente tipada para uma linguagem estaticamente tipada,

quando os pequenos scripts deles evoluem para programas complexos.

Sistemas de tipos opcionais nos permitem combinar tipagem dinâmica e

estática na mesma linguagem, sem afetar a semântica original da linguagem,

tornando mais fácil a evolução de código tipado dinamicamente para código

tipado estaticamente. Desenvolver um sistema de tipos opcional para uma

linguagem dinamicamente tipada é uma tarefa desafiadora, pois ele deve ser

o mais natural posśıvel para os programadores que já estão familiarizados

com essa linguagem.

Neste trabalho nós apresentamos e formalizamos Typed Lua, um sistema

de tipos opcional para Lua, o qual introduz novas caracteŕısticas para tipar

estaticamente alguns idiomas e caracteŕısticas de Lua. Embora Lua compar-

tilhe várias caracteŕısticas com outras linguagens dinamicamente tipadas,

em particular JavaScript, Lua também possui várias caracteŕısticas não

usuais, as quais não estão presentes nos sistemas de tipos dessas lingua-

gens. Essas caracteŕısticas incluem funções com aridade flex́ıvel, atribuições

múltiplas, funções que são sobrecarregadas no número de valores de retorno

e a evolução incremental de registros e objetos. Nós discutimos como Typed

Lua tipa estaticamente essas caracteŕısticas e também discutimos nossas de-

cisões de projeto. Finalmente, apresentamos uma avaliação de resultados, a

qual obtivemos ao usar Typed Lua para tipar código Lua existente.

Palavras–chave
Linguagens de script. Lua. Sistemas de tipos. Sistemas de tipos

opcionais. Tipagem gradual.

Contents

List of Figures

List of Tables

1
Introduction

Dynamically typed languages such as Lua avoid static types in favor

of simplicity and flexibility, because the absence of static types means that

programmers do not need to bother with abstracting types that should be

validated by a type checker. Instead, dynamically typed languages use run-

time type tags to classify the values they compute, so their implementation

can use these tags to perform run-time (or dynamic) type checking [?].

This simplicity and flexibility allows programmers to write code that

might require a complex type system to statically type check, though it may

also hide bugs that will be caught only after deployment if programmers do not

properly test their code. In contrast, static type checking helps programmers

detect many bugs during the development phase. Static types also provide a

conceptual framework that helps programmers define modules and interfaces

that can be combined to structure the development of programs.

Thus, early error detection and better program structure are two advan-

tages of static type checking that can lead programmers to migrate their code

from a dynamically typed to a statically typed language, when their simple

scripts evolve into complex programs [?]. Dynamically typed languages cer-

tainly help programmers during the beginning of a project, because their sim-

plicity and flexibility allows quick development and makes it easier to change

code according to changing requirements. However, programmers tend to mi-

grate from dynamically typed to statically typed code as soon as the project

has consolidated its requirements, because the robustness of static types helps

programmers link requirements to abstractions. This migration usually involves

different languages that have different syntaxes and semantics, which usually

requires a complete rewrite of existing programs instead of incremental evolu-

tion from dynamic to static types.

Ideally, programming languages should offer programmers the option

to choose between static and dynamic typing: optional type systems [?]

and gradual typing [?] are two similar approaches for blending static and

dynamic typing in the same language. The aim of both approaches is to

offer programmers the option to use type annotations where static typing is

Chapter 1. Introduction 11

needed, allowing the incremental migration from dynamic to static typing.

The difference between these two approaches is the way they treat run-time

semantics. While optional type systems do not affect run-time semantics,

gradual typing uses run-time checks to ensure that dynamically typed code

does not violate the invariants of statically typed code.

Programmers and researchers sometimes use the term gradual typing

to mean the incremental evolution of dynamically typed code into statically

typed code. For this reason, gradual typing may also refer to optional type

systems and other approaches that blend static and dynamic typing to help

programmers incrementally migrate from dynamic to static typing without

having to switch to a different language, though all these approaches differ

in the way they handle static and dynamic typing together. We use the term

gradual typing to refer to the work of Siek and Taha [?].

In this work we present the design and evaluation of Typed Lua: an

optional type system for Lua that is rich enough to preserve some of the Lua

idioms that programmers are already familiar with, but that also includes new

constructs that help programmers structure Lua programs.

Lua is a small imperative language with first-class functions (with proper

lexical scoping) where the only data structure mechanism is the table – an

associative array that can represent arrays, records, maps, modules, objects,

etc. Tables also have syntactic sugar and metaprogramming support through

operator overloading built into the language. Unlike other scripting languages,

Lua has very limited coercion among different data types.

Lua prefers to provide mechanisms instead of fixed policies due to its

primary use as an embedded language for configuration and extension of other

applications. This means that even features such as a module system and object

orientation are a matter of convention instead of default language constructs.

The result is a fragmented ecosystem of libraries, and different ideas among

Lua programmers on how they should use the language features, or how they

should structure programs.

The lack of standard policies is a challenge for the design of an optional

type system for Lua. For this reason, we are not relying entirely on the

semantics of the language to design our type system. We also run a mostly

automated survey of Lua idioms used in a large corpus of Lua libraries, which

also has helped in the design of Typed Lua.

So far, Typed Lua is a Lua extension that allows statically typed

code to coexist and interact with dynamically typed code through optional

type annotations. In addition, it adds default constructs that programmers

can use to better structure Lua programs. The Typed Lua compiler warns

Chapter 1. Introduction 12

programmers about type errors, but always generates Lua code that runs in

unmodified Lua implementations. Programmers can enjoy some of the benefits

of static types even without converting existing Lua modules to Typed Lua –

they can export a statically typed interface to a dynamically typed module,

and statically typed users of the module can use the Typed Lua compiler to

check their use of the module. Thus, implementing an optional type system

for Lua offers Lua programmers one way to obtain most of the advantages of

static typing without compromising the simplicity and flexibility of dynamic

typing. We have an implementation of the Typed Lua compiler that is available

online1.

Typed Lua’s intended use is as an application language, and we believe

that policies for organizing a program in modules and writing object-oriented

programs should be part of the language and checked by its optional type

system. An application language is a programming language that helps pro-

grammers develop applications from scratch until these applications evolve

into complex systems rather than just scripts. We will show that Typed Lua

introduces the refinement of tables to support the common idioms that Lua

programmers use to encode both modules and objects.

We also believe that Typed Lua helps programmers give more formal

documentation to already existing Lua code, as static types are also a useful

source of documentation in languages that provide type annotations, because

type annotations are always validated by the type checker and therefore never

get outdated. Thus, programmers can use Typed Lua to define axioms about

the interfaces and types of dynamically typed modules. We enforce this point

by using Typed Lua to statically type the interface of the Lua standard library

and other commonly used Lua libraries, so our compiler can check Typed Lua

code that uses these libraries.

Typed Lua performs a very limited form of local type inference [?], as

static typing does not necessarily mean that programmers need to insert type

annotations in the code. Several statically typed languages such as Haskell

provide some amount of type inference that automatically deduces the types of

expressions. Still, Typed Lua only requires a small amount of type annotations

due to the nature of its optional type system.

Typed Lua does not deal with code optimization, although another

important advantage of static types is that they help the compiler perform

optimizations and generate more efficient code. However, we believe that the

formalization of our optional type system is precise enough to aid optimization

in some Lua implementations.

1https://github.com/andremm/typedlua

Chapter 1. Introduction 13

We use some of the ideas of gradual typing to formalize Typed Lua. Even

though Typed Lua is an optional type system and thus does not include run-

time checks between dynamic and static regions of the code, we believe that

using the foundations of gradual typing to formalize our optional type system

will allow us to include run-time checks in the future.

Finally, we believe that designing an optional type system for Lua may

shed some light on optional type systems for scripting languages in general, as

Lua is a small scripting language that shares some features with other scripting

languages such as JavaScript.

This work is split into seven chapters. In Chapter ?? we review the

literature about blending static and dynamic typing in the same language,

we discuss the differences between optional type systems and gradual typing,

and we also present the results of our survey on Lua idioms. In Chapter ??

we use code examples to present the design of Typed Lua. In Chapter ?? we

present our type system. In Chapter ?? we discuss the evaluation results that

we obtained while using Typed Lua to type existing Lua code. In Chapter ??

we present some related work. In Chapter ?? we outline our contributions.

2
Blending static and dynamic typing

We begin this chapter presenting a little bit of the history behind

combining static and dynamic typing in the same language. Then, we introduce

optional type systems and gradual typing. After that, we discuss why optional

type systems and two other approaches are often called gradual typing. We end

this chapter presenting some statistics about the usage of some Lua features

and idioms that helped us identify how we should combine static and dynamic

typing in Lua.

2.1 A little bit of history

Common LISP [?] introduced optional type annotations in the early

eighties, but not for static type checking. Instead, programmers could choose to

declare types of variables as optimization hints to the compiler, that is, type

declarations are just one way to help the compiler to optimize code. These

annotations are unsafe because they can crash the program when they are

wrong.

Abadi et al. [?] extended the simply typed lambda calculus with the

Dynamic type and the dynamic and typecase constructs, with the aim to

safely integrate dynamic code in statically typed languages. The Dynamic type

is a pair (v,T) where v is a value and T is the tag that represents the type of

v. The constructs dynamic and typecase are explicit injection and projection

operations, respectively. That is, dynamic builds values of type Dynamic and

typecase safely inspects the type of a Dynamic value. Thus, migrating code

between dynamic and static type checking requires changing type annotations

and adding or removing dynamic and typecase constructs throughout the

code.

The quasi-static type system proposed by Thatte [?] performs implicit

coercions and run-time checks to replace the dynamic and typecase constructs

that were proposed by Abadi et al. [?]. To do that, quasi-static typing relies

on subtyping with a top type Ω that represents the dynamic type, and splits

type checking into two phases. The first phase inserts implicit coercions from

Chapter 2. Blending static and dynamic typing 15

the dynamic type to the expected type, while the second phase performs what

Thatte calls plausibility checking, that is, it rewrites the program to guarantee

that sequences of upcasts and downcasts always have a common subtype.

Soft typing [?] is another approach to combine static and dynamic typing

in the same language. The main goal of soft typing is to add static type checking

to dynamically typed languages without compromising their flexibility. To do

that, soft typing relies on type inference for translating dynamically typed

code to statically typed code. The type checker inserts run-time checks around

inconsistent code and warns the programmer about the insertion of these run-

time checks, as they indicate the existence of potential type errors. However,

the programmer is free to choose between inspecting the run-time checks or

simply running the code. This means that type inference and static type

checking do not prevent the programmer from running inconsistent code. One

advantage of soft typing is the fact that the compiler for softly typed languages

can use the translated code to generate more efficient code, as the translated

code statically type checks. One disadvantage of soft typing is that it can be

cumbersome when the inferred types are meaningless large types that just

confuse the programmer.

Dynamic typing [?] is an approach that optimizes code from dynamically

typed languages by eliminating unnecessary checks of tags. Henglein describes

how to translate dynamically typed code into statically typed code that

uses a Dynamic type. The translation is done through a coercion calculus

that uses type inference to insert the operations that are necessary to type

check the Dynamic type during run-time. Although soft typing and dynamic

typing may seem similar, they are not. Soft typing targets statically type

checking of dynamically typed languages for detecting programming errors,

while dynamic typing targets the optimization of dynamically typed code

through the elimination of unnecessary run-time checks. In other words, soft

typing sees code optimization as a side effect that comes with static type

checking.

Findler and Felleisen [?] proposed contracts for higher-order functions

and blame annotations for run-time checks. Contracts perform dynamic type

checking instead of static type checking, but deferring all verifications to run-

time can lead to defects that are difficult to fix, because run-time errors can

show a stack trace where it is not clear to programmers if the cause of a certain

run-time error is in application code or library code. Even if programmers

identify that the source of a certain run-time error is in library code, they still

may have problems to identify if this run-time error is due to a violation of

library’s contract or due to a bug, when the library is poorly documented. In

Chapter 2. Blending static and dynamic typing 16

this approach, programmers can insert assertions in the form of contracts that

check the input and output of higher-order functions; and the compiler adds

blame annotations in the generated code to track assertion failures back to the

source of the error.

BabyJ [?] is an object-oriented language without inheritance that allows

programmers to incrementally annotate the code with more specific types.

Programmers can choose between using the dynamically typed version of

BabyJ when they do not need types at all, and the statically typed version

of BabyJ when they need to annotate the code. In statically typed BabyJ,

programmers can use the permissive type ∗ to annotate the parts of the code

that still do not have a specific type or the parts of the code that should have

dynamic behavior. The type system of BabyJ is nominal, so types are either

class names or the permissive type ∗. However, the type system does not use

type equality or subtyping, but the relation ≈ between two types. The relation

≈ holds when both types have the same name or any of them is the permissive

type ∗. Even though the permissive type ∗ is similar to the dynamic type

from previous approaches, BabyJ does not provide any way to add implicit or

explicit run-time checks.

Ou et al. [?] specified a language that combines static types with

dependent types. To ensure safety, the compiler automatically inserts coercions

between dependent code and static code. The coercions are run-time checks

that ensure static code does not crash dependent code during run-time.

2.2 Optional Type Systems

Optional type systems [?] are an approach for plugging static typing in

dynamically typed languages. They use optional type annotations to perform

compile-time type checking, though they do not affect the original run-time

semantics of the language. This means that the run-time semantics should

still catch type errors independently of the static type checking. For instance,

we can view the typed lambda calculus as an optional type system for the

untyped lambda calculus, because both have the same semantic rules and

the type system serves only for discarding programs that may have undesired

behaviors [?].

Strongtalk [?, ?] is a version of Smalltalk that comes with an optional

type system. It has a polymorphic type system that programmers can use

to annotate Smalltalk code or leave type annotations out. Strongtalk assigns

a dynamic type to unannotated expressions and allows programmers to cast

unannotated expressions to any static type. This means that the interaction of

the dynamic type with the rest of the type system is unsound, so Strongtalk

Chapter 2. Blending static and dynamic typing 17

uses the original run-time semantics of Smalltalk when executing programs,

even if programs are statically typed.

Pluggable type systems [?] generalize the idea of optional type systems

that Strongtalk put in practice. The idea is to have different optional type

systems that can be layered on top of a dynamically typed language without

affecting its original run-time semantics. Although these systems can be

unsound in their interaction with the dynamically typed part of the language

or even by design, their unsoundness does not affect run-time safety, as the

language run-time semantics still catches any run-time errors caused by an

unsound type system.

Dart [?] and TypeScript [?] are new languages that are designed with

an optional type system. Both use JavaScript as their code generation target

because their main purpose is Web development. In fact, Dart is a new class-

based object-oriented language with optional type annotations and semantics

that resembles the semantics of Smalltalk, while TypeScript is a strict superset

of JavaScript that provides optional type annotations and class-based object-

oriented programming. Dart has a nominal type system, while TypeScript

has a structural one, but both are unsound by design. For instance, Dart has

covariant arrays, while TypeScript has covariant parameter types in function

signatures, besides the interaction between statically and dynamically typed

code that is also unsound.

There is no common formalization for optional type systems, and each

language ends up implementing its optional type system in its own way.

Strongtalk, Dart, and TypeScript provide an informal description of their

optional type systems rather than a formal one. In the next section we will show

that we can use some features of gradual typing [?, ?] to formalize optional

type systems.

2.3 Gradual Typing

The main goal of gradual typing [?] is to allow programmers to choose

between static and dynamic typing in the same language. To do that, Siek

and Taha [?] extended the simply typed lambda calculus with the dynamic

type ?, as we can see in Figure ??. In gradual typing, type annotations are

optional, and an untyped variable is syntactic sugar for a variable whose

declared type is the dynamic type ?, that is, λx.e is equivalent to λx:?.e.

Under these circumstances, we can view gradual typing as a way to add a

dynamic type to statically typed languages.

The central idea of gradual typing is the consistency relation, written

T1 ∼ T2. The consistency relation allows implicit conversions to and from

Chapter 2. Blending static and dynamic typing 18

T ::= types:
number base type number
| string base type string
| ? dynamic type
| T → T function types

e ::= expressions:
l literals
| x variables
| λx:T.e abstractions
| e1e2 application

Figure 2.1: Syntax of the gradually-typed lambda calculus

the dynamic type, and disallows conversions between inconsistent types [?].

For instance, number ∼ ?, ? ∼ number, string ∼ ?, and ? ∼ string, but

number 6∼ string, and string 6∼ number. The consistency relation is both

reflexive and symmetric, but it is not transitive.

T ∼ T (C-REFL) T ∼ ? (C-DYNR) ? ∼ T (C-DYNL)

T3 ∼ T1 T2 ∼ T4
T1 → T2 ∼ T3 → T4

(C-FUNC)

Figure 2.2: The consistency relation

Figure ?? defines the consistency relation. The rule C-REFL is the re-

flexive rule. Rules C-DYNR and C-DYNL are the rules that allow conversions

to and from the dynamic type ?. The rule C-FUNC resembles subtyping be-

tween function types, because it is contravariant on the argument type and

covariant on the return type.

Figure ?? uses the consistency relation in the typing rules of the gradual

type system of the simply typed lambda calculus extended with the dynamic

type ?. The environment Γ is a function from variables to types, and the

directive type is a function from literal values to types. The rule T-VAR uses

the environment function Γ to get the type of a variable x. The rule T-LIT

uses the directive type to get the type of a literal l. The rule T-ABS evaluates

the expression e with an environment Γ that binds the variable x to the type

T1, and the resulting type is the the function type T1 → T2. The rule T-APP1

handles function calls where the type of a function is dynamically typed; in

this case, the argument type may have any type and the resulting type has

the dynamic type. The rule T-APP2 handles function calls where the type

Chapter 2. Blending static and dynamic typing 19

of a function is statically typed; in this case, the argument type should be

consistent with the argument type of the function’s signature.

Γ(x) = T

Γ ` x : T
(T-VAR)

type(l) = T

Γ ` l : T
(T-LIT)

Γ[x 7→ T1] ` e : T2
Γ ` λx : T1.e : T1 → T2

(T-ABS)
Γ ` e1 : ? Γ ` e2 : T

Γ ` e1e2 : ?
(T-APP1)

Γ ` e1 : T1 → T2 Γ ` e2 : T3 T3 ∼ T1
Γ ` e1e2 : T2

(T-APP2)

Figure 2.3: Gradual type system gradually-typed lambda calculus

Gradual typing [?] is similar to two previous approaches [?, ?], because

they also include a dynamic type in a statically typed language. However,

these three approaches differ in the way they handle the dynamic type. While

Siek and Taha [?] rely on the consistency relation, Abadi et al. [?] rely on

type equality with explicit projections plus injections, and Thatte [?] relies on

subtyping.

The subtyping relation <: is actually a pitfall on Thatte’s quasi-static

typing, because it sets the dynamic type as the top and the bottom of the

subtying relation: T <: ? and ? <: T . Subtyping is transitive, so we know that

number <: ? ? <: string

number <: string

Therefore, downcasts combined with the transitivity of subtyping accepts

programs that should be rejected.

Later, Siek and Taha [?] reported that the consistency relation is or-

thogonal to the subtyping relation, so we can combine them to achieve the

consistent-subtyping relation, written T1 . T2. This relation is essential for

designing gradual type systems for object-oriented languages. Like the con-

sistency relation, and unlike the subtyping relation, the consistent-subtyping

relation is not transitive. Therefore, number . ?, ? . number, string . ?,

and ? . string, but number 6. string, and string 6. number.

Now, we will show how we can combine consistency and subtyping to

compose a consistent-subtyping relation for the simply typed lambda calculus

extended with the dynamic type ?.

Figure ?? presents the subtyping relation for the simply typed lambda

calculus extended with the dynamic type ?. Even though we could have used

Chapter 2. Blending static and dynamic typing 20

number <: number (S-NUM) string <: string (S-STR)

? <: ? (S-ANY)
T3 <: T1 T2 <: T4
T1 → T2 <: T3 → T4

(S-FUN)

Figure 2.4: The subtyping relation

the reflexive rule T <: T to express the rules S-NUM, S-STR, and S-ANY,

we did not combine them into a single rule to make explicit the neutrality

of the dynamic type ? to the subtyping rules. The dynamic type ? must be

neutral to subtyping to avoid the pitfall from Thatte’s quasi-static typing.

The rule S-FUN defines the subtyping relation for function types, which are

contravariant on the argument type and covariant on the return type.

number . number (C-NUM) string . string (C-STR)

T . ? (C-ANY1) ? . T (C-ANY2)

T3 . T1 T2 . T4
T1 → T2 . T3 → T4

(C-FUN)

Figure 2.5: The consistent-subtyping relation

Figure ?? combines the consistency and subtyping relations to compose

the consistent-subtyping relation for the simply typed lambda calculus ex-

tended with the dynamic type ?. When we combine consistency and subtyping,

we are making subtyping handle which casts are safe among static types, and

we are making consistency handle the casts that involve the dynamic type ?.

The consistent-subtyping relation is not transitive, and thus the dynamic type

? is not neutral to this relation.

So far, gradual typing looks like a mere formalization to optional type

systems, as a gradual type system uses the consistency or consistent-subtyping

relation to statically check the interaction between statically and dynamically

typed code, without affecting the run-time semantics.

However, another important feature of gradual typing is the theoretic

foundation that it provides for inserting run-time checks that prove dynami-

cally typed code does not violate the invariants of statically typed code, thus

preserving type safety. To do that, Siek and Taha [?, ?] defined the run-time

semantics of gradual typing as a translation to an intermediate language with

explicit casts at the frontiers between statically and dynamically typed code.

Chapter 2. Blending static and dynamic typing 21

The semantics of these casts is based on the higher-order contracts proposed

by Findler and Felleisen [?].

Herman et al. [?] showed that there is an efficiency concern regarding the

run-time checks, because there are two ways that casts can lead to unbounded

space consumption. The first affects tail recursion while the second appears

when first-class functions or objects cross the border between static code and

dynamic code, that is, some programs can apply repeated casts to the same

function or object. Herman et al. [?] use the coercion calculus outlined by

Henglein [?] to express casts as coercions and solve the problem of space

efficiency. Their approach normalizes an arbitrary sequence of coercions to

a coercion of bounded size.

Another concern about casts is how to improve debugging support,

because a cast application can be delayed and the error related to that cast

application can appear considerable distance from the real error. Wadler and

Findler [?] developed blame calculus as a way to handle this issue, and Ahmed

et al. [?] extended blame calculus with polymorphism. Blame calculus is an

intermediate language to integrate static and dynamic typing along with the

blame tracking approach proposed by Findler and Felleisen [?].

On the one hand, blame calculus solves the issue regarding error report-

ing; on the other hand, it has the space efficiency problem reported by Herman

et al. [?]. Thus, Siek et al. [?] extended the coercion calculus outlined by Her-

man et al. [?] with blame tracking to achieve an implementation of the blame

calculus that is space efficient. After that, Siek and Wadler [?] proposed a

new solution that also handles both problems. This new solution is based on

a concept called threesome, which is a way to split a cast between two parties

into two casts among three parties. A cast has a source and a target type

(a twosome), so we can split any cast into a downcast from the source to an

intermediate type that is followed by an upcast from the intermediate type to

the target type (a threesome).

There are some projects that incorporate gradual typing into some

programming languages. Reticulated Python [?, ?] is a research project that

evaluates the costs of gradual typing in Python. Gradualtalk [?] is a gradually-

typed Smalltalk that introduces a new cast insertion strategy for gradually-

typed objects [?]. Grace [?, ?] is a new object-oriented, gradually-typed,

educational language. In Grace, modules are gradually-typed objects, that is,

modules may have types with methods as attributes, and they can also have a

state [?]. ActionScript [?] is one the first languages that incorporated gradual

typing to its implementation and Perl 6 [?] is also being designed with gradual

typing, though there is few documentation about the gradual type systems of

Chapter 2. Blending static and dynamic typing 22

these languages.

2.4 Approaches that are often called Gradual Typ-
ing

Gradual typing is similar to optional type systems in that type anno-

tations are optional, and unannotated code is dynamically typed, but unlike

optional type systems, gradual typing changes the run-time semantics to pre-

serve type safety. More precisely, programming languages that include a grad-

ual type system can implement the semantics of statically typed languages,

so the gradual type system inserts casts in the translated code to guarantee

that types are consistent before execution, while programming languages that

include an optional type system still need implement the semantics of dynam-

ically typed languages, so all the type checking also belongs to the semantics

of each operation.

Still, we can view gradual typing as a way to formalize an optional type

system when the gradual type system does not insert run-time checks. BabyJ

[?] and Alore [?] are two examples of object-oriented languages that have

an optional type system with a formalization that relates to gradual typing,

though the optional type systems of both BabyJ and Alore are nominal. BabyJ

uses the relation ≈ that is similar to the consistency relation while Alore

combines subtyping along with the consistency relation to define a consistent-

or-subtype relation. The consistent-or-subtype relation is different from the

consistent-subtyping relation of Siek and Taha [?], but it is also written

T1 . T2. The consistent-or-subtype relation holds when T1 ∼ T2 or T1 <: T2,

where <: is transitive and ∼ is not. Alore also extends its optional type system

to include optional monitoring of run-time type errors in the gradual typing

style.

Hence, optional type annotations for software evolution are likely the

reason why optional type systems are commonly called gradual type systems.

Typed Clojure [?] is an optional type system for Clojure that is now adopting

the gradual typing slogan.

Flanagan [?] introduced hybrid type checking, an approach that combines

static types and refinement types. For instance, programmers can specify the

refinement type {x : Int | x ≥ 0} when they need a type for natural numbers.

The programmer can also choose between explicit or implicit casts. When casts

are not explicit, the type checker uses a theorem prover to insert casts. In our

example of natural numbers, a cast would be inserted to check whether an

integer is greater than or equal to zero.

Chapter 2. Blending static and dynamic typing 23

Sage [?] is a programming language that extends hybrid type checking

with a dynamic type to support dynamic and static typing in the same

language. Sage also offers optional type annotations in the gradual typing

style, that is, unannotated code is syntactic sugar for code whose declared

type is the dynamic type.

Thus, the inclusion of a dynamic type in hybrid type checking along with

optional type annotations, and the insertion of run-time checks are likely the

reason why hybrid type checking is also viewed as a form of gradual typing.

Tobin-Hochstadt and Felleisen [?] proposed another approach for grad-

ually migrating from dynamically typed to statically typed code, and they

coined the term from scripts to programs for referring to this kind of interlan-

guage migration. In their approach, the migration from dynamically typed to

statically typed code happens module-by-module, so they designed and imple-

mented Typed Racket [?] for this purpose. Typed Racket is a statically typed

version of Racket (a Scheme dialect) that allows the programmer to write typed

modules, so Typed Racket modules can coexist with Racket modules, which

are untyped.

The approach used by Tobin-Hochstadt and Felleisen [?] to design and

implement Typed Racket is probably also called gradual typing because it

allows the programmer to gradually migrate from untyped scripts to typed

programs. However, Typed Racket is a statically typed language, and what

makes it gradual is a type system with a dynamic type that handles the

interaction between Racket and Typed Racket modules.

Recently, Siek et al. [?] described a formal criteria on what is gradual

typing: the gradual guarantee. Besides allowing static and dynamic typing in

the same code along with type soundness, the gradual guarantee states that

removing type annotations from a gradually typed program that is well typed

must continue well typed. The other direction must be also valid, that is,

adding correct type annotations to a gradually typed program that is well

typed must continue well typed. In other words, the gradual guarantee states

that any changes to the annotations does not change the static or the dynamic

behavior of a program [?]. The authors prove the gradual guarantee and discuss

whether some previous projects match this criteria.

2.5 Statistics about the usage of Lua

In this section we present statistics about the usage of Lua features and

idioms. We collected statistics about how programmers use tables, functions,

dynamic type checking, object-oriented programming, and modules. We shall

Chapter 2. Blending static and dynamic typing 24

see that these statistics informed important design decisions on our optional

type system.

We used the LuaRocks repository to build our statistics database;

LuaRocks [?] is a package manager for Lua modules. We downloaded the 3928

.lua files that were available in the LuaRocks repository at February 1st 2014.

However, we ignored files that were not compatible with Lua 5.2, the latest

version of Lua at that time. We also ignored machine-generated files and test

files, because these files may not represent idiomatic Lua code, and might skew

our statistics towards non-typical uses of Lua. This left 2598 .lua files from

262 different projects for our statistics database; we parsed these files and

processed their abstract syntax tree to gather the statistics that we show in

this section.

To verify how programmers use tables, we measured how they initial-

ize, index, and iterate tables. We present these statistics in the next three

paragraphs to discuss their influence on our type system.

The table constructor appears 23185 times. In 36% of the occurrences

it is a constructor that initializes a record (e.g., { x = 120, y = 121 }); in

29% of the occurrences it is a constructor that initializes a list (e.g., { "one",

"two", "three", "four" }); in 8% of the occurrences it is a constructor

that initializes a record with a list part; and in less than 1% of the occurrences

(4 times) it is a constructor that uses only the booleans true and false as

indexes. At all, in 73% of the occurrences it is a constructor that uses only

literal keys; in 26% of the occurrences it is the empty constructor; in 1% of the

occurrences it is a constructor with non-literal keys only, that is, a constructor

that uses variables and function calls to create the indexes of a table; and in

less than 1% of the occurrences (19 times) it is a constructor that mixes literal

keys and non-literal keys.

The indexing of tables appears 130448 times: 86% of them are for reading

a table field while 14% of them are for writing into a table field. We can classify

the indexing operations that are reads as follows: 89% of the reads use a literal

string key, 4% of the reads use a literal number key, and less than 1% of the

reads (10 times) use a literal boolean key. At all, 93% of the reads use literals to

index a table while 7% of the reads use non-literal expressions to index a table.

It is worth mentioning that 45% of the reads are actually function calls. More

precisely, 25% of the reads use literals to call a function, 20% of the reads use

literals to call a method, that is, a function call that uses the colon syntactic

sugar, and less than 1% of the reads (195 times) use non-literal expressions to

call a function. We can also classify the indexing operations that are writes as

follows: 69% of the writes use a literal string key, 2% of the writes use a literal

Chapter 2. Blending static and dynamic typing 25

number key, and less than 1% of the writes (1 time) uses a literal boolean key.

At all, 71% of the writes use literals to index a table while 29% of the writes

use non-literal expressions to index a table.

We also measured how many files have code that iterates over tables to

observe how frequently iteration is used. We observed that 23% of the files have

code that iterates over keys of any value, that is, the call to pairs appears

at least once in these files (the median is twice per file); 21% of the files have

code that iterates over integer keys, that is, the call to ipairs appears at least

once in these files (the median is also twice per file); and 10% of the files have

code that use the numeric for along with the length operator (the median is

once per file).

The numbers about table initialization, indexing, and iteration show us

that tables are mostly used to represent records, lists, and associative arrays.

Therefore, Typed Lua should include a table type for handling these uses of Lua

tables. Even though the statistics show that programmers initialize tables more

often than they use the empty constructor to dynamically initialize tables, the

statistics of the empty constructor are still expressive and indicate that Typed

Lua should also include a way to handle this style of defining table types.

We found a total of 24858 function declarations in our database (the

median is six per file). Next, we discuss how frequently programmers use

dynamic type checking and multiple return values inside these functions.

We observed that 9% of the functions perform dynamic type checking

on their input parameters, that is, these functions use type to inspect the

tags of Lua values (the median is once per function). We randomly selected 20

functions to sample how programmers are using type, and we got the following

data: 50% of these functions use type for asserting the tags of their input

parameters, that is, they raise an error when the tag of a certain parameter

does not match the expected tag, and 50% of these functions use type for

overloading, that is, they execute different code according to the inspected

tag.

These numbers show us that Typed Lua should include union types,

because the use of the type idiom shows that disjoint unions would help pro-

grammers define data structures that can hold a value of several different, but

fixed types. Typed Lua should also use type as a mechanism for decomposing

unions, though it may be restricted to base types only.

We observed that 10% of the functions explicitly return multiple values.

We also observed that 5% of the functions return nil plus something else, for

signaling an unexpected behavior; and 1% of the functions return false plus

something else, also for signaling an unexpected behavior.

Chapter 2. Blending static and dynamic typing 26

Typed Lua should include function types to represent Lua functions, and

tuple types to represent the signatures of Lua functions, multiple return values,

and multiple assignments. Tuple types require some special attention, because

Typed Lua should be able to adjust tuple types during compile-time, in a

similar way to what Lua does with function calls and multiple assignments

during run-time. In addition, the number of functions that return nil and

false plus something else show us that overloading on the return type is also

useful to the type system.

We also measured how frequently programmers use the object-oriented

paradigm in Lua. We observed that 23% of the function declarations are

actually method declarations. More precisely, 14% of them use the colon

syntactic sugar while 9% of them use self as their first parameter. We also

observed that 63% of the projects extend tables with metatables, that is, they

call setmetatable at least once, and 27% of the projects access the metatable

of a given table, that is, they call getmetatable at least once. In fact, 45%

of the projects extend tables with metatables and declare methods: 13% using

the colon syntactic sugar, 14% using self, and 18% using both.

Based on these observations, Typed Lua should include support to object-

oriented programming. Even though Lua does not have standard policies for

object-oriented programming, it provides mechanisms that allow programmers

to abstract their code in terms of objects, and our statistics confirm that an

expressive number of programmers are relying on these mechanisms to use the

object-oriented paradigm in Lua. Typed Lua should include some standard

way of defining interfaces and classes that the compiler can use to type check

object-oriented code, but without changing the semantics of Lua.

We also measured how programmers are defining modules. We observed

that 38% of the files use the current way of defining modules, that is, these files

return a table that contains the exported members of the module at the end of

the file; 22% of the files still use the deprecated way of defining modules, that

is, these files call the function module; and 1% of the files use both ways. At

all, 61% of the files are modules while 39% of the files are plain scripts. The

number of plain scripts is high considering the origin of our database. However,

we did not ignore sample scripts, which usually serve to help the users of a

given module on how to use this module, and that is the reason why we have

a high number of plain scripts.

Based on these observations, Typed Lua should include a way for defining

table types that represent the type of modules. Typed Lua should also support

the deprecated style of module definition, using global names as exported

members of the module.

Chapter 2. Blending static and dynamic typing 27

Typed Lua should also include some way to define the types of userdata.

This feature should also allow programmers to define userdata that can be used

in an object-oriented style, as this is another common idiom from modules that

are written in C.

The last statistics that we collected were about variadic functions and

vararg expressions. We observed that 8% of the functions are variadic, that is,

their last parameter is the vararg expression. We also observed that 5% of the

initialization of lists (or 2% of the occurrences of the table constructor) use

solely the vararg expression. Typed Lua should include a vararg type to handle

variadic functions and vararg expressions.

We end this chapter presenting a summary of the statistics that we just

presented:

– table constructor

– only use literal keys: 73%

– empty: 26%

– only use non-literal keys: 1%

– table indexing

– reads: 86%

∗ use literals: 93%
∗ use non-literals: 7%

– writes: 14%

∗ use literals: 71%
∗ use non-literals: 29%

– iteration over tables

– files that call pairs: 23%

– files that call ipairs: 21%

– files that use the numeric for along with the length operator: 10%

– function declarations

– perform dynamic type checking in their input parameters: 9%

∗ asserting input parameters: 50%
∗ overloading input parameters: 50%

– return multiple values: 10%

∗ return nil plus something else: 50%
∗ return false plus something else: 10%
∗ return other multiple values: 40%

Chapter 2. Blending static and dynamic typing 28

– are method declarations: 23%

– are variadic: 8%

– object-oriented programming

– projects that extend metatables and declare methods: 45%

– modules

– files that define modules: 61%

– files that are plain scripts: 39%

3
Typed Lua

Typed Lua is an optional type system for Lua, and its main goal is

to provide static type checking for Lua. To do that, Typed Lua extends the

syntax of Lua 5.3 to introduce optional type annotations, and performs local

type inference [?] to detect more precise types for unannotated expressions.

Even though the compiler warns the programmer about type errors, it always

removes the type annotations to generate Lua code that runs in unmodified

Lua implementations.

Another goal of Typed Lua is to be backwards compatible with Lua. This

means that any Lua code is valid Typed Lua code. To be backwards compatible

with Lua, the syntactic extensions introduced by Typed Lua do not include

new reserved words. Appendix ?? presents the complete syntax of Typed Lua

in extended BNF.

We use the consistent-subtyping relation of gradual typing [?, ?] to

formalize Typed Lua, though it does not insert run-time checks in the gradual

typing style. In gradual typing, run-time checks inspect the interaction between

dynamically typed and statically typed code to guarantee that dynamically

typed code does not violate statically typed code during run-time. We did

not insert run-time checks at this moment because they can decrease run-time

performance [?]. We believe that a careful evaluation of run-time checks should

be done before inserting them in the type system. However, this evaluation is

out of scope of this work.

Unlike Dart [?] and TypeScript [?], we are designing Typed Lua aiming

soundness to make it possible to switch Typed Lua from optional typing to

gradual typing in the future. A sound type system is a prerequisite to insert

run-time checks after static type checking, because a sound type system ensures

that statically typed code will not throw type errors during run-time.

In this chapter we use some examples of Typed Lua code to show how

they relate to Lua. These examples give an informal overview of our optional

type system. In the next chapter we will use typing rules to present the

formalization of the most interesting features of our optional type system. All

the examples that we present in this chapter run in our Typed Lua compiler.

Chapter 3. Typed Lua 30

3.1 Optional type annotations

Lua values can have one of eight tags: nil, boolean, number, string,

function, table, userdata, and thread. Typed Lua includes types for the first

six. Typed Lua also includes a syntactical extension that programmers can use

to define the types of userdata. We use this syntactical extension to define the

type thread. In this section we present the Typed Lua types that may appear

on annotations. We explain all Typed Lua types and syntactical extensions in

this chapter.

Types

type ::= primarytype [‘?’]

primarytype ::= literaltype | basetype | nil | value | any | self | Name

| functiontype | tabletype | primarytype ‘|’ primarytype

literaltype ::= false | true | Int | Float | String

basetype ::= boolean | integer | number | string

functiontype ::= tupletype ‘->’ rettype

tupletype ::= ‘(’ [typelist] ‘)’

typelist ::= type {‘,’ type} [‘*’]

rettype ::= type | uniontuple [‘?’]

uniontuple ::= tupletype | uniontuple ‘|’ uniontuple

tabletype ::= ‘{’ [tabletypebody] ‘}’
tabletypebody ::= maptype | recordtype

maptype ::= [keytype ‘:’] type

keytype ::= basetype | value

recordtype ::= recordfield {‘,’ recordfield} [‘,’ type]

recordfield ::= [const] literaltype ‘:’ type

Figure 3.1: The concrete syntax of Typed Lua types

Figure ?? presents the concrete syntax of Typed Lua types in extended

BNF. We classify Typed Lua types into two categories: first-level types and

second-level types. First-level types consist of type and represent Lua values,

while second-level types consist of either tupletype or rettype and represent the

type of expression lists, multiple assignments, and function applications. First-

level types include literal types, base types, the type nil, the top type value,

the dynamic type any, the self type self, named types, function types, table

types, and union types. Second-level types include the type void (), vararg

types, tuple types, and unions of tuple types.

Chapter 3. Typed Lua 31

Typed Lua uses subtyping to order types. Any first-level type is a subtype

of value. Union types are supertypes of their parts. The base types boolean,

integer, number, and string are supertypes of their respective literal types.

The base type integer is subtype of number. Function types are related by

contravariance on the input and covariance on the output. Table types have

width subtyping, with depth subtyping on const fields. Tuple and vararg types

are covariant. Unions of tuple types are also supertypes of their parts. We will

present the formalization of the subtyping relation in Section ??.

Typed Lua uses consistent-subtyping to check the interaction among the

dynamic type any and other types. The dynamic type any is a subtype of

value, but it is neither a supertype nor a subtype of any other type. Our

consistent-subtyping relationship follows the standards defined by the gradual

typing of objects [?, ?]. In practice, we can pass a value of the dynamic type

anytime we want a value of some other type, and we can pass any value where a

value of the dynamic type is expected, but the compiler tracks these operations,

and the programmer can choose to be warned about them. We will discuss the

formalization of the consistent-subtyping relation in Section ??.

Before we start discussing examples of Typed Lua code, it is worth

mentioning that there is a subtle difference between the dynamic type any and

the top type value. Although both types mean that they accept a value of any

other type, the type value is not a good option for handling the interaction

between dynamically typed and statically typed code. Gradual typing uses

the dynamic type any to identify where it should insert run-time checks for

asserting that dynamically typed code does not violate statically typed code.

Typed Lua also uses the dynamic type any in this sense, though it is an optional

type system. More precisely, we use any instead of value to allow programmers

blending dynamic and static typing because we use the consistent-subtyping

relation to formalize our optional type system, as it is a first step to switch

Typed Lua from optional typing to gradual typing in the future.

Typed Lua allows optional type annotations in variable and function

declarations. We use the following example to illustrate how we can annotate

a function declaration and a variable declaration:

local function succ (n:integer):integer

return n + 1

end

local x:integer = 7

x = succ(x)

print(x) --> 8

Chapter 3. Typed Lua 32

Typed Lua uses local type inference to assign more specific types to

some unannotated declarations. More precisely, Typed Lua can infer the type

of local variables and the return type of local functions that are not recursive.

The inference that we implement in Typed Lua is quite simple, as it uses only

the type of the local expression. For local variables, Typed Lua uses the type of

the initialization expression to assign a more specific type to an unannotated

local variable. For local functions, Typed Lua uses the type of the returned

expression to assign a more specific type to an unannotated return type.

This means that we can rewrite the previous example to use local type

inference for inferring the return type of succ and also for inferring the type

of x:

local function succ (n:integer)

return n + 1

end

local x = 7

x = succ(x)

print(x) --> 8

In this example, the compiler uses local type inference to assign the type

integer to the local variable x and to the return type of the local function

succ, making this example compile without any warnings. Local type inference

always uses the most general type. In this example, the compiler does not use

the literal type 7, instead of the base type integer, because this would generate

a warning when we try to assign other integer value to the variable x. Still,

programmers can use literal types in type annotations if they need a variable

that has a very specific type. In Section ?? we will see in more detail that

literal types are essential to type Lua tables.

Typed Lua assigns the dynamic type any to the unannotated declarations

that it does not infer a more specific type. More precisely, Typed Lua does not

infer more specific types to the input parameters of function declarations and

to the return type of recursive functions. The Typed Lua compiler cannot

infer them because it performs type checking in a single step that simulates

the program execution. We could have split type checking into two steps to

try solving this limitation, but it would have implications in the mechanisms

that Typed Lua uses to handle the discrimination of union types and the

refinement of table types. We will discuss these features in Section ?? and

Section ??, respectively.

We use the following example to illustrate type annotations in the

declaration of a recursive function:

Chapter 3. Typed Lua 33

local function factorial (n:integer):integer

if n == 0 then

return 1

else

return n * factorial(n - 1)

end

end

This example compiles without any warnings because we annotated the

return type of factorial. Local type inference cannot use the type of the

returned expression when it includes a function call to the function that is

being type checked, as its return type is still unknown to the type checker. For

this reason, we need to annotate the return type of recursive local functions

to inform the type checker what type it should use while type checking their

body.

We use the following example to illustrate the omission of type annota-

tions in the input parameters of a local function, and also to show that Typed

Lua allows programmers to combine statically typed code with dynamically

typed code:

local function absolute (n:integer):integer

if n < 0 then

return -n

else

return n

end

end

local function distance (x, y)

return absolute(x - y)

end

The function distance receives two parameters of type any and returns

a value of type integer. The compiler assigns the dynamic type any to the

input parameters of distance because they do not have type annotations and

the compiler does not use global type inference, as we mentioned previously.

Even though we did not annotate the return type of distance, the compiler

is able to infer its return type because it is local and not recursive.

In this example, Typed Lua cannot guarantee that distance is never

going to call absolute with a parameter that is not an integer, because in the

semantics of Lua the minus operator can result in a value that is not an integer

Chapter 3. Typed Lua 34

number. In fact, we can overload the minus operator to return a value that is

not even a number. However, we can call absolute inside distance because

the subtraction expression x - y has type any, and it is consistent with type

integer. Still, the dynamic type any may be hiding a value of a type that

is not an integer, making the dynamically typed code break the guarantees

provided by the statically typed code. This is a typical example where run-

time checks would ensure safety between the interaction of dynamically typed

and statically typed code.

Even though Typed Lua can type check recursive functions when we

annotate their return type, it has some limitations for type checking mutually

recursive functions, even if we annotate their return type. We will use the

following example for discussing this limitation and also for presenting an

alternative solution:

local even, odd

function even (n:integer):boolean

if n == 0 then return true

elseif n > 0 then return odd(n - 1)

else return odd(n + 1)

end

end

function odd (n:integer):boolean

if n == 0 then return false

elseif n > 0 then return even(n - 1)

else return even(n + 1)

end

end

This example shows an attempt of annotating a common idiom that Lua

programmers use for defining mutually recursive functions, but it generates

compile-time warnings. The problem is related to the fact that Lua does not

split a program into declarations and statements, and also to the fact that

Typed Lua performs type checking in a single step. This means that forwarding

the declaration of a local variable assigns the type any to it, making the

compiler warn the programmers about function calls to this variable, as they

can assign any value to a variable that has the dynamic type. In this example,

the Typed Lua compiler generates warnings when we call even and odd.

One way to overcome these warnings is to predeclare these functions

with an empty body before the actual declaration. Even though this is a

Chapter 3. Typed Lua 35

verbose solution and the Typed Lua compiler has an option to suppress

warnings related to the dynamic type any, it ensures that further assignments

to forwarded local variables will not change their type. Next we show how we

can apply this alternative solution to the previous example, making it compile

without any warnings:

local function even (n:integer):boolean return true end

local function odd (n:integer):boolean return false end

function even (n:integer):boolean

if n == 0 then return true

elseif n > 0 then return odd(n - 1)

else return odd(n + 1)

end

end

function odd (n:integer):boolean

if n == 0 then return false

elseif n > 0 then return even(n - 1)

else return even(n + 1)

end

end

3.2 Functions

Lua has first-class functions, and they have some peculiarities. First, the

number of arguments of a function call does not need to match the arity of the

function declaration, as Lua silently drops extra arguments after evaluating

them, or uses nil to replace missing arguments. Second, functions can return

any number of values, and this number of returned values may not be statically

known. Third, Lua has multiple assignment, and the semantics of argument

passing is the same of the multiple assignment, that is, calling a function is

like doing a multiple assignment where the left-hand side is the parameter list

and the right-hand side is the argument list.

Typed Lua uses second-level types to encode function types and to

preserve these peculiarities. We call them second-level because these types do

not correspond to actual Lua values and we cannot use them to type variables

or parameters. Second-level types represent tuple types that can appear in

multiple assignment. Since the semantics of argument passing is the same of

multiple assignment, second-level types also appear in function types.

Chapter 3. Typed Lua 36

Function types

functiontype ::= tupletype ‘->’ rettype

tupletype ::= ‘(’ [typelist] ‘)’

typelist ::= type {‘,’ type} [‘*’]

rettype ::= type | uniontuple [‘?’]

uniontuple ::= tupletype | uniontuple ‘|’ uniontuple

Figure 3.2: The concrete syntax of Typed Lua function types

Figure ?? shows that Typed Lua uses second-level types in the definition

of function types. A second-level type is either the type void (), a tuple of

first-level types optionally ending in a variadic type, or a union of these tuples.

The type void () represents the type of the empty tuple. A variadic type t*

is a generator for a sequence of values of the union type t|nil. Union of tuple

types appear in the return type of function types to represent overloading on

the return type. We will explain union types in more detail in the next section.

We can use only one first-level type t in the return type because it is syntactic

sugar to the tuple type (t).

Typed Lua provides two operation modes: the default mode and the strict

mode. In the default mode, the compiler adds a variadic tail to the type of the

parameter list and to the return type if the programmer does not specify one.

The default mode has this behavior to preserve the semantics of function calls

in Lua, that is, it discards extra arguments and uses nil to replace missing

arguments. In the strict mode, the compiler does not add a variadic tail to

the type of the parameter list and to the return type. Instead, it preserves the

type defined by the programmer to catch arity mismatch.

We will use the following function to illustrate how these two operation

modes work:

local function sum (x:integer, y:integer):integer

return x + y

end

In the default mode, sum has type (integer, integer, value*) ->

(integer, nil*). The compiler adds value* to the type of the parameter

list to discard extra arguments. For instance, the call sum(1, 2, 3) compiles

without any warnings because Typed Lua uses value* to drop the extra

argument 3.

Chapter 3. Typed Lua 37

In the strict mode, sum has type (integer, integer) -> (integer).

The compiler does not add value* to the type of the parameter list to catch

arity mismatch. For instance, the call sum(1, 2, 3) compiles with a warning

because we are passing an extra argument 3 to sum.

Even though these operation modes affect function calls, they do not

affect other multiple assignments. This means that both operation modes

discard extra arguments in multiple assignments and they also use nil to

replace missing arguments in multiple assignments. We made this design

decision to avoid being to restrictive, that is, we did not want to give

unnecessary warnings to programmers, as discarded values do not have any

implications during run-time.

As an example,

local x:integer, y:integer = 1, 2, 3

compiles without any compile-time warnings in both operation modes. This

means that the left-hand side of this local declaration has the tuple type

(integer, integer, value*), while the expression list in the right-hand side

of this local declaration has the tuple type (1, 2, 3, nil*) in both operation

modes. The literal type 3 is consistent with value, and the type nil* generates

a value of type nil that is also consistent with value.

As another example,

local x:integer, y:integer = sum(2, 2)

compiles with one compile-time warning in both of the operation modes. This

means that the left-hand side of this local declaration has the tuple type

(integer, integer, value*), while the expression list in the right-hand side

of this local declaration has the tuple type (integer, nil*) in both operation

modes. The type nil* generates a value of type nil that is not consistent with

integer, the type of y.

A variadic type can only appear in the tail position of a tuple, because

Lua takes only the first value of any expression that appears in an expression

list that is not in tail position. We will use the following function to illustrate

the interaction between multiple returns and expression lists:

local function m ():(integer, string)

return 2, "foo"

end

As an example,

local x:integer, y:integer, z:string = m(), m()

Chapter 3. Typed Lua 38

compiles without compile-time warnings in both operation modes. This hap-

pens because in the right-hand side of the multiple assignment, only the first

value produced by the first call to m gets used, so the type of the right-hand side

is (integer, integer, string, nil*), which is consistent with the type of

the left-hand side (integer, integer, string, value*).

Typed Lua always includes nil* in the end of the type of an expression

list that does not end in a variadic type. This behavior preserves the semantics

of Lua on replacing missing values, and it is necessary when we omit optional

parameters in a function call. We will discuss optional parameters in the next

section.

We can also type variadic functions. For instance,

local function v (...:string):(string*)

return ...

end

has type (string*) -> (string*) in both operation modes. The function

call v() compiles without any compile-time warnings in the default and strict

modes because (value*) and () are consistent with (string*). The call

v("hello", "world") compiles without any warnings in the default and strict

modes because ("hello", "world", nil*) and ("hello", "world") are

consistent with (string*). Calling v(...) compiles without any warnings

in both operation modes because the type of the argument list is (string*),

assuming that the vararg expression (...) has type string.

3.3 Unions

Typed Lua includes union types to encode three common Lua idioms: the

use of optional values, the overloading based on the tags of input parameters,

and the overloading on the return type of functions.

Optional values are unions of some type t and nil, and Typed Lua

includes the syntactic sugar t? to represent them because they appear quite

often. The concrete syntax t? is syntactic sugar for t|nil. Optional values

can appear when a function has optional parameters and when the program

reads a value from an array or a map. The following example shows a function

that has an optional parameter:

local function message (name:string, greeting:string?)

local greeting = greeting or "Hello "

return greeting .. name

end

Chapter 3. Typed Lua 39

Although the parameter greeting is optional, and has type string|nil,

the concatenation does not generate a warning because we used the short-

circuiting or operator to declare a new variable greeting that is guaranteed

to have type string. In Lua, only the values nil and false represent a false

condition, so programmers often use the or operator as a common idiom to

assign a default value to an optional parameter. Typed Lua uses the following

rule to type this idiom: if the left-hand side of or has type t|nil and the

right-hand side has type t then the or expression has type t.

In fact, we do not need to declare a new variable greeting that shadows

the optional parameter:

local function message (name:string, greeting:string?)

greeting = greeting or "Hello "

return greeting .. name

end

Typed Lua allows the assignment v = v or e to change the type of v

from t|nil to t if it matches the following rules: the type of e is a subtype

of t, and the variable v is local to the current function and it is not being

assigned in another function. The change only affects the type of v in the

remainder of the current scope. Any assignment to v restores its type back to

the original type. In the case of greeting, the assignment changes its type

from string|nil to string.

After we define the function message, we can call it with a missing

argument in both operation modes:

print(message("Typed Lua")) --> Hello Typed Lua

print(message("Typed Lua", "Hi ")) --> Hi Typed Lua

The type of the function message is (string, string|nil, value*)

-> (string, nil*) in the default mode, and (string, string|nil) ->

(string) in the strict mode. The function call message("Typed Lua") com-

piles without any compile-time warnings in both modes, because the argument

list ("Typed Lua") has type ("Typed Lua", nil*) that is consistent with the

input type (string, string|nil, value*) in the default mode, and that is

also consistent with the input type (string, string|nil) in the strict mode.

The compiler includes nil* in the tail of an argument list in both modes, as it

is necessary to replace any optional parameters that may appear in a function

declaration. In Section ?? we will formalize this behavior.

Lua programmers often overload the input parameters of functions, and

use the type function to inspect the tag of the input parameters to take

Chapter 3. Typed Lua 40

different actions depending on what those tags are. The simplest case overloads

on just a single parameter:

local function overload (s1:string, s2:string|integer)

if type(s2) == "string" then

return s1 .. s2

else

-- string.rep : (string, integer, string?) -> (string)

return string.rep(s1, s2)

end

end

Typed Lua has a small set of type predicates that allows programmers to

constrain the type of a local variable inside a condition. This example uses the

predicate type(v) == "string" that constrains the type of v from string|t

to string when the predicate is true and t otherwise. This is a simplified form

of flow typing [?, ?]. As with or, the variable must be local to the function

and it is not being assigned in another function.

The type predicates can only discriminate based on tags, so they are

limited on the kinds of unions that they can discriminate. For instance, the

predicates can discriminate a union that combines a table type with a base

type, or a table type with a function type, or two base types, but they cannot

discriminate a union that combines two different table types, or two different

function types.

Lua programmers also overload the return type of functions, usually

for signaling the occurrence of errors. In this idiom, a function returns its

normal set of return values when it successfully finished its execution, and it

returns nil plus an error message or other data that describes the error when

something failed during its execution. Next, we show an example:

local function idiv (dividend:integer, divisor:integer):

(integer, integer)|(nil, string)

if divisor == 0 then

return nil, "division by zero"

else

local r = dividend % divisor

local q = (dividend - r) // divisor

return q, r

end

end

Chapter 3. Typed Lua 41

Typed Lua also includes a syntactic sugar for this idiom: we can annotate

the return type of idiv with (integer, integer)? to denote the same union.

The parentheses are always necessary in this case, because t? is syntactic sugar

for t|nil, while (t)? is syntactic sugar for (t)|(nil, string).

A typical client of this function would use it as follows:

local q, r = idiv(a, b)

if q then

print(a == b * q + r)

else

print("ERROR: " .. r)

end

When Typed Lua finds a union of tuples in the right-hand side of a dec-

laration, it assigns projection types to the variables that appear unannotated

in the left-hand side of the declaration. Projection types do not appear in type

annotations, but Typed Lua uses them to project unions of tuple types into

unions of first-level types that have a dependency relation. We will discuss

projection types in more detail in Section ??.

So far, Typed Lua replaces projection types with the union of the

corresponding component of each tuple, when it infers that a local variable

has a projection type. In our example, the variables q and r get projection

types that map to the first and second components of the union of tuple

types (integer, integer, nil*)|(nil, string, nil*). This means that

variables q and r have types integer|nil and integer|string, respectively.

If a variable with a projection type appears in a type predicate, it

discriminates all tuples in the projected union. In our example, the projected

union has type (integer, integer, nil*)|(nil, string, nil*) outside

of the if statement, but (integer, integer, nil*) inside the then block,

and (nil, string, nil*) inside the else block. Thus, variable q has type

integer|nil and variable r has type integer|string outside of the if

statement; but variable q has type integer and variable r also has type

integer inside the then block; and variable q has type nil while variable

r has type string inside the else block.

We could have used math.type(q) == "integer" or even math.type(r)

== "integer" as the predicate of our example, as both predicates would

produce the same result. However, the form that appears in our example is

much more succinct and idiomatic. Note that the type integer is restricted

to Lua 5.3, as we use the function math.type to decide whether a number is

integer.

Chapter 3. Typed Lua 42

Typed Lua does not allow assignments to variables that hold a projection

type. Unrestricted assignment to these variables would be unsound, as it could

break the dependency relation among the types in each tuple that is part of

the union.

The overloading mechanism of Typed Lua has a limitation: the return

type cannot depend on the input types. Next, we show an example:

local function limitation (x:number|string)

if type(x) == "number" then

return x + x

else

return x .. x

end

end

This example means that we cannot write a function that is guaranteed

to return a number when we pass a number and guaranteed to return a string

when we pass a string. Even though we could have used an intersection type

(number) -> (number) & (string) -> (string) to express the type of this

function, intersection types require more sophisticated flow typing to check

whether a function has this type, and we still need to work on this problem.

3.4 Tables

Tables are the only mechanism that Lua has to build data structures;

they are associative arrays where any value (except nil) can be used as a

key. Programmers can use tables to represent tuples, arrays (dense or sparse),

records, graphs, modules, objects, etc. Lua has syntactic sugar for indexing

tables as records: t.k is syntactic sugar for t["k"]. In this section, we show

how Typed Lua types tables that encode maps, arrays, and records.

Figure ?? shows that the concrete syntax of Typed Lua table types is

restricted to either the type of the empty table, maps, arrays, or records with

an optional array part. We made this design choice due to the results that

we obtained about the usage of the table constructor, which we discussed in

Section ??. More precisely, those results indicated that programmers seldom

define a table constructor that is neither an empty table nor a table that

contains only literal keys. This means that our design can type check most of

the usages of the table constructor. Later in this chapter we will show that we

use the syntax of records to type modules and objects. We will also show that

we need the const modifier while typing object-oriented code.

Chapter 3. Typed Lua 43

Table types

tabletype ::= ‘{’ [tabletypebody] ‘}’
tabletypebody ::= maptype | recordtype

maptype ::= [keytype ‘:’] type

keytype ::= basetype | value

recordtype ::= recordfield {‘,’ recordfield} [‘,’ type]

recordfield ::= [const] literaltype ‘:’ type

Figure 3.3: The concrete syntax of Typed Lua table types

The table type {k:t} represents the type of a map from values of type

k to values of type t|nil. Table types that represent maps always include the

type nil, because Lua returns nil when we use a non-existing key to index

a table. The types of the keys are restricted to either base types or the type

value due to the statistics of the table constructor, which we discussed in

Section ??. More precisely, those results indicated that programmers seldom

use non-literal keys in the definition of a table constructor. For typing maps,

base types can type check most of the cases where programmers use a table

constructor to initialize a map, while the type value is still an option to allow

programmers to type check uncommon table constructors. This means that

this restriction to key types in maps has no impact in the usability of Typed

Lua. Next, we show one example of table type to type a map from strings to

integers:

local t:{string:integer} = { foo = 1 }

local x:integer = t.foo --> compile-time warning

local y:integer? = t.bar --> y gets nil

local z:integer = t["bar"] or 0 --> z gets 0

The second line of this example raises a warning, because we are attempt-

ing to assign a value of type integer|nil to a variable that accepts only values

of type integer. Although the field bar does not exist in t, the third line of

this example does not raise a warning, because the annotated type matches

the type of the values that can be stored in t. The last line shows that the or

idiom is also useful to give a default value to a missing table field.

The table type {t} represents the type of an array that maps values of

type integer to values of type t|nil. In other words, Typed Lua handles

arrays as syntactic sugar to the table type {integer:t}. Next, we show one

example of table type to type an array of strings:

Chapter 3. Typed Lua 44

local days:{string} = { "Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday", "Friday",

"Saturday" }

local i = 5

local x = days[1] --> x gets "Sunday"

local y = days[8] --> y gets nil

local z = days[i] --> z gets "Thursday"

In this example, the type of i is integer, while the type of x, y, and

z is string|nil. An inconvenient aspect of making the types of maps and

arrays always include the type nil is to overload the programmers, as they

need to use the logical or operator or the if statement to narrow the type of

the elements they are accessing.

The table type {l1:t1, ..., ln:tn} represents the type of a record

that maps literal types li, ..., ln to values of types ti, ..., tn. Most

programming languages treat records as maps from names to types, but we

chose to use literal types instead of names due to the statistics results that

we obtained about the usage of the table constructor, which we discussed in

Section ??. This means that we can use the syntax of records to type a list

that has a fixed number of elements, like the variable days from the previous

example.

When we know that a list has fixed elements, we can leave the variable

declaration unannotated and let local type inference assign a more specific

table type to the variable. If we remove the annotation in the previous example,

the compiler uses the syntax of records to infer the following table type to days:

{ 1:string, 2:string, 3:string, 4:string,

5:string, 6:string, 7:string }

When we use the syntax of records to type an array, the compiler raises a

warning when we try to access an index that is out of bounds. In the previous

example, the expressions days[8] and days[i] would raise warnings if we had

used the records syntax, as both the literal type 8 and the base type integer

would not map to any value.

We can also use the syntax of records to type heterogeneous tuples:

local album:{1:string, 2:integer, 3:string} =

{ "Transformer", 1972, "Lou Reed" }

Next, we show one example of table type to type a record that maps

names to strings:

Chapter 3. Typed Lua 45

local person:{"firstname":string, "lastname":string} =

{ firstname = "Lou", lastname = "Reed" }

In these two previous examples, local type inference would infer the very

same table types that we used to annotate the variables album and person.

Lua programmers often build records incrementally, that is, they usually

declare a local variable with an empty table, and then use assignment to add

fields to this table:

local person = {}

person.firstname = "Lou"

person.lastname = "Reed"

print("bye bye " .. person.firstname) --> bye bye Lou

In this example, we want to refine the type of person as we build

the table: starting with {}, and then refining to {"firstname":string},
and finally reaching {"firstname":string, "lastname":string}. This type

change is trickier than the one that we introduced for narrowing union types,

as we are not just allowing the programmer to change the type of the variable

person, but we are actually allowing the programmer to change the type of

the value that person points to.

Typed Lua tags a variable that holds a table type as either unique, open,

fixed, or closed. If a variable gets its type from a table constructor then it is

unique, otherwise it is closed. Any alias to unique variables makes them open,

as we use the tag open to keep track of unique variables that are aliased. In

the previous example, person has an unique type because it has no alias. In

Section ?? we will show that we use the tag fixed to describe the type of classes.

Typed Lua also has different subtyping rules that handle these different tags,

which we explain in Section ??.

Typed Lua uses three rules to decide whether it is sound to allow field

assignment to change the type of unique and open variables: the variable must

be local to the current block, the new type must only add new fields, and the

variable cannot have been assigned in another function.

Before discussing each one of these rules, it is worth discussing why Typed

Lua needs unique and open table types. Even though both unique and open

table types allow the refinement of table types, we need both tags to increase

usability and to avoid some unsafe behaviors.

If we did not have unique table types and open table types had the same

behavior that they have now, we would not be able to type check some safe

constructions, like in the following example:

local t:{"x":integer, "y":integer?} = { x = 1, y = 2 }

Chapter 3. Typed Lua 46

Typed Lua type checks this example because the table constructor has

an unique table type {"x":1, "y":2} that is consistent with the type in

the annotation. However, if the table constructor had an open table type,

it would not type check because it does not allow us to convert a table field

from integer to integer?. We need this kind of behavior to avoid unsafe

constructions while aliasing unique table types, like in the following example:

local t1 = { x = 1 }

local t2:{"x":integer} = t1

local t3:{"x":integer?} = t1 --> compile-time warning

t3.x = nil

Typed Lua generates a compile-time warning in this example because

aliasing t1 changes its type from unique to open. First, Typed Lua assigns an

unique table type to t1, but then it changes its type to open before aliasing t1

to t2. Even though it is safe aliasing t1 to t2, it is not safe aliasing t1 to t3,

as it allows removing the value that is stored in the field x from t1 through

an assignment to field x from t3. Typed Lua uses open table types to prevent

this kind of unsafe behavior, as it would be allowed by unique table types due

to their loose subtyping rules.

Back to the rules that Typed Lua uses to allow the refinement of table

types, the following example shows that it is not sound to allow the type of

the fields to change:

local person = { firstname = "Lewis", lastname = "Reed" }

person.middlename = "Allan"

person.firstname = 1942 --> compile-time warning

person.lastname = 2013 --> compile-time warning

print("bye bye " .. person.firstname)

In this example, both third and fourth lines are unsound because they

are trying to change the type of fields that already exist.

It is also not sound to allow changing the type of an alias:

local person = {}

local bogus = person

person.firstname = "Lou"

person.lastname = "Reed"

bogus.firstname = true --> compile-time warning

print("bye bye " .. person.firstname)

In this example, the fifth line is unsound because it allows the program-

mer to change the type of the value that is stored in person.firstname, and

Chapter 3. Typed Lua 47

makes the last line break the guarantees provided by the statically typed code.

In the first line, we assign an empty table to person. In the second line, we

assign the type of person to bogus. In the third and fourth lines we change

the type of person. In the fifth line we try to change the type of bogus from

{} to {"firstname":boolean}, but if we allow this type change we also allow

changing the value that is stored in person.firstname, regardless of its type.

Taking the changes individually looks fine, but the truth is that aliasing makes

one of them unsound.

We can create aliases to open variables, but they are always closed. Any

mutation in the original reference and in the aliased reference is not a problem,

as the type of the original reference can only add new fields. For mutable fields

this means that the type of a field cannot change after it is added to the type

of a table. In our previous example, the second line changes the type of person

from unique to open and makes the type of bogus closed.

The location of the change also matters, as the next example shows:

local person = { lastname = "Reed" }

local function spoil ()

person.firstname = nil --> compile-time warning

end

person.firstname = "Lou"

spoil()

print("bye bye " .. person.firstname)

In this example, the third line is unsound because this line allows the

programmer to change the type of person outside of the scope that person

was declared. The call to spoil erases the field firstname from person, and

makes the last line break the guarantees provided by the statically typed code.

In Section ?? we present the formalization of the rules that type check

the refinement of table types.

3.5 Type aliases and interfaces

Typed Lua includes type aliases for allowing programmers to define

their own data types. Figure ?? shows the concrete syntax of the typealias

construct.

As an example, the following declaration defines the type Person as an

alias to the table type {"firstname":string, "lastname":string} in the

remainder of the current scope:

local typealias Person = { "firstname":string,

"lastname":string }

Chapter 3. Typed Lua 48

Type aliases

typealias ::= [local] typealias Name ‘=’ type

Figure 3.4: The concrete syntax of Typed Lua type aliases

Typed Lua also includes interfaces as syntactic sugar to aliases for table

types that specify records, as writing table types can be unwieldy when records

get bigger and the types of record fields get more complicated. Figure ?? shows

the concrete syntax of the interface construct. In Section ?? we will show

that we can also use interface to document the type of objects, and that

methodtype is syntactic sugar to express the type of methods.

Interfaces

interface ::= [local] interface typedec

typedec ::= Name {decitem} end

decitem ::= idlist ‘:’ idtype

idtype ::= type | methodtype

idlist ::= id {‘,’ id}
id ::= [const] Name

Figure 3.5: The concrete syntax of Typed Lua interfaces

As an example, we can use the following interface to define the type

Person from the previous example:

local interface Person

firstname:string

lastname:string

end

After we define the type Person, we can use it in type annotations:

local function byebye (person:Person):string

return "Goodbye " .. person.firstname ..

" " .. person.lastname

end

Chapter 3. Typed Lua 49

local user1 = { firstname = "Lewis",

middlename = "Allan",

lastname = "Reed" }

local user2 = { firstname = "Lou" }

local user3 = { lastname = "Reed",

firstname = "Lou" }

local user4 = { "Lou", "Reed" }

print(byebye(user1)) --> Goodbye Lewis Reed

print(byebye(user2)) --> compile-time warning

print(byebye(user3)) --> Goodbye Lou Reed

print(byebye(user4)) --> compile-time warning

This example shows that our optional type system is structural rather

than nominal, that is, it checks the structure of types instead of their names,

and it uses subtyping and consistent-subtyping for checking types.

Even though the interface declaration may look redundant due to the

type alias declaration, it has a more convenient syntax for declaring table

types that express records. For this reason, it is worth having two different

constructs, one specifically for records and another for more general types.

The interface and typealias constructs also allow the declaration of

recursive types. For instance, the following interface defines a type for singly-

linked lists of integers:

local interface Element

info:integer

next:Element?

end

Now we can use Element to annotate a function that inserts an element

at the beginning of a list:

local function insert (e:Element?, v:integer):Element

return { info = v, next = e }

end

We need an explicit type declaration in the return type because the

Typed Lua compiler cannot infer recursive types, though it has subtyping

rules to check that the inferred return type matches the annotation.

Now we can write a program that declares a list, inserts some elements

in it, and then traverses the list printing each element:

Chapter 3. Typed Lua 50

local l:Element?

l = insert(l, 4)

l = insert(l, 3)

l = insert(l, 2)

l = insert(l, 1)

while l do

print(l.info)

l = l.next

end

Note that the type of l is Element inside the while body, and the

assignment l = l.next restores the type of l to Element|nil. This means

that this example compiles without any warnings, because the while statement

also uses the small set of type predicates that we mentioned in Section ??.

As another example of recursive type, the following type alias defines a

type for the abstract syntax tree of a language of simple arithmetic expressions:

local typealias Exp = {"tag":"Number", 1:number}

| {"tag":"Add", 1:Exp, 2:Exp}

| {"tag":"Sub", 1:Exp, 2:Exp}

| {"tag":"Mul", 1:Exp, 2:Exp}

| {"tag":"Div", 1:Exp, 2:Exp}

The type Exp is a recursive type that resembles the algebraic data

types from functional programming. The small set of type predicates that

we mentioned in Section ?? also includes a specific rule that is not based on

tags. This specific rule lets programmers discriminate unions of table types and

resembles the pattern matching from functional programming. We can use this

feature to write an evaluation function for our simple language:

local function eval (e:Exp):number

if e.tag == "Number" then return e[1]

elseif e.tag == "Add" then return eval(e[1]) + eval(e[2])

elseif e.tag == "Sub" then return eval(e[1]) - eval(e[2])

elseif e.tag == "Mul" then return eval(e[1]) * eval(e[2])

elseif e.tag == "Div" then return eval(e[1]) / eval(e[2])

end

end

When Typed Lua finds the predicate v[e1] == e2, it checks whether the

type of the variable v is an union of table types, whether the type of e1 is a

Chapter 3. Typed Lua 51

literal type l1, and whether the type of e2 is a literal type l2. If that is the

case, it constrains the type of v inside the if to the table type that has a key

of type l1 which maps to a value of type l2. In our example, the expression

e.tag == "Add" makes the Typed Lua compiler constrain the type of e to

{"tag":"Add", 1:Exp, 2:Exp}. If we did not add this special predicate, we

would not be able to traverse an AST, as any attempt to index an union raises

a compile-time warning.

3.6 Modules

Lua does not set policies on how programmers should define modules,

but it provides mechanisms for organizing a program in modules. To load a

module, Lua first checks whether the module is already loaded. When the

module is not loaded, Lua executes its source file, and the value returned is

the module. Although programmers can use functions for defining modules, our

survey from Section ?? confirms that the convention among Lua programmers

is to use tables for defining modules. In this convention, the fields of the table

are the functions and other values that the module exports.

An idiomatic way for defining modules in Lua is to declare only locals

and return a table constructor at the end of the source file. The returned con-

structor includes the members that the module should export. The following

example illustrates this case in Typed Lua:

local RADIANS_PER_DEGREE = 3.14159 / 180.0

local function deg (x:number):number

return x / RADIANS_PER_DEGREE

end

local function rad (x:number):number

return x * RADIANS_PER_DEGREE

end

local function pow (x:number, y:number):number

return x ^ y

end

return {

deg = deg,

rad = rad,

pow = pow,

}

In this example, Typed Lua uses the type of the table constructor to

allow the programmer to build the type of the module. The local variable

Chapter 3. Typed Lua 52

RADIANS_PER_DEGREE is private because we did not include it in the list of

exported members. The return at the end of the source file gives the type of

the module:

{ "deg":(number) -> (number),

"rad":(number) -> (number),

"pow":(number, number) -> (number) }

Typed Lua always fixes unique and open table types that appear in a

top-level return statement. This means that modules have fixed table types in

Typed Lua. This behavior ensures that classes always have fixed table types.

In the next section we will show that we build classes in a similar way that

we use to build modules, and we will also show that classes should have fixed

table types to allow safe single inheritance.

Another idiomatic way for defining modules in Lua is to declare an empty

table at the begin of the source file, populate this table with the members that

the module should export, and return this table at the end of the source file.

The following example illustrates this case in Typed Lua:

local mymath = {}

local RADIANS_PER_DEGREE = 3.14159 / 180.0

mymath.deg = function (x:number):number

return x / RADIANS_PER_DEGREE

end

mymath.rad = function (x:number):number

return x * RADIANS_PER_DEGREE

end

mymath.pow = function (x:number, y:number):number

return x ^ y

end

return mymath

In this example, Typed Lua uses the refinement of table types

to incrementally build the type of the module mymath. The variable

RADIANS_PER_DEGREE is private because we declared it as local to the module.

The return at the end of the source file gives the type of the module, which

is the same type of the variable mymath. This module has the same type of the

module from the previous example.

After we define the module mymath, regardless of the adopted style, users

can use it in the standard way, but with the static type checking provided by

Typed Lua. Next we show an example:

Chapter 3. Typed Lua 53

local mymath = require "mymath"

print(mymath.pow(2, 3)) --> 8

print(mymath.pow(2, "foo")) --> compile-time warning

In Typed Lua, require is a primitive that statically type checks a given

module to infer its type. This means that the type of its input parameter must

be a literal string, as Typed Lua uses this literal string to find the source file

that implements the given module. To statically type check a module, Typed

Lua follows the same rules that Lua follows to load a module. Typed Lua

first checks whether the module is already statically type checked. When the

module is not yet statically type checked, Typed Lua statically type checks its

source file, and the type returned is the type of the module. Typed Lua raises

a compile-time warning when it cannot find the source file of a given module.

After we use require to statically type check a module, Typed Lua can

statically type check the usage of this module. In our previous example, the

call to require assigns the type of the module mymath to the local mymath, so

Typed Lua can catch misuses of the module.

The way that Typed Lua handles modules using fixed table types is also

relevant for supporting object-oriented programming, as we discuss in the next

section.

3.7 Object-Oriented Programming

Lua provides minimal support for object-oriented programming. The

basic mechanism is the : syntactic sugar for method definitions and method

calls. In the case of method definitions, the Lua compiler translates function

obj:method(args) end into an operation that assigns a function to the field

method in obj. This function includes a first parameter named self plus any

other parameters. In the case of method calls, the Lua compiler translates

obj:method(args) into an operation that evaluates obj, uses method to index

obj, and then calls obj.method with the result of evaluating obj as the first

argument, followed by the result of evaluating the argument list in the original

expression.

Typed Lua uses closed table types along with the type self to represent

objects. We use the following example to discuss this feature:

local Shape = { x = 0.0, y = 0.0 }

function Shape:move (dx:number, dy:number)

self.x = self.x + dx

self.y = self.y + dy

end

Chapter 3. Typed Lua 54

Typed Lua assigns the type self to the implicit parameter self. The

type self represents the type of the receiver in method definitions and method

calls. In this example, Typed Lua binds the type self to the closed table

type {"x":number, "y":number} inside move. This example also uses the

refinement of table types to build the type of Shape:

{ "x":number, "y":number,

"move":(self, number, number) -> () }

While : is syntactic sugar in Lua, Typed Lua uses it to check method

calls, binding any occurrence of the type self in the type of the method to the

receiver. Indexing a method and not immediately calling it with the correct

receiver is a compile-time warning:

Shape.move(Shape, 10, 10) --> Shape.x = 10 and Shape.y = 10

Shape:move(5, 20) --> Shape.x = 5 and Shape.y = 20

local p = Shape.move --> compile-time warning

Lua has a mechanism for self-like (or JavaScript-like) delegation of

missing table fields. After the call setmetatable(t1, { __index = t2 }),

Lua looks up in t2 for any missing fields of t1. As we mentioned in Section

??, Lua programmers often use this mechanism to simulate classes. We will

use the following example to discuss this feature:

local Shape = { x = 0.0, y = 0.0 }

const function Shape:new (x:number, y:number):self

local s:self = setmetatable({}, { __index = self })

s.x = x

s.y = y

return s

end

const function Shape:move (dx:number, dy:number):()

self.x = self.x + dx

self.y = self.y + dy

end

return Shape

In Typed Lua, setmetatable is a strict primitive that obeys three typing

rules. The reason for being so strict with setmetatable is because it is the

only mechanism that Typed Lua has to create classes as prototype objects.

Chapter 3. Typed Lua 55

The first setmetatable rule appears in our previous example. In a

setmetatable expression setmetatable({},{__index = id}), if id has type

self then the expression also has type self. We will explain the other two

rules while we explain how Typed Lua type checks single inheritance.

In our example, we are using the refinement of table types to build the

type of the variable Shape, as it should work as our class. This means that

the local Shape has type {"x":number, "y":number} inside the definition of

new. This also makes Typed Lua bind the type of the local Shape to the type

self inside the definition of new, allowing us to access fields x and y. After the

definition of new, the local Shape has type {"x":number, "y":number, const

"new":(self, number, number) -> (self)}, which is the type that Typed

Lua binds to the type self inside the definition of move. We use the const

annotation in the type of the methods because it is necessary for covariance

among object types to work. Finally, the top-level return statement fixes the

type of Shape, because fixed table types do not allow width subtyping, and

this behavior allows Typed Lua to use the refinement of table types to type

check single inheritance, as we will see in this section.

A return statement that appears in the top-level also exports an interface

which we can use in type annotations. For instance, our previous example

exports the following interface:

interface Shape

x, y:number

const new:(number, number) => (self)

const move:(number, number) => ()

end

We use a double arrow instead of a single arrow because it is syntactic

sugar for defining the type of methods, as it includes an implicit first input type

self. The double arrow can appear only inside the declaration of interfaces

and userdata, which we will introduce in the next section.

The style of classes definition from the previous example allows us to

use require for creating prototype objects that work as classes, along with

an alias to the object type. This allows us to use the exported alias in type

annotations, as we show in the following example:

local Shape = require "shape"

local shape1 = Shape:new(0, 5)

local shape2:Shape = Shape:new(10, 10)

Note that Shape has a fixed table type, because it describes the type of

the class Shape, but shape1 and shape2 have closed table types, because they

Chapter 3. Typed Lua 56

describe the type of objects from the class Shape. Now, we will see that we

need fixed table types to allow setmetatable to simulate single inheritance.

We use the following example to discuss single inheritance in Typed Lua:

local Shape = require "shape"

local Circle = setmetatable({}, { __index = Shape })

Circle.radius = 0.0

const function Circle:new (x:number,

y:number,

radius:value):self

local c:self = setmetatable(Shape:new(x, y),

{ __index = self })

c.radius = tonumber(radius) or 0.0

return c

end

const function Circle:area ():number

return math.pi * self.radius * self.radius

end

return Circle

In this example, we use the other two setmetatable rules. The second

rule appears to trigger the refinement of table types, as we need this rule to

add new methods and also to override existing methods in Circle. The third

rule appears to redefine the constructor new.

In a setmetatable expression setmetatable({},{__index = id}), if

id has a fixed table type then it is safe to produce an equivalent open table

type, as fixed table types do not allow hiding fields. In our example, it is safe

to use the type of Shape to initialize Circle, opening the type of Circle to

allow the refinement of table types to build the type of the class Circle.

In a setmetatable expression setmetatable(e,{__index = id}), if

the expression e has a closed table type t, id has type self, and the type

bound to self is a subtype of t, then the expression has type self. Note

how we can use this rule to call the constructor of Shape inside the overridden

constructor. A limitation of this class system is that the overridden constructor

must be a subtype of the original constructor, so the type of the input

Chapter 3. Typed Lua 57

parameter radius has to be quite permissive. Also note that this is the only

form of refinement that allows changing the type of a table field, if the new

type is a subtype of the previous type.

Like in the example that we introduced the class Shape, in the example

that we introduced the class Circle, the top-level return statement exports

an interface which we can use in type annotations:

interface Circle

x, y, radius:number

const new:(number, number, value) => (self)

const move:(number, number) => ()

const area:() => (number)

end

Even though the class Circle is not a subtype of the class Shape, because

fixed table types do not have width subtyping, the objects that have the

exported type Circle are subtypes of the objects that have the exported type

Shape, because closed table types have width subtyping. We discuss fixed and

closed table types in more detail in the next chapter.

We can use both exported aliases in type annotations, as we show in the

following example:

local Circle = require "circle"

local circle1 = Circle:new(0, 5, 10)

local circle2:Circle = Circle:new(10, 10, 10)

local circle3:Shape = circle1

local circle4:Shape = circle2

print(circle2:area()) --> 314.15926535898

print(circle3:area()) --> compile-time warning

In all examples, if we erase all type and const annotations, they become

valid Lua code, which run with the same semantics as Typed Lua code.

The current version of Typed Lua has some limitations regarding the

use of setmetatable that are on plans for future work. One limitation is that

Typed Lua does not have polymorphism, so programmers cannot hide the

calls to setmetatable behind nicer abstractions, as some Lua libraries do.

Another limitation is that Typed Lua does not support operator overloading,

so programmers cannot use setmetatable to change the behavior of predefined

operations, as some Lua libraries do.

Our classes system also does not support multiple inheritance and does

not offer privacy rules, but these limitations are not on plans for future work

anyway.

Chapter 3. Typed Lua 58

3.8 Description files

Typed Lua allows programmers to create description files for exporting

statically typed interfaces to dynamically typed modules. This means that

programmers can have some of the benefits of static types even without

converting existing Lua modules to Typed Lua, as a dynamically typed module

can export a statically typed interface, and statically typed users of the module

have their use of the module checked by the compiler.

Furthermore, Typed Lua also allows programmers to create description

files for exporting statically typed interfaces for Lua modules that are written

in C.

The complete syntax of description files

description ::= desclist

desclist ::= descitem {descitem}
descitem ::= typedid | interface | userdata | typealias

typedid ::= [const] id ‘:’ type

interface ::= interface typedec

userdata ::= userdata typedec

typedec ::= Name {decitem} end

decitem ::= idlist ‘:’ idtype

idtype ::= type | methodtype

idlist ::= id {‘,’ id}
id ::= [const] Name

typealias ::= typealias Name ‘=’ type

Figure 3.6: The concrete syntax of Typed Lua description files

Figure ?? shows the complete syntax of Typed Lua description files

in extended BNF. A Typed Lua description file defines the table type that

represents a certain module and the type names that are exported along with

this table type. We can export a type name through the declaration of either

an interface, an userdata, or a type alias. As we mentioned in Section ??,

a type alias declaration creates an alias to a more general type, while an

interface declaration creates an alias to a table type that represents a record.

An userdata declaration is similar to an interface declaration, but it also

includes its name as the brand of the table type. The Typed Lua compiler uses

this brand to combine structural with nominal type checking, so two userdata

Chapter 3. Typed Lua 59

that export exactly the same members, but do not have the same name, are

not subtype of each other, because they do not share the same brand.

The following example shows the description file for lmd5 [?], a MD5

digest library for Lua that is written in C:

userdata md5_context

__tostring : (self) -> (string)

clone : (self) -> (self)

digest : (self, value) -> (string)

new : (self) -> (self)

reset : (self) -> (self)

update : (self, string*) -> (self)

version : string

end

__tostring : (md5_context) -> (string)

clone : (md5_context) -> (md5_context)

digest : (md5_context|string, value) -> (string)

new : () -> (md5_context)

reset : (md5_context) -> (md5_context)

update : (md5_context, string*) -> (md5_context)

version : string

This description file exports the type md5_context through an userdata

declaration and the table type that represents the type of the module. Now

we can use the Typed Lua compiler to check for type errors in our use of the

lmd5 library:

local m = require "md5"

local x = m.new()

local y = x:clone()

local z = m.clone("foo") --> compile-time warning

print(x:digest() == m.digest(y)) --> true

The Typed Lua compiler searches for a description file when it cannot find

the respective Typed Lua file that is the argument of require. In this example,

the call to require assigns to the local m the table type that the description file

of the lmd5 library exports. Thus, the compiler raises a compile-time warning

in the fourth line, as the function clone expects a value of type md5_context

instead of a value of type string.

Chapter 3. Typed Lua 60

The description files are the mechanism that we used to include the

typing of the Lua standard library inside Typed Lua. In Chapter ?? we will

discuss the issues that we found while typing the Lua standard library and

other case studies, which include the lmd5 library.

4
The type system

In the previous chapter we presented an informal overview of Typed

Lua. We showed that programmers can use Typed Lua to combine static

and dynamic typing in the same code, and it allows them to incrementally

migrate from dynamic to static typing. This is a benefit to programmers that

use dynamically typed languages to build large applications, as static types

detect many bugs during the development phase, and also provide better

documentation.

In this chapter we present the abstract syntax of Typed Lua types, the

subtyping rules, and the most interesting typing rules. Besides its practical

contributions, Typed Lua also has some interesting contributions to the field

of optional type systems for scripting languages. They are novel type system

features that let Typed Lua cover several Lua idioms and features, such as

refinement of tables, multiple assignment, and multiple return values.

4.1 Types

Figure ?? presents the abstract syntax of Typed Lua types. Typed Lua

splits types into two categories: first-level types and second-level types. First-

level types represent first-class Lua values and second-level types represent

tuples of values that appear in assignments and function applications. First-

level types include literal types, base types, the type nil, the top type value,

the dynamic type any, the type self , union types, function types, table types,

recursive types, filter types, and projection types. Second-level types include

tuple types and unions of tuple types. Tuple types include the type void,

variadic types, and pair types. Types are ordered by a subtype relationship

that we introduce in Section ??, so Lua values may belong to several distinct

types.

Literal types represent the type of literal values. They can be the boolean

values false and true, an integer value, a floating point value, or a string value.

We will see that literal types are important in our treatment of table types as

records.

Chapter 4. The type system 62

Type Language

T ::= first-level types:
L literal types
| B base types
| nil nil type
| value top type
| any dynamic type
| self self type
| T1 ∪ T2 disjoint union types
| S1 → S2 function types
| {K1:V1, ..., Kn:Vn}unique|open|fixed|closed table types
| x type variables
| µx.T recursive types
| φ(T1, T2) filter types
| πx

i projection types
L ::= literal types:

false | true | int | float | string
B ::= base types:

boolean | integer | number | string
K ::= key types:

L | B | value
V ::= value types:

T | const T
S ::= second-level types:

P tuple types
| S1 t S2 unions of tuple types

P ::= tuple types:

void void type
| T∗ variadic types
| T × P pair types

Figure 4.1: The abstract syntax of Typed Lua types

Typed Lua includes four base types: boolean, integer, number, and

string. The base types boolean and string represent the values that Lua

tags as boolean and string during run-time. Lua 5.3 introduced two internal

representations to the tag number: integer for integer numbers and float for

real numbers. Lua does automatic promotion of integer values to float values

as needed. We introduced the base type number to represent float values,

and the base type integer to represent integer values. In the next section we

will show that integer is a subtype of number. This allows programmers to

keep using integer values where float values are expected.

The type nil is the type of nil, the value that Lua uses for undefined

Chapter 4. The type system 63

variables, missing parameters, and missing table keys.

The type value is the top type, which represents any Lua value. In

Section ?? we will show that this type, along with variadic types, helps the type

system to drop extra values on assignments and function calls, thus preserving

the semantics of Lua in these cases.

Typed Lua uses the type self to represent the receiver in object-oriented

method definitions and method calls. As we mentioned in Section ??, we need

the type self to prevent programs from indexing a method without calling it

with the correct receiver.

Union types T1 ∪ T2 represent data types that can hold a value of two

different types.

Function types have the form S1 → S2 and represent Lua functions,

where S is a second-level type.

Second-level types are either tuple types or unions of tuple types. Tuple

types are tuples of first-level types that can end with either an empty tuple

or with a variadic type. Typed Lua needs second-level types because tuples

are not first-class values in Lua, only appearing on argument passing, multiple

returns, and multiple assignments. The type void is the type of an empty

tuple. A variadic type T∗ represents a sequence of values of type T ∪ nil; it

is the type of a vararg expression. Second-level types include unions of tuples

because Lua programs usually overload the return type of functions to denote

error, as we mentioned in Section ??. For clarity, we use the symbol t to

represent the union between two different tuple types. Note that ∪ represents

the union between two first-level types, while t represents the union between

two tuple types.

Back to first-level types, table types represent the various forms that Lua

tables can take. The syntactical form of table types is {K1:V1, ..., Kn:Vn}tag,
where each Ki represents the type of a table key, and each Vi represents the

type of the value that table keys of type Ki map to. Key types can only be

literal types, base types, or the top type. We made this restriction to the type

of the keys because the statistics that we discussed in Section ?? showed that

most of the tables are records, lists, and hashes. The type value is an option

when we need a loose table type. For instance, {value : value}closed represents

the type of a table in which both indices and values can have any type. Value

types can be any first-level type, and can optionally include the const type to

denote immutable values.

We also use the tags unique, open, fixed, and closed to classify table

types. The tag unique represents tables with no keys that do not inhabit one

of the table’s key types, and with no alias. In particular, the type of the table

Chapter 4. The type system 64

constructor has this tag. The tag open represents unique table types that

have at least one alias. The tag fixed represents unique table types that we

do not know how many aliases they have. In particular, the type of a class

has this tag. The tag closed represents table types that do not provide any

guarantees about keys with types not listed in the table type. In particular,

in the concrete syntax, type annotations, interface declarations, and userdata

declarations always describe closed table types. In the next sections we explain

in more detail why we need different table types.

Any table type has to be well-formed. Informally, a table type is well-

formed if key types do not overlap. In Section ?? we formalize the definition

of well-formed table types. We delay the proper formalization of well-formed

table types because we use consistent-subtyping in this formalization.

Recursive types have the form µx.T , where T is a first-level type that

x represents. For instance, µx.{“info” : integer, “next” : x ∪ nil}closed is a

type for singly-linked lists of integers. In Section ?? we mentioned that we can

use the following interface declaration as an alias to this type:

local interface Element

info:integer

next:Element?

end

Typed Lua includes filter types as a way to discriminate the type of

local variables inside conditions. Our type system uses filter types to formalize

the type predicates that we mentioned in Section ??. This means that type

predicates use filter types of the form φ(T1, T2) to discriminate local variables

that are bound to union types. In a filter type φ(T1, T2), T1 is the original type

and T2 is the discriminated type.

Typed Lua includes projection types as a way to project unions of tuple

types into unions of first-level types. In Section ?? we will show in more detail

how our type system uses them as a mechanism for handling unions of tuple

types, when they appear in the right-hand side of the declaration of local

variables, as we mentioned in Section ??. We also show how this feature allows

our type system to constrain the type of a local variable that depends on the

type of another local variable.

Typed Lua includes the dynamic type any for allowing programmers to

mix static and dynamic typing.

Chapter 4. The type system 65

4.2 Subtyping

Our type system uses subtyping [?, ?] to order types and consistent-

subtyping [?, ?] to allow the interaction between statically and dynamically

typed code. We explain the subtyping and consistent-subtyping rules through-

out this section. However, we focus the discussion on the definition of subtyping

because, as we mentioned in Section ??, we can combine the consistency and

subtyping relations to achieve consistent-subtyping. The differences between

subtyping and consistent-subtyping are the way they handle the dynamic type,

and the fact that subtyping is transitive, but consistent-subtyping is not.

We present the subtyping rules as a deduction system for the subtyping

relation Σ ` T1 <: T2. The variable Σ is a set of pairs of recursion variables. We

need this set to record the hypotheses that we assume when checking recursive

types.

The subtyping rules for literal types and base types include the rules for

defining that literal types are subtypes of their respective base types, and that

integer is a subtype of number:

(S-FALSE)

Σ ` false <: boolean

(S-TRUE)

Σ ` true <: boolean

(S-STRING)

Σ ` string <: string

(S-INT1)

Σ ` int <: integer

(S-INT2)

Σ ` int <: number

(S-FLOAT)

Σ ` float <: number

(S-INTEGER)

Σ ` integer <: number

Subtyping is reflexive and transitive; therefore, we could have omitted the

rule S-INT2. More precisely, we could have defined a transitive rule for first-

level types instead of defining specific rules for transitive cases. For instance,

a transitive rule would allow us to derive that

Σ ` 1 <: integer Σ ` integer <: number

Σ ` 1 <: number

However, we are using the subtyping rules as the template for defining

the consistent-subtyping rules, and consistent-subtyping is not transitive. More

precisely, we want the subtyping and consistent-subtyping rules to differ only

in the way they handle the dynamic type. Thus, we define the subtyping rules

using an algorithmic approach that is close to the implementation, as this

approach allows us to use subtyping to easily formalize consistent-subtyping.

Chapter 4. The type system 66

Our type system includes the top type value, so any first-level type is a

subtype of value:

(S-VALUE)

Σ ` T <: value

Many programming languages include a bottom type to represent an

empty value that programmers can use as a default expression, and we could

have used the type nil for this role. However, making nil the bottom type

would lead to several expressions that would pass the type checker, but that

would fail during run-time in the presence of a nil value. Thus, our type

system does not have a bottom type, and nil is a subtype only of itself and of

value.

Another type that is only a subtype of itself and of the type value is the

type self .

The subtyping rules for union types are standard:

(S-UNION1)
Σ ` T1 <: T Σ ` T2 <: T

Σ ` T1 ∪ T2 <: T

(S-UNION2)
Σ ` T <: T1

Σ ` T <: T1 ∪ T2

(S-UNION3)
Σ ` T <: T2

Σ ` T <: T1 ∪ T2

The first rule shows that a union type T1∪T2 is a subtype of T if both T1

and T2 are subtypes of T ; and the other rules show that a type T is a subtype

of a union type T1 ∪ T2 if T is a subtype of either T1 or T2.

The subtyping rule for function types is also standard:

(S-FUNCTION)
Σ ` S3 <: S1 Σ ` S2 <: S4

Σ ` S1 → S2 <: S3 → S4

The rule S-FUNCTION shows that subtyping between function types

is contravariant on the type of the parameter list and covariant on the return

type. In the previous section we explained why our type system uses second-

level types to represent the type of the parameter list and the return type.

Now, we explain their subtyping rules.

The type void is a subtype of itself and of a variadic type:

(S-VOID2)

Σ ` void <: T∗

A variadic type T∗ represents a sequence of values of type T ∪ nil, and

the rule S-VOID2 handles the case where a given sequence is empty.

Chapter 4. The type system 67

The subtyping rule for pair types is the standard covariant rule:

(S-PAIR)
Σ ` T1 <: T2 Σ ` P1 <: P2

Σ ` T1 × P1 <: T2 × P2

The subtyping rules for variadic types are not so obvious. We need six

different subtyping rules for variadic types to handle all the cases where they

can appear.

The rule S-VARARG1 is a special rule for handling the case where we

give a sequence of nil to the empty tuple:

(S-VARARG1)

Σ ` nil∗ <: void

The rule S-VARARG2 handles the case where both tuple types end

with variadic types:

(S-VARARG2)
Σ ` T1 ∪ nil <: T2 ∪ nil

Σ ` T1∗ <: T2∗
This rule shows that T1∗ is a subtype of T2∗ if T1 ∪ nil is a subtype of

T2 ∪ nil. It explicitly includes nil in both sides because otherwise nil∗ would

not be a subtype of several other variadic types. For instance, nil∗ would not

be a subtype of number∗, as nil 6<: number.

The other rules handle the cases where only one tuple type ends with a

variadic type:

(S-VARARG3)
Σ ` T1 ∪ nil <: T2

Σ ` T1∗ <: T2 × void

(S-VARARG4)
Σ ` T1 <: T2 ∪ nil

Σ ` T1 × void <: T2∗

(S-VARARG5)
Σ ` T1∗ <: T2 × void Σ ` T1∗ <: P2

Σ ` T1∗ <: T2 × P2

(S-VARARG6)
Σ ` T1 × void <: T2∗ Σ ` P1 <: T2∗

Σ ` T1 × P1 <: T2∗

Note that the case where both tuple types end with the type void does

not require any special rule. In the next section we will show that we use the

subtyping rules for variadic types, along with the types value and nil, to make

our type system reflect the semantics of Lua on discarding extra parameters

and replacing missing parameters.

Chapter 4. The type system 68

The subtyping rules for unions of tuple types are similar to the subtyping

rules for unions of first-level types:

(S-UNION4)
Σ ` S1 <: S Σ ` S2 <: S

Σ ` S1 t S2 <: S

(S-UNION5)
Σ ` S <: S1

Σ ` S <: S1 t S2

(S-UNION6)
Σ ` S <: S2

Σ ` S <: S1 t S2

Back to the subtyping rules between first-level types, the subtyping rule

among a fixed or closed table type and another closed table type resembles the

standard subtyping rule between records:

(S-TABLE1)
∀i ∈ 1..n ∃j ∈ 1..m Σ ` Kj <: K ′

i Σ ` K ′
i <: Kj Σ ` Vj <:c V

′
i

Σ ` {K1:V1, ..., Km:Vm}fixed|closed <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}closed
m ≥ n

The rule S-TABLE1 allows width subtyping and introduces the auxil-

iary relation <:c to handle depth subtyping on the type of the values stored

in the table fields. We need an auxiliary relation because the subtyping of the

type of the values stored in the table fields changes according to the tags of

the table types. We define the relation <:c as follows:

(S-FIELD1)
Σ ` V1 <: V2 Σ ` V2 <: V1

Σ ` V1 <:c V2

(S-FIELD2)
Σ ` V1 <: V2

Σ ` const V1 <:c const V2

(S-FIELD3)
Σ ` V1 <: V2

Σ ` V1 <:c const V2

These rules allow depth subtyping on const fields. The rule S-FIELD1

defines that mutable fields are invariant, while the rule S-FIELD2 defines

that immutable fields are covariant. The rule S-FIELD3 defines that it is

safe to promote fields from mutable to immutable. We do not include a rule

that allows promoting fields from immutable to mutable because this would

be unsafe due to variance.

There is a limitation on closed table types that led us to introduce open

and unique table types. If the table constructor had a closed table type, then

programmers would not be able to use it to initialize a variable with a table

type that describes a more general type. For instance,

local t:{"x":integer, "y":integer?} = { x = 1, y = 2 }

would not type check, as the type of the table constructor would not be a

Chapter 4. The type system 69

subtype of the type in the annotation. More precisely,

{“x” : 1, “y” : 2}closed 6<: {“x” : integer, “y” : integer ∪ nil}closed

Simply promoting the type of each table value to its supertype would not

overcome this limitation, as it still would give to the table constructor a closed

table type without covariant mutable fields. Thus, programmers would not be

able to use the table constructor to initialize a variable with a table type that

includes an optional field. Using the previous example,

{“x” : integer, “y” : integer}closed 6<:

{“x” : integer, “y” : integer ∪ nil}closed

We introduced unique table types to avoid this limitation, as they

represent the type of tables with no keys that do not inhabit one of the

table’s key types, and with no alias. In particular, this is the case of the table

constructor. The following subtyping rule defines the subtyping relation among

unique table types and closed table types:

(S-TABLE2)

∀i ∈ 1..m ∀j ∈ 1..n Σ ` Ki <: K ′
j → Σ ` Vi <:u V

′
j

∀j ∈ 1..n 6 ∃i ∈ 1..m Σ ` Ki <: K ′
j → Σ ` nil <:o V

′
j

Σ ` {K1:V1, ..., Km:Vm}unique <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}closed

The rule S-TABLE2 allows width subtyping and covariant keys. It

allows covariant keys because we also want to use unique table types as a

way to join table fields that inhabit closed table types. For instance, we want

to use the table constructor to initialize a variable with a table type that

describes a hash.

The rule S-TABLE2 introduced the auxiliary relations <:u and <:o. The

first allows depth subtyping on all fields, while the second allows the omission

of optional fields. We define them as follows:

(S-FIELD4)
Σ ` V1 <: V2
Σ ` V1 <:u V2

(S-FIELD5)
Σ ` V1 <: V2

Σ ` const V1 <:u const V2

(S-FIELD6)
Σ ` V1 <: V2

Σ ` V1 <:u const V2

(S-FIELD7)
Σ ` nil <: V

Σ ` nil <:o V

(S-FIELD8)
Σ ` nil <: V

Σ ` nil <:o const V

Using unique table types to represent the type of the table constructor

Chapter 4. The type system 70

allows our type system to type check the previous example. More precisely,

{“x” : 1, “y” : 2}unique <: {“x” : integer, “y” : integer ∪ nil}closed

Even though we allow width subtyping between unique and closed table

types, we do not allow it among unique and other table types because it would

violate our definition of these other table types:

(S-TABLE3)

∀i ∈ 1..m

∃j ∈ 1..n Σ ` Ki <: K ′
j ∧ Σ ` Vi <:u V

′
j

∀j ∈ 1..n 6 ∃i ∈ 1..m Σ ` Ki <: K ′
j → Σ ` nil <:o V

′
j

Σ ` {K1:V1, ..., Km:Vm}unique <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}unique|open|fixed

The rule that handles subtyping between open and closed table types

allows width subtyping:

(S-TABLE4)

∀i ∈ 1..m ∀j ∈ 1..n Σ ` Ki <: K ′
j → Σ ` Vi <:c V

′
j

∀j ∈ 1..n 6 ∃i ∈ 1..m Σ ` Ki <: K ′
j → Σ ` nil <:o V

′
j

Σ ` {K1:V1, ..., Km:Vm}open <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}closed

However, the rule that handles subtyping among open and open or fixed

table types does not allow width subtyping:

(S-TABLE5)

∀i ∈ 1..m

∃j ∈ 1..n Σ ` Ki <: K ′
j ∧ Σ ` Vi <:c V

′
j

∀j ∈ 1..n 6 ∃i ∈ 1..m Σ ` Ki <: K ′
j → Σ ` nil <:o V

′
j

Σ ` {K1:V1, ..., Km:Vm}open <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}open|fixed

The rules S-TABLE4 and S-TABLE5 allow joining fields plus omitting

optional fields. Both rules use <:c to allow depth subtyping on const fields

only.

We introduced fixed table types because we needed a safe way to represent

the type of classes that can allow single inheritance through the refinement of

table types. The rule that handles subtyping between fixed table types does

not allow width subtyping, joining fields, and omitting fields, but it allows

Chapter 4. The type system 71

depth subtyping on const fields:

(S-TABLE6)
∀i ∈ 1..n ∃j ∈ 1..n Σ ` Kj <: K ′

i Σ ` K ′
i <: Kj Σ ` Vj <:c V

′
i

Σ ` {K1:V1, ..., Kn:Vn}fixed <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}fixed

In the next section we will show in more detail how our type system uses

these tags to handle the refinement of table types.

We use the Amber rule [?] to define subtyping between recursive types:

(S-AMBER)
Σ[x1 <: x2] ` T1 <: T2
Σ ` µx1.T1 <: µx2.T2

(S-ASSUMPTION)
x1 <: x2 ∈ Σ

Σ ` x1 <: x2

The rule S-AMBER also uses the rule S-ASSUMPTION to check

whether µx1.T1 <: µx2.T2. Both rules use the set of assumptions Σ, where

each assumption is a pair of recursion variables. The rule S-AMBER extends

Σ with the assumption x1 <: x2 to check whether T1 <: T2. The rule S-

ASSUMPTION allows the rule S-AMBER to check whether an assumption

is valid.

A recursive type may appear inside a first-level type, and our type system

includes subtyping rules to handle subtyping between recursive types and other

first-level types:

(S-UNFOLDR)
Σ ` T1 <: [x 7→ µx.T2]T2

Σ ` T1 <: µx.T2

(S-UNFOLDL)
Σ ` [x 7→ µx.T1]T1 <: T2

Σ ` µx.T1 <: T2

As an example, the rule S-UNFOLDR allows our type system to type

check the function insert from Section ??:

local function insert (e:Element?, v:integer):Element

return { info = v, next = e }

end

that is, the type checker uses the rule S-UNFOLDR to verify whether the

type of the table constructor is a subtype of Element:

{“info” : integer,

“next” : µx.{“info” : integer, “next” : x ∪ nil}closed ∪ nil}unique <:

µx.{“info” : integer, “next” : x ∪ nil}closed

Chapter 4. The type system 72

Filter types are subtypes only of themselves and of value. More precisely,

a filter type φ(T1, T2) is a subtype of the same filter type φ(T1, T2), which shares

the same types T1 and T2, and it is also a subtype of value.

Projection types are subtypes only of themselves and of value. More

precisely, a projection type πx
i is a subtype of the same projection type πx

i ,

which shares the same union of tuples x and the same index i, and it is also a

subtype of value.

The dynamic type any is neither the bottom nor the top type, but a

separate type that is subtype only of itself and of value.

Even though the dynamic type any does not interact with subtyping, it

does interact with consistent-subtyping. We present the consistent-subtyping

rules as a deduction system for the consistent-subtyping relation Σ ` T1 . T2.

As in the subtyping relation, Σ is also a set of pairs of recursion variables. We

define the consistent-subtyping rules for the dynamic type any as follows:

(C-ANY1)

Σ ` T . any

(C-ANY2)

Σ ` any . T

If we had set the type any as both bottom and top types of our subtyping

relation, then any type T1 would be a subtype of any other type T2. The

consequence of this is that all programs would type check without errors. This

would happen due to the transitivity of subtyping, that is, we would be able

to down-cast any type T1 to any and then up-cast any to any other type T2.

The rules C-ANY1 and C-ANY2 are the rules that allow the dynamic type

to interact with other first-level types, and thus allow dynamically typed code

to coexist with statically typed code. Because of these two rules, consistent-

subtyping cannot be transitive. These two rules are the only rules that differ

between subtyping and consistent-subtyping, if we implement the subtyping

rules as we do in this section.

In the implementation of Typed Lua we also use consistent-subtyping

to normalize and simplify union types, though we let union types free in the

formalization. For instance, the union type boolean|any results in the type

any, because boolean is consistent-subtype of any. Another example is the

union type number|nil|1 that results in the union type number|nil, because

1 is consistent-subtype of number.

4.3 Typing rules

In this section we use a reduced core of Typed Lua to present the

most interesting rules of our type system. These rules type check multiple

Chapter 4. The type system 73

assignment, table refinement, and overloading on the return type of functions.

Appendix ?? presents the full set of typing rules.

Our core limits control flow to if and while statements; it has explicit

type annotations, explicit scope for variables, explicit method declarations,

and explicit method calls. Here is a list of features that are not present in our

reduced core:

– labels and goto statements (they are difficult to handle along with our

simplified form of flow typing, and they are out of scope for now);

– explicit blocks (we are already using explicit scope for variables);

– other loop structures such as repeat-until, numeric for, and generic for

(we can use while to express them);

– table fields other than [e1] = e2 (we can use this form to express the

missing forms);

– arithmetic operators other than + (other arithmetic operators have

similar typing rules);

– relational operators other than == and < (inequality has similar typing

rules to == and other relational operators have similar typing rules to

<);

– bitwise operators other than & (other bitwise operators have similar

typing rules).

Our reduced core does not lose much expressiveness, as it can express

any Lua program except those that use labels and goto statements.

Figure ?? presents the abstract syntax of core Typed Lua. It splits

the syntactic categories as follows: s are statements, e are expressions, l

are left-hand values, k are literal constants, el are expression lists, me are

expressions with multiple results, a are function and method applications, f

are function declarations, pl are parameter lists, id are variable names, T are

first-level types, and S are second-level types. The notation id:T denotes the

list id1:T1, ..., idn:Tn.

Our reduced core includes two statements for declaring local variables,

one with and another without type annotations. While we use the former to

formalize how our type system handles the declaration of annotated variables,

we use the latter to formalize how our type system handles the declaration of

unannotated variables through local type inference and also the introduction

of projection types.

Our reduced core also includes a truncation operator bc for function

applications, method applications, and the vararg expression. We use bac0 to

Chapter 4. The type system 74

Abstract Syntax

s ::= statements:
skip skip
| s1 ; s2 sequence

| l = el multiple assignment
| while e do s | if e then s1 else s2 control flow

| local id:T = el in s variable declaration

| local id = el in s variable declaration
| rec id:T = f in s recursive function
| return el return
| bac0 application with no results
| fun id1:id2 (pl):S s ; return el method declaration

e ::= expressions:
nil nil
| k other literals
| id variable access
| e1[e2] table access
| <T> id type coercion
| f function declaration

| { [e1] = e2 } | { [e1] = e2,me } table constructor
| e1 + e2 | e1 .. e2 | e1 == e2 | e1 < e2 binary operations
| e1 & e2 | e1 and e2 | e1 or e2 binary operations
| not e | # e unary operations
| bmec1 expressions with one result

l ::= left-hand values:
idl variable assignment
| e1[e2] table assignment
| id[k] <T> type coercion

k ::= literal constants:
false | true | int | float | string

el ::= expression lists:
e | e,me

me ::= multiple results:
a application
| ... vararg expression

a ::= applications:
e(el) function application
| e:n(el) method application

f ::= function declarations:
fun (pl):S s ; return el

pl ::= parameter lists:

id:T | id:T , ...:T

Figure 4.2: The abstract syntax of Typed Lua

Chapter 4. The type system 75

denote function and method applications that produce no value, because they

appear as statements. We use bmec1 to denote function applications, method

applications, and vararg expressions that produce only one value, even if they

return multiple values.

We also include two kinds of type coercions in our core language: the left-

hand value id[k] <T> and the expression <T> id. Both allow the refinement

of table types. We also split variable names into two categories to have safe

aliasing of tables in the presence of refinement. We use id when variable names

appear as expressions and idl when variable names appear as left-hand values.

Even though we can assign only first-level types to variables, functions

and methods can return unions of second-level types, and our type system

should be able to project these unions of second-level types into unions of

first-level types. We use two different environments to handle this feature. The

first environment is the type environment Γ that maps variables to first-level

types. We use Γ1[id 7→ T] to extend the environment Γ1 with the variable id

that maps to type T . The second environment is the projection environment

Π that maps projection variables to second-level types. We use Π[x 7→ S]

to extend the environment Π with the projection variable x that maps to

type S. In Section ?? we will show how our type system uses the projection

environment Π for handling projection types, and also for projecting unions of

second-level types into unions of first-level types.

We present the typing rules as a deduction system for two typing

relations, one for typing statements and another for typing expressions.

We use the relation Γ1,Π ` s,Γ2 for typing statements. This relation

means that given a type environment Γ1 and a projection environment Π, we

can check that a statement s produces a new type environment Γ2.

We use the relation Γ1,Π ` e : T,Γ2 for typing expressions. This relation

means that given a type environment Γ1 and a projection environment Π,

we can check that an expression e has type T and produces a new type

environment Γ2.

(a) Assignment and function application

Lua has multiple assignment, and our type system uses three different

kinds of typing rules to type check this feature. It uses typing rules that type

check the different forms of expression lists that can appear in the right-hand

side, a typing rule that type checks a list of left-hand values, and a general

rule that uses consistent-subtyping to check whether the type of the right-hand

side is consistent with the type of the left-hand side.

Chapter 4. The type system 76

As an example, lets assume that x and y are variables in the environment

with types integer and string. Let us see how our type system type checks

the following assignment:

x, y = 1, “foo”

First, our type system type checks the expression list in the right-hand

side of the assignment. In our example, the right-hand side of the assignment

has type 1 × “foo” × nil∗. Note that our type system includes the type nil∗
to replace missing values. The rules that type check expression lists introduce

the type nil∗ to let the right-hand side produce fewer values than expected

in the left-hand side. Our example uses the rule T-EXPLIST1 to type check

the right-hand side of the assignment. The rule T-EXPLIST1 is the rule that

type checks an expression list where all expressions can only produce a single

value:

(T-EXPLIST1)
Γ1,Π ` ei : Ti,Γi+1 Γf = merge(Γ1, ...,Γn+1) n = | e |

Γ1,Π ` e : T1 × ...× Tn × nil∗,Γf

In Section ?? we will show that table refinement can change the type

environment while typing an expression or a left-hand value. Thus, the rules

that type check lists of expressions and lists of left-hand values use a partial

auxiliary function merge to collect all environment changes in a new environ-

ment Γm, if there are no conflicts. In Section ?? we will also show that we can

only change the environment to add new table fields in a table type, and we

cannot change the type of a variable or a table field which is already present

in a table type.

After type checking the right-hand side, our type system type checks the

list of left-hand values. In our example, the left-hand side of the assignment

has type integer × string × value∗. Note that our type system uses the

type value∗ to discard extra values. The rule that type checks lists of left-

hand values introduces the type value∗ to let the right-hand side produce

more values than expected in the left-hand side. Our example uses the rule

T-LHSLIST to type check a list of left-hand values:

(T-LHSLIST)

Γ1,Π ` li : Ti,Γi+1 Γf = merge(Γ1, ...,Γn+1) n = | l |
Γ1,Π ` l : T1 × ...× Tn × value∗,Γf

After type checking the right-hand side and the left-hand side of an

assignment, our type system checks whether their types are consistent. The

Chapter 4. The type system 77

rule T-ASSIGNMENT is the general rule that expresses this idea:

(T-ASSIGNMENT)

Γ1,Π ` el : S1,Γ2 Γ2,Π ` l : S2,Γ3 S1 . S2

Γ1,Π ` l = el,Γ3

Back to our example, it type checks through rule T-ASSIGNMENT

because

1× “foo”× nil∗ . integer× string × value∗

As another example, lets assume that x, y, and z are variables in the

environment with types integer, string, and string ∪ nil. The assignment

x, y, z = 1, “foo”

type checks because

1× “foo”× nil∗ . integer× string × (string ∪ nil)× value∗

Note how nil∗ replaces any missing values. This example type checks

because nil∗ produces as many nil values as we need, and nil is consistent

with string ∪ nil, which is the type of z.

Conversely, the assignment

x = 1, “foo”

type checks because

1× “foo”× nil∗ . integer× value∗

Note how value∗ discards extra values. This example type checks because

value∗ discards as many extra values as we need, and “foo” is consistent with

value.

Our type system includes nil∗ in the type of an expression list only if

its type does not end in another variadic type T∗. For instance, the rules T-

EXPLIST2 and T-EXPLIST3 handle the case where an expression list ends

with an expression that may produce multiple values. The former rule includes

Chapter 4. The type system 78

the type nil∗, but the latter rule does not:

(T-EXPLIST2)

Γ1,Π ` ei : Ti,Γi+1 Γ1,Π ` me : Tn+1 × ...× Tn+m × void,Γn+2

Γf = merge(Γ1, ...,Γn+2) n = | e |
Γ1,Π ` e,me : T1 × ...× Tn+m × nil∗,Γf

(T-EXPLIST3)

Γ1,Π ` ei : Ti,Γi+1 Γ1,Π ` me : Tn+1 × ...× Tn+m∗,Γn+2

Γf = merge(Γ1, ...,Γn+2) n = | e |
Γ1,Π ` e,me : T1 × ...× Tn+m∗,Γf

Rules for function applications are similar to the rule for multiple

assignment. The rule T-APPLY1 handles the case where function applications

are expressions that produce multiple values:

(T-APPLY1)
Γ1,Π ` e : S1 → S2,Γ2 Γ2,Π ` el : S3,Γ3 S3 . S1

Γ1,Π ` e(el) : S2,Γ3

We also use the rule T-APPLY1 as the base case for the rules that han-

dle the cases where function applications are either statements that produce no

value or expressions that produce only one value. The rule T-STMAPPLY1

discards the produced values, while the rule T-EXPAPPLY1 uses the auxil-

iary function first to ensure that only one value is produced:

(T-STMAPPLY1)
Γ1,Π ` e(el) : S,Γ2

Γ1,Π ` be(el)c0,Γ2

(T-EXPAPPLY1)
Γ1,Π ` e(el) : S,Γ2

Γ1,Π ` be(el)c1 : first(S),Γ2

We can define first inductively as follows:

first(void) = nil

first(T∗) = T ∪ nil

first(T × P) = T

first(S1 t S2) = first(S1) ∪ first(S2)

As an example, let us assume that f is a local function in the environ-

ment, and that f has type string×(integer∪nil)×(integer∪nil)×value∗ →
integer∗. The function call

f(“foo”)

Chapter 4. The type system 79

type checks through the rule T-APPLY1, because

“foo”× nil∗ . string × (integer ∪ nil)× (integer ∪ nil)× value∗

and the function call

f(“foo”, 1, 2, 3)

also type checks through the rule T-APPLY1, because

“foo”× 1× 2× 3×nil∗ . string× (integer∪nil)× (integer∪nil)×value∗

Our type system also catches arity mismatch. To do that, we end the

input type of a function with type void instead of value∗. For instance, let us

assume that f has type string× (integer ∪ nil)× (integer ∪ nil)× void→
integer∗. The function call

f(“foo”)

type checks through the rule T-APPLY1, because

“foo”× nil∗ . string × (integer ∪ nil)× (integer ∪ nil)× void

but the function call

f(“foo”, 1, 2, 3)

does not type check through the rule T-APPLY1, because

“foo”× 1× 2× 3× nil∗ 6. string× (integer ∪ nil)× (integer ∪ nil)× void

We just mentioned that when our type system type checks an expression

list, it always includes nil∗ in the end of the type of this expression list if its

type does not end in a variadic type. This behavior preserves the semantics

of Lua on replacing missing values, and it is necessary when we omit optional

parameters in a function call, like the previous example showed.

Using nil∗ in the end of the type of expression lists also allows our type

system to catch arity mismatch in function calls without optional parameters.

For instance, let us assume that f has type integer × integer × void →
integer× void. The function call

f(1)

does not type check through the rule T-APPLY1, because

1× nil∗ 6. integer× integer× void

Chapter 4. The type system 80

and the function call

f(1, 2, 3)

also does not type check through the rule T-APPLY1, because

1× 2× 3× nil∗ 6. integer× integer× void

(b) Tables and refinement

Our abstract syntax reduces the syntactic forms of the table constructor

into two forms: { [e1] = e2 } and { [e1] = e2,me }. The first uses a list of table

fields ([e1] = e2)1, ..., ([e1] = e2)n. The second uses a list of table fields and an

expression that can produce multiple values.

The simplest expression involving tables is the empty table constructor.

Its type checking rule is straightforward:

(T-CONSTRUCTOR1)

Γ1,Π ` {} : {}unique,Γ1

As a more interesting example, let us see how our type system type checks

the table constructor {[1] = “x”, [2] = “y”, [3] = “z”}.
First, our type system uses the auxiliary relation Γ1,Π ` [e1] = e2 :

(K,V),Γ2 to type check each table field. This auxiliary relation means that

given a type environment Γ1 and a projection environment Π, checking a table

field [e1] = e2 produces a pair (K,V) and a new type environment Γ2. A pair

(K,V) means that e1 has type K and e2 has type V , where K is the type of

the key and V is the type of the value.

After type checking each table field, our type system uses each pair (K,V)

to build the table type that express the type of a given constructor, and uses

the predicate wf to check whether this table type is well-formed. Formally, a

table type is well-formed if it obeys the following rule:

∀i 6 ∃j i 6= j ∧Ki . Kj

Well-formed table types avoid ambiguity. For instance, this rule detects

that the table type {1 : number, integer : string, any : boolean} is

ambiguous, because the type of the value stored by key 1 can be number,

string, or boolean, as 1 . 1, 1 . integer, and 1 . any. Moreover, the type

of the value stored by a key of type integer, which is not the literal type 1,

can be number or boolean, as integer . integer, and integer . any.

Well-formed table types also do not allow unique and open table types

Chapter 4. The type system 81

to appear in the type of the values. We made this restriction because our type

system does not keep track of aliases to table fields. This means that allowing

unique and open table types to appear in the type of a value would allow

the creation of unsafe aliases. The rules that type check table fields use the

auxiliary function close to close the type of the values in a table type.

The rule T-CONSTRUCTOR2 uses these steps to type check a table

constructor with a non-empty list of table fields:

(T-CONSTRUCTOR2)

Γ1,Π ` ([e1] = e2)i : (Ki, Vi),Γi+1

T = {K1:V1, ..., Kn:Vn}unique wf(T) n = | [e1] = e2 |
Γf = merge(Γ1, ...,Γn+1)

Γ1,Π ` { [e1] = e2 } : T,Γf

Back to our example, the constructor {[1] = “x”, [2] = “y”, [3] = “z”}
has type {1 : “x”, 2 : “y”, 3 : “z”}unique through rule T-CONSTRUCTOR2.

As another example, the constructor {[“x”] = 1, [“y”] = {[“z”] = 2}} has

type {“x” : 1, “y” : {“z” : 2}closed}unique through rule T-CONSTRUCTOR2.

The inner table is closed to prevent the creation of unsafe aliases.

After presenting some typing rules of the table constructor, we start the

discussion of the rules that define the most unusual feature of our type system:

the refinement of table types. The first kind of refinement allows programmers

to add new fields to unique or open table types through field assignment. For

instance, in Section ?? we presented the following example:

local person = {}

person.firstname = "Lou"

person.lastname = "Reed"

We can translate this example to our reduced core as follows:

local person = {} in

person[“firstname”] <string> = “Lou”;

person[“lastname”] <string> = “Reed”

In this example, we assign the type {}unique to the variable person, then

we refine its type to {“firstname” : string}unique, and then we refine its type

to {“firstname” : string, “lastname” : string}unique. Rule T-REFINE type

checks this use of refinement:

(T-REFINE)

Γ1(id) = {K1:V1, ..., Kn:Vn}open|unique
Γ1,Π ` k : K,Γ2 6 ∃i ∈ 1..n K . Ki V = close(T)

Γ1,Π ` id[k]<T> : V,Γ2[id 7→ {K1:V1, ..., Kn:Vn, K:V }open|unique]

Chapter 4. The type system 82

We restricted the refinement of table types to include only literal keys,

because its purpose is to make it easier the construction of table types that

represent records.

We use the refinement of table types to handle the declaration of new

global variables. In Lua, the assignment v = v + 1 translates to _ENV["v"]

= _ENV["v"] + 1 when v is not a local variable, where _ENV is a table that

stores the global environment. For this reason, Typed Lua treats accesses to

global variables as field accesses to an open table in the top-level scope. In the

following examples we assume that ENV is in the environment and has type

{}open.

As an example,

ENV [“x”] <string> = “foo” ; ENV [“y”] <integer> = 1

uses field assignment to add fields “x” and “y” to ENV . Therefore, after these

field assignments ENV has type {“x” : string, “y” : integer}open.

We do not allow the refinement of table types to add a field if it is already

present in the table’s type. For instance,

ENV [“x”] <string> = “foo” ; ENV [“x”] <integer> = 1

does not type check, as we are trying to add “x” twice.

We also do not allow the refinement of table types to introduce fields

with table types that are not closed. For instance,

ENV [“x”] <{}unique> = {}

refines the type of ENV from {}open to {“x” : {}closed}open. Currently, our

type system can only track unique and open table types that are bound to

local variables.

We can also use multiple assignment to refine table types:

ENV [“x”] <string>, ENV [“y”] <integer> = “foo”, 1

This example type checks because all the environment changes are

consistent, and “foo”× 1× nil∗ . string× integer× value∗. By consistent

we mean that we are only adding new fields. Nevertheless, the next example

does not type check because it tries to add the same field to ENV , but with

different types:

ENV [“x”] <string>, ENV [“x”] <integer> = “foo”, 1

Chapter 4. The type system 83

Aliasing an unique or an open table type can produce either a closed or

a fixed table type, depending on the context that we are using a variable. As

we mentioned in Sections ?? and ??, we need fixed table types to type classes

in object-oriented programming. In the implementation we fix the aliasing of

unique and open table types that appear in a top-level return statement, and

in other cases we close the aliasing of unique and open table types. However, in

the formalization we chose to define this behavior in a not deterministic way,

as it makes easier the presentation of this behavior.

As an example,

local a : {}unique = {} in

local b : {}open = a in

a[“x”] <string> = “foo”;

b[“x”] <integer> = 1

does not type check, as aliasing a produces the type {}closed that is not a

subtype of {}open, the type of b. Our type system has this behavior to warn

programmers about potential unsafe behaviors after this kind of alias. In this

example, it is unsafe to add the field “x” to b, as it changes the value that is

stored in the field “x” of a.

Rules T-IDREAD1 and T-IDREAD2 define this non-deterministic

behavior. Rule T-IDREAD1 uses the auxiliary function close to produce a

closed alias. It also uses the auxiliary function open to change the type of the

original reference from unique to open, because aliasing an unique table type

while keeping the original reference unique can be unsafe. Rule T-IDREAD2

uses the auxiliary function fix to produce a fixed alias. It also uses fix to change

the type of the original reference to fixed, because a fixed table type does not

allow width subtyping. We define these rules as follows:

(T-IDREAD1)
Γ1(id) = T1 T2 = read(Π, T1)

Γ1,Π ` id : close(T2),Γ1[id 7→ open(T1)]

(T-IDREAD2)
Γ1(id) = T1 T2 = read(Π, T1)

Γ1,Π ` id : fix(T2),Γ1[id 7→ fix(T1)]

Both rules use the auxiliary function read because they may be accessing

an identifier that is bound to a filter or projection type. As we mentioned

in Section ??, our type system includes a small set of type predicates that

allow programmers to discriminate union types, and our type system uses

filter and projection types in the definition of these predicates to handle the

Chapter 4. The type system 84

discrimination of unions types. While filter types discriminate unions of first-

level types, projection types discriminate unions of second-level types and

project unions of second-level types into unions of first-level types. We can

define read as follows:

read(Π, φ(T1, T2)) = T2

read(Π, πx
i) = proj(Π(x), i)

read(Π, T) = T

The function read uses the auxiliary function proj to project a union of

first-level types, based on an union of second-level types and an index from

a projection type. In Section ?? we will discuss how our type system uses

projection types to handle overloaded return types. We can define proj as

follows:

proj(T1 × ...× Tn × T∗, i) = Ti if i <= n

proj(S1 t S2, i) = proj(S1, i) ∪ proj(S2, i)

We also need to close unique and open tables that appear in the left-hand

side of assignments, as leaving them unique and open would allow the creation

of unsafe references.

As an example,

local a : {}unique = {} in

local b : {}open = {} in

b = a;

a[“x”] <string> = “foo”;

b[“x”] <integer> = 1

does not type check because we cannot add the field “x” to b, as its type is

closed. Aliasing a changes the type of a from unique to open, and that is the

reason why we can add the field “x” to the type of a. Aliasing a also produces

the type {}closed, which is the same type that b has in left-hand side of the

assignment. After the assignment, the type of b is closed and thus does not

allow changing the value that is stored in the field “x” of a.

Rule T-IDWRITE defines this behavior:

(T-IDWRITE)
Γ1(id) = T1 T2 = write(T1)

Γ1,Π ` idl : close(T2),Γ1[id 7→ close(T2)]

Chapter 4. The type system 85

This rule uses the auxiliary function write because it may be accessing

an identifier that is bound to a filter type. As we mentioned in Sections ?? and

??, assignments restore discriminated union types to their original types, and

function write works in this purpose. We can define write as follows:

write(φ(T1, T2)) = T1

write(T) = T

Our type system also has different rules for type checking table indexing

to avoid changing table types in these operations, as they cannot create aliases:

(T-INDEX1)

Γ1(id) = T read(Π, T) = {K1:V1, ..., Kn:Vn}
Γ1,Π ` e2 : K,Γ2 ∃i ∈ 1..n K . Ki

Γ1,Π ` id[e2] : Vi,Γ2

(T-INDEX2)

Γ1,Π ` e1 : {K1:V1, ..., Kn:Vn},Γ2

Γ2,Π ` e2 : K,Γ3 ∃i ∈ 1..n K . Ki

Γ1,Π ` e1[e2] : Vi,Γ3

A second form of refinement happens when we want to use an unique or

open table type in a context that expects a fixed or closed table type with a

different shape. This kind of refinement allows programmers to add optional

fields or merge existing fields. To do that, Typed Lua includes a type coercion

expression <T> id. For instance, we can use this type coercion expression to

make the following example type check:

local a : {}unique = {} in

a[“x”] <string> = “foo”;

a[“y”] <string> = “bar”;

local b : {“x” : string, “y” : string ∪ nil}closed =

<{“x” : string, “y” : string ∪ nil}open> a in a[“z”] <integer> = 1

We can use a to initialize b because the coercion converts the type of a

from {“x” : string, “y” : string}unique to {“x” : string, “y” : string∪nil}open,

and results in {“x” : string, “y” : string ∪ nil}closed, which is a subtype of

{“x” : string, “y” : string∪nil}closed, the type of b. We can continue to refine

the type of a after aliasing it to b, as it still holds an open table. At the end of

this example, a has type {“x” : string, “y” : string ∪ nil, “z” : integer}open.

Chapter 4. The type system 86

Rule T-COERCE defines the behavior of the type coercion expression:

(T-COERCE)
Γ1(id) <: T Γ1[id 7→ T],Π ` id : T1,Γ2

Γ1,Π ` <T> id : T1,Γ2

Note that rule T-COERCE only allows changing the type of a variable

if the new type is a supertype of the previous type, and the resulting type is

always fixed or closed to prevent the creation of unsafe aliases.

We also need to make sure to close all unique and open table types before

we type check a nested scope. To do that, our type system uses some auxiliary

functions to change the type of variables before type checking a nested scope

and also to change the type of assigned and referenced variables after type

checking a nested scope. The function crall closes all unique and open table

types; it also restores filter types to their original types. The function crset

closes a given set of free assigned variables, which is given by the function

fav, and it also uses this set to restore filter types to their original types.

The function openset changes from unique to open a given set of referenced

variables, which is given by the function rv.

As an example,

local a : {}unique, b : {}unique = {}, {} in

local f : integer× void→ integer× void =

fun (x : integer) : integer× void

b = a ; return x+ 1

in a[“x”] <integer> = 1 ; b[“x”] <string> = “foo” ; f(a[“x”])

does not type check because we cannot add the field “x” to b, as its type is

closed. The assignment b = a type checks because, at that point, a and b have

the same type: {}closed. Their type was closed by crall before type checking the

function body. Their type would be restored to {}unique after type checking

the function body, but that assignment also triggers other two type changes.

First, the function fav includes b in the set of variables that should be closed

by crset. Then, the function rv includes a in the set of variables that should

change from unique to open by openset. After declaring f , a has type {}open
and b has type {}closed, so we can refine the type of a, but we cannot refine the

type of b.

Rule T-FUNCTION1 illustrates this case:

(T-FUNCTION1)

crall(Γ1[id 7→ T]),Π[ρ 7→ S] ` s,Γ2

Γ3 = openset(crset(Γ1, fav(fun (id:T):S s)), rv(fun (id:T):S s))

Γ1,Π ` fun (id:T):S s : T × void→ S,Γ3

Chapter 4. The type system 87

This rule also extends the environment Π, bounding the special variable

ρ to the return type S. Rule T-RETURN uses the type that is bound to ρ in

Π to type check return statements:

(T-RETURN)
Γ1 ` el : S1,Γ2 Π(ρ) = S2 S1 . S2

Γ1 ` return el,Γ2

(c) Projections

Lua programmers often overload the return type of functions to denote

errors, and our type system uses projection types to handle this idiom.

As an example, let us assume that idiv and print are functions in the

environment. The function idiv has type

integer×integer×void→ (integer×integer×void)t(nil×string×void)

As we mentioned in Section ??, idiv performs integer division. In case of

success, it returns two integers: the result and the remainder. In case of failure,

it returns nil plus an error message that describes the error. The function print

is a variadic function of type value∗ → void. Let us see how our type system

type checks the following program:

local q, r = idiv(1, 2) in

if q then bprint(q + r)c0 else bprint(“ERROR : ” .. r)c0

First, our type system uses the auxiliary relation Γ1,Π ` el :

S1,Γ2, (x, S2) for type checking idiv(1, 2). This relation means that given a

type environment Γ1 and a projection environment Π, we can check that an

expression list el has type S1 and produces a new type environment Γ2 and

produces a pair (x, S2). This pair means that the last expression of an expres-

sion list el produces an union of second-level types S2 that should be bound

to a variable x in the projection environment Π, as the resulting type of this

expression is a tuple of projection types πx
i . In our example, our type system

uses rule T-EXPLIST4 for type checking idiv(1, 2):

(T-EXPLIST4)

Γ1,Π ` ei : Ti,Γi+1 Γ1,Π ` me : S,Γn+2

S = Tn+1 × ...× Tn+m × void t T ′
n+1 × ...× T ′

n+m × void

Γf = merge(Γ1, ...,Γn+2) n = | e |
Γ1,Π ` e,me : T1 × ...× Tn × πx

1 × ...× πx
m × nil∗,Γf , (x, S)

Chapter 4. The type system 88

Note that idiv(1, 2) has type πx
1 × πx

2 × nil∗ and produces the pair

(x, (integer× integer× nil∗) t (nil× string × nil∗))

In the rule that type checks the declaration of unannotated variables, our

type system uses the pair (x, S2) to bound a union of second-level types S2 to

a variable x in the projection environment Π. In our example, declaring q and

r bounds the projection type πx
1 to q and bounds the projection type πx

2 to r,

where the projection variable x bounds to

(integer× integer× nil∗) t (nil× string × nil∗)

in the projection environment Π. Rule T-LOCAL2 illustrates this intuition:

(T-LOCAL2)

Γ1,Π ` el : S1,Γ2, (x, S2)

Γ2[id1 7→ infer(S1, 1), ..., idn 7→ infer(S1, n)],Π[x 7→ S2] ` s,Γ3 n = | id |
Γ1,Π ` local id = el in s,Γ3 − {id}

This rule uses the auxiliary function infer to get the most general first-

level types of each variable that should be introduced in the type environment

for type checking s. After type checking the statement s, rule T-LOCAL2

produces a new type environment Γ3 without the variables that it introduced

before type checking s. We can define infer as follows:

infer(T1 × ...× Tn∗, i) =

{
general(Ti) if i < n

general(Tn ∪ nil) if i >= n

general(false) = boolean

general(true) = boolean

general(int) = integer

general(float) = number

general(string) = string

general(T1 ∪ T2) = general(T1) ∪ general(T2)

general(S1 → S2) = general2(S1)→ general2(S2)

general({K1:V1, ..., Kn:Vn}tag) = {K1:general(V1), ..., Kn:general(Vn)}tag
general(µx.T) = µx.general(T)

general(T) = T

Chapter 4. The type system 89

general2(void) = void

general2(T∗) = general(T)∗

general2(T × P) = general(T)× general2(P)

general2(S1 t S2) = general2(S1) t general2(S2)

After assigning projection types to q and r, reading q will use the

projection type πx
1 to project the type of q into the union type integer ∪ nil,

while reading r will use the projection type πx
2 to project the type of r into

the union type integer ∪ string. Now, we may want to discriminate these

variables to check whether the function call returned with success.

Introducing a projection variable x in the projection environment allows

our type system to discriminate projection types πx
i . The rule T-IF3 shows

the case where our type system discriminates a projection type based on the

tag nil:

(T-IF3)

Γ1(id) = πx
i Π(x) = S

closeall(Γ1),Π[x 7→ fpt(S,nil, i)] ` s1,Γ2

closeall(Γ1),Π[x 7→ gpt(S,nil, i)] ` s2,Γ3

Γ4 = openset(closeset(Γ1, fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if id then s1 else s2,Γ4

Rule T-IF3 uses the auxiliary functions fpt and gpt to filter a projection

x, affecting all variables that bind to the same projection. For instance,

our previous example type checks through rule T-IF3, because it uses the

information provided by the projection type πx
1 , which is the type of q, to

make the rule T-IF3 use the function call

fpt((integer× integer× nil∗) t (nil× string × nil∗),nil, 1)

to discriminate the projection x to the single tuple integer× integer× nil∗
inside the if branch, and the function call

gpt((integer× integer× nil∗) t (nil× string × nil∗),nil, 1)

to discriminate the projection x to the single tuple nil×string×nil∗ inside the

else branch. Thus, reading q and r projects πx
1 to integer and πx

2 to integer

inside the if branch, but it projects πx
1 to nil and πx

2 to string inside the else

branch. Outside the condition, q and r use the original projection, that is, they

Chapter 4. The type system 90

project to integer ∪ nil and integer ∪ string, respectively.

5
Evaluation

We performed some case studies on existing Lua libraries to evaluate

the design of our type system. For each library, we used Typed Lua to either

annotate its modules or to write statically typed interfaces to its modules

through Typed Lua’s description files. In this chapter we present our evaluation

results and discuss some interesting cases.

The Lua Standard Library [?] was our first case study. We started to

think about how we would type its modules at the same time that we started

to design our type system, as it could give us some hints on our type system.

And it did: optional parameters and overloading on the return type are two

Lua features that our type system should handle to allow us typing some of

the functions that the standard library implements.

The second case study that we chose was the MD5 library [?], because

we wanted a simple case study to introduce Typed Lua’s description files and

userdata declarations. These Typed Lua’s mechanisms allow programmers to

give statically typed interfaces to Lua libraries.

LuaSocket [?] and LuaFileSystem [?] were the third and fourth case

studies that we used to evaluate Typed Lua. We chose them because they are

the most popular Lua libraries. We wrote a script that builds the dependency

graph of Lua libraries that are in the LuaRocks repository, and uses this

dependency graph to identify the most popular Lua libraries.

We also randomly selected three case studies from the LuaRocks reposi-

tory, they are: HTTP Digest [?], Typical [?], and Mod 11 [?]. The first provides

client side HTTP digest authentication for Lua. The second is an extension to

the primitive function type. The third is a generator and checker of modulo

11 numbers. We randomly selected three case studies because we wanted to

evaluate Typed Lua for annotating existing libraries that are written in Lua,

as the previous case studies are mostly libraries that are written in C.

The Typed Lua compiler is the last case study that we evaluated. We

chose it as a case study because it is a large application. Besides, it is a case

study that evaluates the evolution of a script to a program.

We used these case studies to evaluate two aspects of Typed Lua:

Chapter 5. Evaluation 92

1. how precisely it can describe the type of the interface of a module;

2. whether it provides guarantees that the code matches the interface.

Case study easy poly over hard Total
Lua Standard Library 64% 5% 8% 23% 129
MD5 100% 0% 0% 0% 13
LuaSocket 89% 1% 2% 8% 123
LuaFileSystem 89% 0% 11% 0% 19
HTTP Digest 0% 0% 100% 0% 1
Typical 100% 0% 0% 0% 1
Modulo 11 78% 0% 0% 22% 9
Typed Lua Compiler 93% 0% 1% 6% 154

Table 5.1: Evaluation results for each case study

Table ?? summarizes our evaluation results for each of the case studies

that we used Typed Lua for typing their members. An exported member is

any Lua value that a module might export. We split the members of each

case study into four categories: easy, poly, over, and hard. In the next four

paragraphs we explain each category in more detail. The last column of the

table shows the total number of members of each case study.

The easy category shows the percentage of members that we could give

a precise static type. For instance, the function string.len from the Lua

standard library is in this category because we could use Typed Lua to describe

its type: (string) -> (integer). This function returns the length of a given

string. Note that the results that we obtained for this category give a lower

bound on how much static type safety we could add to each one of our case

studies.

The poly category shows the percentage of members that we made

minimal use of the dynamic type as a replacement for the lack of type

parameters. For instance, the function table.sort from the Lua standard

library is in this category because it is a generic function. This function sorts a

given list of elements, which is a generic list. However, we had to assign to this

function the type ({any}, nil|(any, any) -> (boolean)) -> () because

Typed Lua does not have parametric polymorphism.

The over category shows the percentage of members that we gave a static

type that is not precise enough, as these members are overloaded functions that

require intersection types to describe their precise static types. For instance,

the function math.abs from the Lua standard library is in this category because

it has two types: (integer) -> (integer) and (number) -> (number). This

Chapter 5. Evaluation 93

function returns the absolute value of a given number, which can be either

integer or float. Even though we gave this function the more general type

(number) -> (number), it is not precise enough because the return type is

always number independently of the argument type. In other words, the return

type should be integer when the argument type is also integer, and the

return type should be number when the argument type is also number. However,

we cannot give such a precise type to this function because Typed Lua does

not support overloaded functions.

The hard category shows the percentage of members that we could not

give a precise static type. For instance, the function assert from the Lua

standard library is in this category because it can return any number of values

of any type, being difficult to type this behavior. Still, we gave this function

the type (value*) -> (any*).

In the following sections we discuss each case study in more detail. For

each case study, we split the evaluation results according to the modules that

each one of them include. We use these split results to discuss the contributions

and limitations of our type system.

5.1 Lua Standard Library

All of the modules in the standard library are implemented in C, so we

used Typed Lua to type just the interface of each module. The debug module

is the only one that we did not include in our evaluation results, because it

provides several functions that violate basic assumptions about Lua code [?].

For instance, we can use the function debug.setlocal to change the value of

a local variable that is not visible in the current scope. Table ?? summarizes

the evaluation results for the Lua Standard Library (version 5.3).

Module easy poly over hard Total
base 35% 4% 8% 53% 26

coroutine 14% 0% 0% 86% 7
package 62% 0% 0% 38% 8
string 75% 0% 0% 25% 16
utf8 100% 0% 0% 0% 6
table 14% 72% 14% 0% 7
math 81% 0% 19% 0% 27

io 81% 0% 0% 19% 21
os 82% 0% 18% 0% 11

Table 5.2: Evaluation results for Lua Standard Library

The base module was very difficult to type because it includes several

Chapter 5. Evaluation 94

functions that rely on reflection, as the hard category shows. For instance, the

functions pairs and getmetatable are in this category. While pairs traverses

all keys and values that are stored in a given table, getmetatable returns the

metatable of a given table.

There are some functions in the base module that we could not give

a precise static type because our type system does not have parametric

polymorphism, as the poly category shows. This is the case of ipairs.

The base module also includes some overloaded functions, as the over

category shows. We could not type these functions because our type sys-

tem does not include intersection types. This is the case of tonumber and

collectgarbage.

In the case of tonumber, it has two different types: (value) ->

(number) and (string, integer) -> (number). This means that the type

of the first parameter depends on the type of the second parameter. For in-

stance, we can call tonumber(1), but we cannot call tonumber(1,2). Note

that the first argument of tonumber can be a value of any type if it is the only

argument, but it must be a string if there is a second argument, which must

be an integer.

In the case of collectgarbage, the return type changes according to an

input literal string. For instance, calling collectgarbage("collect") returns

an integer, calling collectgarbage("count") returns a floating point, and

calling collectgarbage("isrunning") returns a boolean.

The coroutine module was also very difficult to type because our type

system cannot describe the computational effects of a program. The hard

category shows the amount of functions that we could not give a precise static

type for this reason. Lua has one-shot delimited continuations [?] in the form

of coroutines [?], and effect systems [?] are an approach that we could use to

describe control transfers with continuations. However, for now, coroutines are

out of scope of our type system, and we use an empty userdata declaration

to represent the type thread.

Still, we could give a precise static type to one function in the coroutine

module, as the easy category shows. The function coroutine.isyieldable

has no input parameters, and it simply returns a boolean that indicates

whether the running coroutine is yieldable.

We could give precise static types to the constants and functions of

the package module, but we could not give precise static types to the

following tables that it exports: package.loaded, package.preload, and

package.loaders. The first stores loaded modules, while the others store

module loaders. They are difficult to type because their types rely on reflection,

Chapter 5. Evaluation 95

that is, their types depend on the modules a program loads. For this reason,

they are in the hard category.

We could give precise static types to most of the functions of the string

module, but we could not give precise static types to the functions that rely

on format strings. For instance, the type of the arguments that we pass to

string.format must match the format string we are using. It is fine to call

string.format("%d", 1), but string.format("%d", true) raises a run-

time error. These functions that rely on format strings are in the hard category.

The utf8 module was straightforward to type, as its members are only

operations over strings.

The table module was specially difficult to type because most of its

functions require parametric polymorphism, as the poly category shows. These

functions either receive or return a list of elements, and parametric polymor-

phism would help us to describe them with a generic type.

However, the lack of parametric polymorphism did not prevent us from

giving a precise type to one function of the table module, as the easy category

shows. We could give a precise static type to table.concat, as it operates over

lists where all elements are strings or numbers.

Even if our type system had parametric polymorphism, there is still one

function of the table module that we could not give a precise static type

because it is an overloaded function, as the over category shows. This function

is table.insert, and its type depends on the calling arity. That is, calling

table.insert(l, v) inserts the element v at the end of the list l, while

table.insert(l, p, v) inserts the element v at the position p of the list l,

and generates a run-time error when p is out of bounds. This function also does

not follow the semantics of Lua on discarding extra arguments, and generates

a run-time error whenever we pass more than three arguments, even if the first

three arguments match its signature.

Even though the math module looks straightforward to type, the over

category shows that it includes several overloaded functions. For instance, the

function math.random is in this category because it has two different types:

() -> (number) and (integer, integer?) -> (integer). This means that

the type of math.random depends on the calling arity. Calling math.random()

returns a random floating point between 0 and 1. Calling math.random(10)

is equivalent to math.random(1,10), and returns an integer between this

interval. Like table.insert, this function also does not follow the semantics

of Lua on discarding extra arguments, and generates a run-time error whenever

we pass more than two arguments.

The io module provides operations for manipulating files, and these

Chapter 5. Evaluation 96

operations can use implicit or explicit file descriptors. The implicit operations

are functions in the io table, while the explicit operations are methods of a

file descriptor. We used an userdata declaration to introduce the type file

for representing the type of a file descriptor and its methods. The evaluation

results include both implicit and explicit operations.

We could give precise static types to most of the members of the io

module, but the hard category shows that it includes some members that we

could not give a precise static type. The functions io.read and io.lines are

in the hard category along with the methods file:read and file:lines.

We could not precisely type io.read because its return type relies on

format strings. For instance, calling io.read("l") returns a string or nil,

io.read("n") returns a number or nil, and io.read("l", "n") returns a

string or nil and a number or nil. The function io.lines, and the methods

file:read and file:lines have the same issue.

There are two functions in the os module that we could not give a precise

static type because they are overloaded functions. The functions that are in

the over category are os.date and os.execute.

The evaluation results show that our type system should include inter-

section types, parametric polymorphism, and effect types, as these features

would help us increase the static typing of the Lua Standard Library. Inter-

section types would allow us to define overloaded function types. Parametric

polymorphism would allow us to define generic function and table types. Effect

types would allow us to type coroutines.

5.2 MD5

The MD5 library is an OpenSSL based message digest library for Lua.

It contains just the md5 module that is written in C, so we used Typed Lua’s

description file to type it. Table ?? summarizes the evaluation results for MD5.

Module easy poly over hard Total
md5 100% 0% 0% 0% 13

Table 5.3: Evaluation results for MD5

Even tough it was straightforward to type the MD5 library, we found

a little difference between its documentation and its behavior. The documen-

tation suggests that the type of md5.update is (md5_context, string) ->

(md5_context), though there is a call to this function in the test script that

passes an extra string argument. Reading the source code, we found that its

Chapter 5. Evaluation 97

actual type is (md5_context, string*) -> (md5_context), that is, we can

pass zero or more strings to md5.update.

This case study shows that type annotations help programmers maintain

the documentation updated, as the type checker always validates them.

5.3 LuaSocket

LuaSocket is a library that adds network support to Lua, and it is split

into two parts: a core that is written in C and a set of Lua modules. The C core

provides TCP and UDP support, while the Lua modules provide support for

SMTP, HTTP, and FTP client protocols, MIME encoding, URL manipulation,

and LTN12 filters [?]. We used Typed Lua’s description files to type both parts,

as we also wanted to use LuaSocket to test description files to statically type

the interface of modules that are written in Lua. Table ?? summarizes the

evaluation results for LuaSocket.

Module easy poly over hard Total
socket 83% 0% 0% 17% 60

ftp 83% 0% 17% 0% 6
http 80% 0% 20% 0% 5
smtp 100% 0% 0% 0% 7
mime 100% 0% 0% 0% 17
ltn12 95% 5% 0% 0% 20
url 100% 0% 0% 0% 8

Table 5.4: Evaluation results for LuaSocket

We could give precise static types to most of the members in the socket

module, which is the C core. However, this module includes some functions

that we could not give a precise static type because they rely on reflection, as

the hard category shows. For instance, socket.skip is a function that is in this

category. We can use this function to choose the number of values that we want

to return. As an example, calling socket.skip(1, nil, "hello") returns

only the string "hello", because 1 indicates that we do not want to return

the first value. Passing a negative number to socket.skip can be dangerous,

as it returns anything that might be in the stack. As an example, calling

socket.skip(-1, nil, "hello") returns the tuple (-1, nil, "hello"),

because -1 makes socket.skip not skip any values. As another example, the

code f = socket.skip(-2) assigns socket.skip to f, as -2 gets socket.skip

from the stack. Our type system cannot handle the type of negative numbers,

as this requires more complex types such as the refinement types from hybrid

type checking [?].

Chapter 5. Evaluation 98

We could give precise static types to most of the members of the modules

ftp and http, but we could not precisely type two overloaded functions:

ftp.get and http.request.

The function ftp.get downloads data from a given URL, which can

be either a string or a table. More precisely, ftp.get(url) returns the

tuple (string) | (nil, string) if url is a string, and it returns the tuple

(number) | (nil, string) if url is a table.

The function http.request downloads data from a given URL, which

can be either a string or a table. More precisely, http.request(url, body)

returns the tuple type (string, number, {string:string}, number) |

(nil, string) if url is a string and body is another string or nil, but

it returns the tuple type (number, number, {string:string}, number) |

(nil, string) if url is a table and body is nil.

The modules mime and ltn12 have a strong connection. The mime

module offers low-level and high-level filters that apply and remove some text

encodings. The low-level filters are written in C, while the high-level filters use

the function ltn12.filter.cycle along with the low-level filters to create

standard filters.

Even though we could type all the members of the mime module, the

function ltn12.filter.cycle is the only member of the ltn12 module that

we could not give a precise type. This function is difficult to type because it

is polymorphic.

The modules smtp and url were straightforward to type. The smtp mod-

ule provides functions that send e-mails. The url module provides functions

that manipulate URLs.

5.4 LuaFileSystem

LuaFileSystem is a library that extends the set of functions for manip-

ulating file systems in Lua. It contains just the lfs module that is written in

C, so we used Typed Lua’s description files to type it. Table ?? summarizes

the evaluation results for LuaFileSystem.

Module easy poly over hard Total
lfs 89% 0% 11% 0% 19

Table 5.5: Evaluation results for LuaFileSystem

Even though we could precisely type most of the functions exported by

the lfs module, we could not type two overloaded functions due to the lack

of intersection types in our type system.

Chapter 5. Evaluation 99

5.5 HTTP Digest

The HTTP Digest library implements client side HTTP digest authenti-

cation for Lua. Table ?? summarizes the evaluation results for HTTP Digest.

Module easy poly over hard Total
http-digest 0% 0% 100% 0% 1

Table 5.6: Evaluation results for HTTP Digest

It is difficult to type the interface of the http-digest module because

it is an extension to the http module from LuaSocket. The http-digest

module only exports the function http-digest.request, which extends

the function http.request with MD5 authentication. Like http.request,

http-digest.request is also an overloaded function.

Even though we could not precisely type the interface that http-digest

exports, we could use only static types to annotate this module, and they

pointed a bug in the code. The problem was related to the way the library was

loading the MD5 library that should be used. This part of the code checks the

existence of three different MD5 libraries in the system, and uses the first one

that is available, or generates an error when none is available. The code that

loads the first option was fine, but the code that loads the second and third

options were trying to access an undefined global variable.

5.6 Typical

Typical is a library that extends the behavior of the function type. Table

?? summarizes the evaluation results for Typical.

Module easy poly over hard Total
typical 100% 0% 0% 0% 1

Table 5.7: Evaluation results for Typical

The interface of the typical module is straightforward to type, as it

contains only the function typical.type, which has the same type of the

function type: (value) -> (string).

However, we hit some limitations of our type system while annotating

this module.

First, it uses the getmetatable to get a table and checks whether this

table has the field __type. We could not give a precise type to getmetatable,

Chapter 5. Evaluation 100

so we used the dynamic type any as its return type, and this generates a

warning.

Second, it returns a metatable that extends __call with typical.type,

that is, we can use the module itself as a function, though it is a table. Our

type system still does not support metatables, so we did not extend our version

of the typical module to support __call.

Third, the module uses ipairs to iterate over an array of functions, but

our type system also has limited support to ipairs, and generates a warning

when we try to use the indexed value inside the for body. As we mentioned

in this chapter, we use the dynamic type as a replacement for the lack of

type parameters. This means that we get warnings inside an ipairs iteration,

because all iterated elements have the dynamic type. We removed this warning

using the numeric for to perform the same loop.

5.7 Modulo 11

Modulo 11 is a library that generates and verifies modulo 11 numbers.

Table ?? summarizes the evaluation results for Typical.

Module easy poly over hard Total
mod11 78% 0% 0% 22% 9

Table 5.8: Evaluation results for Modulo 11

The mod11 module was written using an object-oriented idiom that our

type system does not support, and that is the reason why we could not

type all the members of its interface. More precisely, the original code uses

setmetatable to hide two attributes, which our type system cannot hide.

In addition, it returns a metatable that extends __call with the class

constructor. This allows us to use the module itself to create new instances of

a Modulo 11 number. However, our type system does not support this feature,

and we need to make explicit calls to the constructor whenever we want to

create a new instance.

Even though we had these two issues to annotate the mod11 module,

we could use only static types to annotate it, and we found some interesting

points. The code relies on implicit conversions between strings and numbers,

and some parts of the code keep on changing the type of local variables. These

are two practices that may hide bugs.

Chapter 5. Evaluation 101

5.8 Typed Lua Compiler

The Typed Lua compiler is the last case study that we evaluated. Table

?? summarizes its evaluation results.

Module easy poly over hard Total
tlast 98% 0% 2% 0% 47

tltype 100% 0% 0% 0% 65
tlst 100% 0% 0% 0% 26

tllexer 18% 0% 0% 82% 11
tlparser 100% 0% 0% 0% 1

tldparser 100% 0% 0% 0% 1
tlchecker 100% 0% 0% 0% 2

tlcode 100% 0% 0% 0% 1

Table 5.9: Evaluation results for Typed Lua Compiler

The tlast module implements the Abstract Syntax Tree for the compiler.

We could not precisely type just one function, because it has an overloaded

type that requires intersection types.

The tltype module implements the types introduced by Typed Lua.

It also implements the subtyping and consistent-subtyping relations. The

interface that this module exports was straightforward to type.

The tlst module implements the symbols table for the compiler. The

interface that this module exports was also straightforward to type.

The tllexer module defines common lexical rules for the Typed Lua

parser and the description file parser. This module is hard to type because it

uses LPeg [?, ?] patterns, and LPeg uses overloaded arithmetic operators to

build LPeg patterns. Even though LPeg is the third most popular Lua module,

we cannot precisely type LPeg patterns because our type system still does not

support overloading arithmetic operators. In the tllexer module, we could

only give precise static types to two error reporting functions that it exports.

The tlparser and tldparser modules implement the Typed Lua parser

and the description file parser, respectively. Even though they use LPeg to

implement the grammar rules, they only export a parsing function. Both use

LPeg to parse a string and return the corresponding AST.

We could type the interfaces that modules tlchecker and tlcode export.

The former traverses the AST to perform type checking, while the latter

traverses the AST to perform code generation.

Even though we could precisely type the interface that most of the

modules export, we had issues to write mutually recursive functions. This

kind of functions often appear in compilers construction to traverse the data

Chapter 5. Evaluation 102

structures that they use. However, Typed Lua still does not support mutually

recursive functions. A way to overcome this limitation was to predeclare these

functions with an empty body, and then redeclare them with their actual body.

The first declaration specifies the function type, while the second specifies what

the function actually does without changing any type definition.

Traversing the AST would also be problematic if we had not included

a way to discriminate unions of table types, as we mentioned in Section ??.

Without a way to discriminate a union of table types, any attempt to index

this union of table types would generate a warning.

Bootstraping the compiler also helped revealing some bugs. We found

some accesses to undeclared global variables and also to undeclared table fields.

The compiler also helped pointing the places where we should narrow a nilable

value before using it. In fact, this point appeared in all the case studies that

we used Typed Lua to annotate Lua code. This means that Lua programmers

often use possibly nil values before checking whether it is nil.

6
Related Work

In this chapter we review related work, and we split it into two sections:

in the first section we review other Lua projects, while in the second section

we review other projects that are not related to Lua.

6.1 Other Lua projects

Metalua [?] is a Lua compiler that supports compile-time metaprogram-

ming (CTMP). CTMP is a kind of macro system that allows the programmers

to interact with the compiler [?]. Metalua extends Lua 5.1 syntax to include

its macro system, and allows programmers to define their own syntax. Metalua

can provide syntactical support for several object-oriented styles, and can also

provide syntax for turning simple type annotations into run-time assertions.

MoonScript [?] is a programming language that supports class-based

object-oriented programming. MoonScript compiles to idiomatic Lua code, but

it does not perform compile-time type checking.

LuaInspect [?] is a tool that uses MetaLua to perform some code analysis.

For instance, it flags unknown global variables and table fields, it checks the

number of function arguments against signatures, and it infers function return

values. However, it does not try to analyze object-oriented code and it does

not perform compile-time type checking.

Tidal Lock [?] is a prototype of another optional type system for

Lua, which is written in Metalua. Tidal Lock covers a little subset of Lua.

Statements include declaration of local variables, multiple assignment, function

application, and the return statement. This means that Tidal Lock does not

include any control-flow statement. Expressions include primitive literals, table

indexing, function application, function declaration, and the table constructor,

but they do not include binary operations.

A remarkable feature of Tidal Lock is the refinement of table types. This

feature inspired us to also include it in Typed Lua, but in a simpler way and

with different formalization.

Chapter 6. Related Work 104

The table type from Tidal Lock can only represent records, that is, it

cannot describe hash tables and arrays yet, though we can refine them. Tidal

Lock also includes field types to describe the type of the fields of a table type.

The field types describe if a table field is mutable or immutable in a table type.

Field types are the feature that allow the refinement of table types in Tidal

Lock.

Tidal Lock is also a structural type system that relies on subtyping and

local type inference. However, it does not support union types, recursive types,

and variadic types. It also does not type any object-oriented idiom.

Sol [?] is an experimental optional type system for Lua. Its type system

is similar to ours, as it includes literal types, union types, and function types

that handle variadic functions. However, it does not handle the refinement of

tables and it includes different types for tables. Sol types tables as lists, maps,

and objects. Its object types handle a specific object-oriented idiom that Sol

introduces.

Lua Analyzer [?] is an optional type system for Lua that is specially

designed to work in the Löve Studio, an IDE for game developing using the

Löve framework. It works in Lua 5.1 only, and uses type annotations inside

comments. It is unsound by design because its dynamic type is both top and

bottom in the subtyping relation.

Lua Analyzer shares some features with Typed Lua, and also has some

interesting features that we do not have in Typed Lua. It has similar rules

for handling the or idiom and discriminating union types inside conditions.

However, these rules are limited to the nil tag only. It also includes different

types for typing tables. It includes regular record types that maps names

to types, array types, and map types. Even though it does not support the

refinement of tables, it allows the definition of nominal table types that

simulate classes. This system allows it to type check custom class systems,

which are common in Lua. Function types also support multiple return values

and variadic functions, but they do not support overloading the return type.

Recently, it included experimental support for type aliases and generics.

Luacheck [?] is a tool that performs static analysis on Lua code. It can

flag access to undeclared globals and unused local variables, but it does not

perform static type checking.

Ravi [?] is an experimental Lua dialect. Ravi introduces optional static

typing for Lua to improve run-time performance. To do that, Ravi extends the

Lua Virtual Machine to include new operations that take into account static

type information. Currently, Ravi extends the Lua Virtual Machine to support

few types: integer, number, arrays of integers, and arrays of numbers.

Chapter 6. Related Work 105

6.2 Other projects

Typed Racket [?] is a statically typed version of the Racket language,

which is a Scheme dialect. The main purpose of Typed Racket is to allow

programmers to combine untyped modules, which are written in Racket, with

typed modules, which are written in Typed Racket. It also uses local type

inference to deduce the type of unannotated expressions.

The main feature of Typed Racket’s type system is occurrence typing

[?]. It is a novel way to use type predicates in control flow statements to refine

union types. Occurrence typing is not sound in the presence of mutation. As

these kinds of checks are common in other languages, related systems have

appeared [?, ?, ?].

The type system of Typed Racket also includes function types, recursive

types, and structure types. Its function types also handle multiple return

values, and there is also a way to describe function types that have optional

arguments. Its structure types are similar to our interfaces, as they describe

record types. The type system is also structural and based on subtyping. It

also includes the dynamic type Any, which is the top type in the system. Typed

Racket also supports polymorphic functions and data structures.

Typed Clojure [?] is an optional type system for Clojure. Although

Clojure is a Lisp dialect that runs on the Java Virtual Machine, Common

Language Runtime, and JavaScript, Typed Clojure runs only on the Java

Virtual Machine. Perhaps, this restriction pushed Typed Clojure to support

Java classes and some Java types such as Long, Double, and String. Typed

Clojure also provides optional type annotations and uses local type inference

to deduce the type of unannotated expressions. It also assigns the type Any to

unannotated function parameters, which is the top type in the type system.

The type system of Typed Clojure includes polymorphic function types,

union types, intersection types, lists, vectors, maps, sets, and recursive types.

Function types can also have rest parameters, which are similar to our variadic

types, but can only appear on the input parameter of function types. In fact,

its function types cannot return multiple results. It also uses occurrence typing

to allow control flow statements to refine union types. The type system is also

structural and based on subtyping.

Dart [?] is a new class-based object-oriented programming language.

It includes optional type annotations and compiles to JavaScript. The type

system of Dart is nominal and includes base types, function types, lists,

and maps. It also supports generics, and the programmer can define generic

functions, lists, and maps. Unlike Typed Lua, Dart is unsound by design.

Chapter 6. Related Work 106

Even though Dart has optional typing and static types by default do

not affect run-time semantics, it has an execution mode that affects run-time.

The checked mode inserts run-time assertions that verifies whether static types

match run-time tags. The production mode is the default execution mode that

does not include any assertions.

TypeScript [?] is a JavaScript extension that includes optional type

annotations and class-based object-oriented programming. It also uses local

type inference to deduce the type of unannotated expressions. The type system

of TypeScript is structural, based on subtyping, and supports generics. It

includes the dynamic type, primitive types, union types, function types, array

types, tuple types, recursive types, and object types. Unlike Typed Lua,

TypeScript uses arrays to represent variadic functions and multiple return

values.

Even though TypeScript is unsound by design, Bierman et al. [?] shows

how to make TypeScript sound. They use a reduced core of TypeScript to

formalize a sound type system for TypeScript, but also to formalize its current

unsound type system.

TeJaS [?] is a framework for the construction of different type systems

for JavaScript. The authors created a base type system for JavaScript with

extensible typing rules that allow the experimentation of different static

analysis. They used TeJaS to create a type system that simulates the type

system of TypeScript.

Politz et al. [?] proposes semantics and types for objects with first-class

member names, a well-known feature from scripting languages. Their type

system uses string patterns to describe the members of an object, and define

a complex subtyping relation to validate these patterns. They also provide an

implementation of their system to JavaScript.

Gradualtalk [?] is a Smalltalk dialect that supports gradual typing. The

type system combines nominal and structural typing. It includes function

types, union types, structural types, nominal types, a self type, and parametric

polymorphism. The type system also relies on subtyping and consistent-

subtyping.

Gradualtalk inserts run-time checks that ensure dynamically typed code

does not violate statically typed code. Allende et al. [?] perform a careful

evaluation about cast insertion in Gradualtalk. They report that usually cast

insertions impact on execution performance, so Gradualtalk also has an option

that allows programmers to turn them off, downgrading Gradualtalk to an

optional type system.

Reticulated Python [?] is a Python compiler that supports gradual

Chapter 6. Related Work 107

typing. The type system is structural and based on subtyping. It includes

base types, the dynamic type, list types, dictionary types, tuple types, function

types, set types, object types, class types, and recursive types. It includes class

and object types to differentiate the type of class declarations and instances,

respectively. It also uses local type inference. Besides static type checking,

Reticulated Python also introduces three different approaches for inserting

run-time assertions.

Mypy [?] is an optional type system for Python. The type system of mypy

is similar to the type system of Reticulated Python, but mypy does not insert

run-time checks and it has parametric polymorphism. In contrast, Reticulated

Python can type variadic functions, but mypy cannot. Recently, Guido van

Rossum, Python’s author, proposed a standard syntax for type annotations

in Python [?] that is extremely inspired by mypy [?]. The main goal of this

proposal is to make easier building static analysis tools for Python. Typing [?]

is a tool that is being developed to implement this proposal.

Hack [?] is a new programming language that runs on the Hip Hop Virtual

Machine (HHVM). The HHVM is a virtual machine that executes Hack and

PHP programs. We can view Hack as an extension to PHP that combines static

and dynamic typing. The type system of Hack includes generics, nullable types,

collections, and function types.

The Ruby Type Checker [?] is a library that performs type checking

during run-time. The library provides type annotations that the programmer

can use on classes and methods. Its type system includes nominal types, union

types, intersection types, method types, parametric polymorphism, and type

casts.

Grace [?] is an object-oriented language with optional typing. Grace is

not a dynamically typed language that has been extended with an optional

type system, but a language that has been designed from scratch to have both

static and dynamic typing. Homer et al. [?] explores some useful patterns

that derive from Grace’s use of objects as modules and its brand of optional

structural typing, which can also be expressed with Typed Lua’s modules as

tables.

7
Conclusions

In this work we presented Typed Lua, an optional type system for Lua.

We implemented Typed Lua as a Lua extension that allows programmers to

combine static and dynamic typing in Lua code, making easier the evolution

of simple scripts into large programs.

Our main contribution is the formalization of a complete optional type

system that introduces several novel type system features to statically type

check Lua programs. Even though Lua shares several features with other

dynamically typed languages such as JavaScript, Lua also has several unusual

features. These unusual features include tables (or associative arrays) as the

sole mechanism for structured data, besides functions with multiple return

values and flexible arity that interact with multiple assignment. We highlight

the following novel features of our type system:

– type refinement allows the incremental evolution of record and object

types, playing an important role in statically type checking the idiomatic

way in which Lua programmers use tables to define modules and objects;

– projection types handle functions that are overloaded on the number and

types of return values, allowing programmers to narrow the types of a

set of variables by narrowing the type of a single component of this set;

– union types and variadic types help our type system handle functions

with flexible arity, that is, union types are helpful in describing optional

parameters while variadic types are helpful in describing the type of the

vararg expression and the type of functions that can receive or return

any number of values.

A key feature in optional type systems is usability. This means that

optional type systems should not change the idioms that programmers are

already familiar with. Instead, optional type systems should fit existing idioms

to statically type check them. Designing a too simple type system can overload

programmers by forcing them to change the way they program in the language

to fit the type system, while designing a too complex type system can overload

Chapter 7. Conclusions 109

programmers with types and error messages that are hard to understand, even

if type inference removes the necessity of annotating the program with these

complex types. The most challenging aspect of designing optional type systems

is to find the right amount of complexity for a type system that feels natural

to the programmers.

Usability has been a concern in the design of Typed Lua since the

beginning. We realized that we should not rely on the semantics of Lua only,

as this could lead to a cumbersome type system that would not support several

Lua idioms. For this reason, we performed a mostly automated survey of Lua

idioms and features to inform our design choices.

After designing and implementing Typed Lua, we performed several case

studies to evaluate how successful we were in our goal of providing an usable

type system. We evaluated 29 modules from 8 different case studies, and we

could give precise static types to 83% of the 449 members that these modules

export. For half of the modules, we could give precise static types to at least

89% of the members from each module. Our evaluation results showed that

our type system can statically type check several Lua idioms and features,

though the evaluation results also exposed several limitations of our type

system. We found that the three main limitations of our type system are the

lack of intersection types, parametric polymorphism, and operator overloading.

Overcoming these limitations is our major target for future work, as it will

allow us to statically type check more programs.

Unlike other optional type systems, we designed Typed Lua without

deliberate unsound parts. However, we still do not have proofs that the novel

features of our type system are sound. We see a soundness proof as another

major future work, as it is necessary to use static types for code optimization.

Finally, we believe that Typed Lua is a major contribution to the

Lua community, because it offers a framework that programmers can use to

document, test, and better structure their applications. For libraries where a

full conversion to static type checking should prove unfeasible or too much

work, the community can use Typed Lua just to document the external

interfaces of the libraries, giving the benefits of static type checking to the users

of these libraries. In fact, we already have user feedback from Lua programmers

that are using Typed Lua in their projects. For instance, ZeroBrane Studio is

an IDE for Lua development that is starting to use Typed Lua to perform

static analysis in Lua code.

A
Glossary

bottom type It is a type that is subtype of all types.

closed table type It is the type of table annotations in Typed Lua. A closed

table type does not provide any guarantees about keys with types not

listed in the table type. It also does not allow table refinement to add

fields to the table type.

coercion It is a relation that allows converting values from one type to values

of another type without error.

consistency Gradual typing uses the consistency relation to check the inter-

action among the dynamic type and other types. This relation allows

us combining dynamic and static typing in the same language, but still

catching static type errors. The consistency relation is reflexive and sym-

metric, but it is not transitive to prevent that casts from a static type

to the dynamic type can be combined with casts from the dynamic type

to another static type.

consistent-subtyping It is a relation that combines consistency and subtyp-

ing, allowing the definition of gradual type systems for object-oriented

languages. Like the consistency relation, it is reflexive and symmetric,

but it is not transitive.

contravariant Subtyping is contravariant when it reverses the subtyping

order, that is, a subtyping rule is contravariant when it orders types

from more generic types (supertypes) to more specific types (subtypes).

covariant Subtyping is covariant when it preserves the subtyping order, that

is, a subtyping rule is covariant when it orders types from more specific

types (subtypes) to more general types (supertypes).

depth subtyping It allows the supertype to vary the type of individual fields

in the subtype.

Appendix A. Glossary 111

dynamic type It is a type that allows combining dynamic and static typing in

the same code. It is neither the bottom nor the top type in the subtyping

relation, but a subtype only of itself. Gradual typing uses the dynamic

type along with the consistency relation to identify the parts of the code

where run-time casts should be inserted to prevent that dynamically

typed code violates statically typed code.

filter type It is a type that allows Typed Lua to discriminate the type of local

variables inside control flow statements, as these variables are bound to

unions of first-level types.

fixed table type It is the type of classes in Typed Lua. It is a table type

that does not allow width subtyping to make single inheritance safe. It

also does not allow table refinement to add fields to the table type.

flow typing It is a combination of static typing and flow analysis to allow

variables to have different types at different parts of the program.

free assigned variable It is a free variable that appears in an assignment.

gradual type system It is a type system that uses the consistency relation

instead of type equality to perform static type checking.

gradual typing It is an approach that uses a gradual type system to allow

static and dynamic typing in the same code, but inserting run-time checks

between statically typed and dynamically typed code. These run-time

checks ensure that dynamically typed code does not violate statically

typed code. More precisely, gradual typing allows programmers to change

between dynamic and static typing without changing the dynamic or the

static behavior of the program.

invariant Subtyping is invariant when it does not allow ordering types, that

is, it is a way to define type equality through subtyping.

metatable It is a Lua table that allows changing the behavior of other tables

it is attached to.

nominal type system It is a type system that uses the name of the types

to check the compatibility among them.

open table type It is the type of the tables with keys that do not inhabit

one of the table’s key types, and have at least one alias. It also allows

table refinement to add fields to the table type.

Appendix A. Glossary 112

optional type system It is a type system that allows combining static and

dynamic typing in the same language, but without affecting the run-time

semantics. This means that the programmer has the option to use or not

use its static analysis to check for static type errors, as these errors will

be caught by the run-time semantics anyway.

projection environment It is an environment that Typed Lua uses to

handle unions of second-level types that are bound to projection types.

projection type It is a type that allows Typed Lua to discriminate the type

of local variables that have a dependency relation, as they project an

union of second-level types into unions of first-level types. These unions

of second-level types can describe the type of several local variables. A

projection type uses an index to define which components of a union of

second-level types should be used to project the union of first-level types

of a local variable. When programmers discriminate a projection type,

they are discriminating the union of second-level types that is bound

to this projection type, affecting all variables that bind to the same

projection type, which also bind to the same union of second-level types.

prototype object It is an object that works like a class, that is, it is an

object from which other objects inherit its attributes.

self-like delegation It is a technique to implement inheritance in dynami-

cally typed languages through prototype objects. In this technique, when

an object tries to access an attribute that is not present, it looks for this

attribute in its parent object.

sound type system It is a type system that does not type check all programs

that contain a type error.

structural type system It is a type system that uses the structure of types

to check the compatibility among them.

table refinement It is an operation from Typed Lua that allows program-

mers to change a table type to include new fields or to specialize existing

fields.

top type It is a type that is supertype of all types.

type environment It is an environment that Typed Lua uses to assign

variable names to first-level types.

Appendix A. Glossary 113

type tag In dynamically typed languages, a type tag describes the type of a

value during run-time.

unique table type It is the table type that describes the type of a table

constructor. It is the type of the tables with keys that do not inhabit one

of the table’s key types, and that does not have any alias. It also allows

table refinement to add fields to the table type.

unsound type system It is a type system that type checks certain programs

that contain type errors.

userdata It is a Lua data type that allows Lua variables to hold values from

applications or libraries that are written in C.

vararg expression It is a Lua expression that can result in an arbitrary

number of values.

variadic function It is a Lua function that can receive an arbitrary number

of arguments.

variance It is the way types are ordered.

width subtyping It allows the subtype to have fields that do not exist in the

supertype.

B
The syntax of Typed Lua

This appendix presents the complete syntax of Typed Lua.

chunk ::= block

block ::= {stat} [retstat]

stat ::= ‘;’

| varlist ‘=’ explist

| functioncall

| label

| break

| goto Name

| do block end

| while exp do block end

| repeat block until exp

| if exp then block {elseif exp then block} [else block] end

| for Name ‘=’ exp ‘,’ exp [‘,’ exp] do block end

| for namelist in explist do block end

| [const] function funcname funcbody

| local function Name funcbody

| local namelist [‘=’ explist]

| [local] typealias Name ‘=’ type

| [local] interface typedec

retstat ::= return [explist] [‘;’]

label ::= ‘::’ Name ‘::’

funcname ::= Name {‘.’ Name} [‘:’ Name]

varlist ::= [const] var {‘,’ [const] var}

var ::= Name | prefixexp ‘[’ exp ‘]’ | prefixexp ‘.’ Name

namelist ::= Name [‘:’ type] {‘,’ Name [‘:’ type]}

Appendix B. The syntax of Typed Lua 115

explist ::= exp {‘,’ exp}

exp ::= nil | false | true | Number | String | ‘...’ | functiondef

| prefixexp | tableconstructor | exp binop exp | unop exp

prefixexp ::= var | functioncall | ‘(’ exp ‘)’

functioncall ::= prefixexp args | prefixexp ‘:’ Name args

args ::= ‘(’ [explist] ‘)’ | tableconstructor | String

functiondef ::= function funcbody

funcbody ::= ‘(’ [parlist] ‘)’ [‘:’ rettype] block end

parlist ::= namelist [‘,’ ‘...’ [‘:’ type]] | ‘...’ [‘:’ type]

tableconstructor ::= ‘{’ [fieldlist] ‘}’

fieldlist ::= [const] field {fieldsep [const] field} [fieldsep]

field ::= ‘[’ exp ‘]’ ‘=’ exp | Name ‘=’ exp | exp

fieldsep ::= ‘,’ | ‘;’

binop ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘//’ | ‘^’ | ‘%’

| ‘&’ | ‘~’ | ‘|’ | ‘>>’ | ‘<<’ | ‘..’

| ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘~=’

| and | or

unop ::= ‘-’ | not | ‘#’ | ‘~’

typedec ::= Name {decitem} end

decitem ::= idlist ‘:’ idtype

idtype ::= type | methodtype

idlist ::= id {‘,’ id}

id ::= [const] Name

type ::= primarytype [‘?’]

primarytype ::= literaltype | basetype | nil | value | any | self | Name

| functiontype | tabletype | primarytype ‘|’ primarytype

literaltype ::= false | true | Int | Float | String

basetype ::= boolean | integer | number | string

functiontype ::= tupletype ‘->’ rettype

tupletype ::= ‘(’ [typelist] ‘)’

typelist ::= type {‘,’ type} [‘*’]

rettype ::= type | uniontuple [‘?’]

uniontuple ::= tupletype | uniontuple ‘|’ uniontuple

Appendix B. The syntax of Typed Lua 116

tabletype ::= ‘{’ [tabletypebody] ‘}’

tabletypebody ::= maptype | recordtype

maptype ::= [keytype ‘:’] type

keytype ::= basetype | value

recordtype ::= recordfield {‘,’ recordfield} [‘,’ type]

recordfield ::= [const] literaltype ‘:’ type

methodtype ::= tupletype ‘=>’ rettype

C
The type system of Typed Lua

This appendix presents the complete type system of Typed Lua.

C.1 Subtyping rules

(S-LITERAL)

Σ ` L <: L

(S-FALSE)

Σ ` false <: boolean

(S-TRUE)

Σ ` true <: boolean

(S-STRING)

Σ ` string <: string

(S-INT1)

Σ ` int <: integer

(S-INT2)

Σ ` int <: number

(S-FLOAT)

Σ ` float <: number

(S-BASE)

Σ ` B <: B

(S-INTEGER)

Σ ` integer <: number

(S-NIL)

Σ ` nil <: nil

Appendix C. The type system of Typed Lua 118

(S-VALUE)

Σ ` T <: value

(S-ANY)

Σ ` any <: any

(S-SELF)

Σ ` self <: self

(S-UNION1)
Σ ` T1 <: T Σ ` T2 <: T

Σ ` T1 ∪ T2 <: T

(S-UNION2)
Σ ` T <: T1

Σ ` T <: T1 ∪ T2

(S-UNION3)
Σ ` T <: T2

Σ ` T <: T1 ∪ T2

(S-FUNCTION)

Σ ` S3 <: S1 Σ ` S2 <: S4

Σ ` S1 → S2 <: S3 → S4

(S-VOID1)

Σ ` void <: void

(S-VOID2)

Σ ` void <: T∗

(S-PAIR)
Σ ` T1 <: T2 Σ ` P1 <: P2

Σ ` T1 × P1 <: T2 × P2

(S-VARARG1)

Σ ` nil∗ <: void

(S-VARARG2)
Σ ` T1 ∪ nil <: T2 ∪ nil

Σ ` T1∗ <: T2∗

(S-VARARG3)
Σ ` T1 ∪ nil <: T2

Σ ` T1∗ <: T2 × void

(S-VARARG4)
Σ ` T1 <: T2 ∪ nil

Σ ` T1 × void <: T2∗

Appendix C. The type system of Typed Lua 119

(S-VARARG5)

Σ ` T1∗ <: T2 × void Σ ` T1∗ <: P2

Σ ` T1∗ <: T2 × P2

(S-VARARG6)

Σ ` T1 × void <: T2∗ Σ ` P1 <: T2∗
Σ ` T1 × P1 <: T2∗

(S-UNION4)
Σ ` S1 <: S Σ ` S2 <: S

Σ ` S1 t S2 <: S

(S-UNION5)
Σ ` S <: S1

Σ ` S <: S1 t S2

(S-UNION6)
Σ ` S <: S2

Σ ` S <: S1 t S2

(S-TABLE1)

∀i ∈ 1..n ∃j ∈ 1..m Σ ` Kj <: K ′
i Σ ` K ′

i <: Kj Σ ` Vj <:c V
′
i

Σ ` {K1:V1, ..., Km:Vm}fixed|closed <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}closed
m ≥ n

(S-TABLE2)

∀i ∈ 1..m ∀j ∈ 1..n Σ ` Ki <: K ′
j → Σ ` Vi <:u V

′
j

∀j ∈ 1..n 6 ∃i ∈ 1..m Σ ` Ki <: K ′
j → Σ ` nil <:o V

′
j

Σ ` {K1:V1, ..., Km:Vm}unique <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}closed

(S-TABLE3)

∀i ∈ 1..m

∃j ∈ 1..n Σ ` Ki <: K ′
j ∧ Σ ` Vi <:u V

′
j

∀j ∈ 1..n 6 ∃i ∈ 1..m Σ ` Ki <: K ′
j → Σ ` nil <:o V

′
j

Σ ` {K1:V1, ..., Km:Vm}unique <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}unique|open|fixed

(S-TABLE4)

∀i ∈ 1..m ∀j ∈ 1..n Σ ` Ki <: K ′
j → Σ ` Vi <:c V

′
j

∀j ∈ 1..n 6 ∃i ∈ 1..m Σ ` Ki <: K ′
j → Σ ` nil <:o V

′
j

Σ ` {K1:V1, ..., Km:Vm}open <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}closed

Appendix C. The type system of Typed Lua 120

(S-TABLE5)

∀i ∈ 1..m

∃j ∈ 1..n Σ ` Ki <: K ′
j ∧ Σ ` Vi <:c V

′
j

∀j ∈ 1..n 6 ∃i ∈ 1..m Σ ` Ki <: K ′
j → Σ ` nil <:o V

′
j

Σ ` {K1:V1, ..., Km:Vm}open <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}open|fixed

(S-TABLE6)

∀i ∈ 1..n ∃j ∈ 1..n Σ ` Kj <: K ′
i Σ ` K ′

i <: Kj Σ ` Vj <:c V
′
i

Σ ` {K1:V1, ..., Kn:Vn}fixed <: {K ′
1:V

′
1 , ..., K

′
n:V ′

n}fixed

(S-FIELD1)
Σ ` V1 <: V2 Σ ` V2 <: V1

Σ ` V1 <:c V2

(S-FIELD2)
Σ ` V1 <: V2

Σ ` const V1 <:c const V2

(S-FIELD3)
Σ ` V1 <: V2

Σ ` V1 <:c const V2

(S-FIELD4)
Σ ` V1 <: V2
Σ ` V1 <:u V2

(S-FIELD5)
Σ ` V1 <: V2

Σ ` const V1 <:u const V2

(S-FIELD6)
Σ ` V1 <: V2

Σ ` V1 <:u const V2

(S-FIELD7)
Σ ` nil <: V

Σ ` nil <:o V

(S-FIELD8)
Σ ` nil <: V

Σ ` nil <:o const V

(S-AMBER)
Σ[x1 <: x2] ` T1 <: T2
Σ ` µx1.T1 <: µx2.T2

(S-ASSUMPTION)
x1 <: x2 ∈ Σ

Σ ` x1 <: x2

Appendix C. The type system of Typed Lua 121

(S-UNFOLDR)

Σ ` T1 <: [x 7→ µx.T2]T2
Σ ` T1 <: µx.T2

(S-UNFOLDL)

Σ ` [x 7→ µx.T1]T1 <: T2
Σ ` µx.T1 <: T2

(S-FILTER)

Σ ` φ(T1, T2) <: φ(T1, T2)

(S-PROJECTION)

Σ ` πx
i <: πx

i

(C-ANY1)

Σ ` T . any

(C-ANY2)

Σ ` any . T

C.2 Typing rules

(T-SKIP)

Γ1,Π ` skip,Γ1

(T-SEQ)
Γ1,Π ` s1,Γ2 Γ2,Π ` s2,Γ3

Γ1,Π ` s1 ; s2,Γ3

(T-ASSIGNMENT)

Γ1,Π ` el : S1,Γ2 Γ2,Π ` l : S2,Γ3 S1 . S2

Γ1,Π ` l = el,Γ3

(T-METHOD1)

Γ1(id1) = Ts Ts = {K1:V1, ..., Kn:Vn}unique|open
Γ1,Π ` id2 : L,Γ2 6 ∃i ∈ 1..n L . Ki

crall(Γ1[self 7→ self , id 7→ T , σ 7→ Ts]),Π[ρ 7→ S] ` s,Γ3

To = {K1:V1, ..., Kn:Vn, L:const self × T × void→ S}unique|open
Γ4 = openset(crset(Γ1[id1 7→ To], fav(fun (id:T):S s)), rv(fun (id:T):S s))

Γ1,Π ` fun id1:id2 (id:T):S s,Γ4

Appendix C. The type system of Typed Lua 122

(T-METHOD2)

Γ1(id1) = Ts Ts = {K1:V1, ..., Kn:Vn}unique|open
Γ1,Π ` id2 : L,Γ2 6 ∃i ∈ 1..n L . Ki

crall(Γ1[self 7→ self , id 7→ T , ... 7→ T, σ 7→ Ts]),Π[ρ 7→ S] ` s,Γ3

To = {K1:V1, ..., Kn:Vn, L:const self × T × T∗ → S}unique|open
Γ4 = openset(crset(Γ1[id1 7→ To], fav(fun (id:T):S s)), rv(fun (id:T):S s))

Γ1,Π ` fun id1:id2 (id:T , ...:T):S s,Γ4

(T-METHOD3)

Γ1(id1) = Ts Ts = {K1:V1, ..., Kn:Vn}unique|open Γ1,Π ` id2 : L,Γ2

crall(Γ1[self 7→ self , id 7→ T , σ 7→ Ts]),Π[ρ 7→ S] ` s,Γ3

∃i ∈ 1..n L <: Ki ∧Ki <: L const self × T × void→ S <: Vi

Vi = const self × T × void→ S

To = {K1:V1, ..., Kn:Vn}unique|open
Γ4 = openset(crset(Γ1[id1 7→ To], fav(fun (id:T):S s)), rv(fun (id:T):S s))

Γ1,Π ` fun id1:id2 (id:T):S s,Γ4

(T-METHOD2)

Γ1(id1) = Ts Ts = {K1:V1, ..., Kn:Vn}unique|open Γ1,Π ` id2 : L,Γ2

crall(Γ1[self 7→ self , id 7→ T , ... 7→ T, σ 7→ Ts]),Π[ρ 7→ S] ` s,Γ3

∃i ∈ 1..n L <: Ki ∧Ki <: L const self × T × T∗ → S <: Vi

Vi = const self × T × T∗ → S

To = {K1:V1, ..., Kn:Vn}unique|open
Γ4 = openset(crset(Γ1[id1 7→ To], fav(fun (id:T):S s)), rv(fun (id:T):S s))

Γ1,Π ` fun id1:id2 (id:T , ...:T):S s,Γ4

(T-WHILE1)

Γ1,Π ` e : T,Γ2 closeall(Γ2),Π ` s,Γ3

Γ4 = openset(closeset(Γ2, fav(s)), rv(s))

Γ1,Π ` while e do s,Γ4

(T-WHILE2)

Γ1(id) = T1 ∪ T2
closeall(Γ1[id 7→ φ(T1 ∪ T2, filter(T1 ∪ T2,nil))]),Π ` s,Γ2

Γ3 = openset(closeset(Γ1[id 7→ T1 ∪ T2], fav(s)), rv(s))

Γ1,Π ` while id do s,Γ3

Appendix C. The type system of Typed Lua 123

(T-WHILE3)

Γ1(id) = πx
i Π(x) = S

closeall(Γ1),Π[x 7→ fpt(S,nil, i)] ` s,Γ2

Γ3 = openset(closeset(Γ1, fav(s)), rv(s))

Γ1,Π ` while id do s,Γ3

(T-IF1)

Γ1,Π ` e : T,Γ2

closeall(Γ2),Π ` s1 : Γ3

closeall(Γ2),Π ` s2 : Γ4

Γ5 = openset(closeset(Γ2, fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2)))

Γ1 ` if e then s1 else s2,Γ5

(T-IF2)

Γ1(id) = T1 ∪ T2
closeall(Γ1[id 7→ φ(T1 ∪ T2, filter(T1 ∪ T2,nil))]),Π ` s1,Γ2

closeall(Γ1[id 7→ φ(T1 ∪ T2,nil)]),Π ` s2,Γ3

Γ4 = openset(closeset(Γ1[id 7→ T1 ∪ T2], fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if id then s1 else s2,Γ4

(T-IF3)

Γ1(id) = πx
i Π(x) = S

closeall(Γ1),Π[x 7→ fpt(S,nil, i)] ` s1,Γ2

closeall(Γ1),Π[x 7→ gpt(S,nil, i)] ` s2,Γ3

Γ4 = openset(closeset(Γ1, fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if id then s1 else s2,Γ4

(T-IF4)

Γ1(id) = T1 ∪ T2
closeall(Γ1[id 7→ φ(T1 ∪ T2,boolean)]),Π ` s1,Γ2

closeall(Γ1[id 7→ φ(T1 ∪ T2, filter(T1 ∪ T2,boolean))]),Π ` s2,Γ3

Γ4 = openset(closeset(Γ1[id 7→ T1 ∪ T2], fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if type(id) == “boolean” then s1 else s2,Γ4

Appendix C. The type system of Typed Lua 124

(T-IF5)

Γ1(id) = πx
i Π(x) = S

closeall(Γ1),Π[x 7→ gpt(S,boolean, i)] ` s1,Γ2

closeall(Γ1),Π[x 7→ fpt(S,boolean, i)] ` s2,Γ3

Γ4 = openset(closeset(Γ1, fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if type(id) == “boolean” then s1 else s2,Γ4

(T-IF6)

Γ1(id) = T1 ∪ T2
closeall(Γ1[id 7→ φ(T1 ∪ T2, integer)]),Π ` s1,Γ2

closeall(Γ1[id 7→ φ(T1 ∪ T2, filter(T1 ∪ T2, integer))]),Π ` s2,Γ3

Γ4 = openset(closeset(Γ1[id 7→ T1 ∪ T2], fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if type(id) == “integer” then s1 else s2,Γ4

(T-IF7)

Γ1(id) = πx
i Π(x) = S

closeall(Γ1),Π[x 7→ gpt(S, integer, i)] ` s1,Γ2

closeall(Γ1),Π[x 7→ fpt(S, integer, i)] ` s2,Γ3

Γ4 = openset(closeset(Γ1, fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if type(id) == “integer” then s1 else s2,Γ4

(T-IF8)

Γ1(id) = T1 ∪ T2
closeall(Γ1[id 7→ φ(T1 ∪ T2,number)]),Π ` s1,Γ2

closeall(Γ1[id 7→ φ(T1 ∪ T2, filter(T1 ∪ T2,number))]),Π ` s2,Γ3

Γ4 = openset(closeset(Γ1[id 7→ T1 ∪ T2], fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if type(id) == “number” then s1 else s2,Γ4

(T-IF9)

Γ1(id) = πx
i Π(x) = S

closeall(Γ1),Π[x 7→ gpt(S,number, i)] ` s1,Γ2

closeall(Γ1),Π[x 7→ fpt(S,number, i)] ` s2,Γ3

Γ4 = openset(closeset(Γ1, fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if type(id) == “number” then s1 else s2,Γ4

Appendix C. The type system of Typed Lua 125

(T-IF10)

Γ1(id) = T1 ∪ T2
closeall(Γ1[id 7→ φ(T1 ∪ T2, string)]),Π ` s1,Γ2

closeall(Γ1[id 7→ φ(T1 ∪ T2, filter(T1 ∪ T2, string))]),Π ` s2,Γ3

Γ4 = openset(closeset(Γ1[id 7→ T1 ∪ T2], fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if type(id) == “string” then s1 else s2,Γ4

(T-IF11)

Γ1(id) = πx
i Π(x) = S

closeall(Γ1),Π[x 7→ gpt(S, string, i)] ` s1,Γ2

closeall(Γ1),Π[x 7→ fpt(S, string, i)] ` s2,Γ3

Γ4 = openset(closeset(Γ1, fav(s1) ∪ fav(s2)), rv(s1) ∪ rv(s2))

Γ1,Π ` if type(id) == “string” then s1 else s2,Γ4

(T-LOCAL1)

Γ1,Π ` el : S,Γ2 S . T × value∗ Γ2[id 7→ T],Π ` s,Γ3

Γ1,Π ` local id:T = el in s,Γ3 − {id}

(T-LOCAL2)

Γ1,Π ` el : S1,Γ2, (x, S2)

Γ2[id1 7→ infer(S1, 1), ..., idn 7→ infer(S1, n)],Π[x 7→ S2] ` s,Γ3 n = | id |
Γ1,Π ` local id = el in s,Γ3 − {id}

(T-LOCALREC)

Γ1[id 7→ T],Π ` f : T1,Γ2 T1 . T Γ2,Π ` s,Γ3

Γ1,Π ` rec id:T = f in s,Γ3 − {id}

(T-RETURN)

Γ1 ` el : S1,Γ2 Π(ρ) = S2 S1 . S2

Γ1 ` return el,Γ2

(T-STMAPPLY1)

Γ1,Π ` e(el) : S,Γ2

Γ1,Π ` be(el)c0,Γ2

Appendix C. The type system of Typed Lua 126

(T-STMINVOKE1)

Γ1,Π ` e:n(el) : S,Γ2

Γ1,Π ` be:n(el)c0,Γ2

(T-NIL)

Γ1,Π ` nil : nil,Γ1

(T-FALSE)

Γ1,Π ` false : false,Γ1

(T-TRUE)

Γ1,Π ` true : true,Γ1

(T-INT)

Γ1,Π ` int : int ,Γ1

(T-FLOAT)

Γ1,Π ` float : float ,Γ1

(T-STR)

Γ1,Π ` string : string ,Γ1

(T-IDREAD1)

Γ1(id) = T1 T2 = read(Π, T1)

Γ1,Π ` id : close(T2),Γ1[id 7→ open(T1)]

(T-IDREAD2)

Γ1(id) = T1 T2 = read(Π, T1)

Γ1,Π ` id : fix(T2),Γ1[id 7→ fix(T1)]

(T-INDEX1)

Γ1(id) = T read(Π, T) = {K1:V1, ..., Kn:Vn}
Γ1,Π ` e2 : K,Γ2 ∃i ∈ 1..n K . Ki

Γ1,Π ` id[e2] : Vi,Γ2

(T-INDEX2)

Γ1,Π ` e1 : {K1:V1, ..., Kn:Vn},Γ2

Γ2,Π ` e2 : K,Γ3 ∃i ∈ 1..n K . Ki

Γ1,Π ` e1[e2] : Vi,Γ3

Appendix C. The type system of Typed Lua 127

(T-INDEX3)

Γ1,Π ` e1 : any,Γ2 Γ2,Π ` e2 : t,Γ3

Γ1,Π ` e1[e2] : any,Γ3

(T-COERCE)

Γ1(id) <: T Γ1[id 7→ T],Π ` id : T1,Γ2

Γ1,Π ` <T> id : T1,Γ2

(T-FUNCTION1)

crall(Γ1[id 7→ T]),Π[ρ 7→ S] ` s,Γ2

Γ3 = openset(crset(Γ1, fav(fun (id:T):S s)), rv(fun (id:T):S s))

Γ1,Π ` fun (id:T):S s : T × void→ S,Γ3

(T-FUNCTION2)

crall(Γ1[id 7→ T , ... 7→ T]),Π[ρ 7→ S] ` s,Γ2

Γ3 = openset(crset(Γ1, fav(fun (id:T):S s)), rv(fun (id:T):S s))

Γ1,Π ` fun (id:T , ...:T):S s : T × T∗ → S,Γ3

(T-CONSTRUCTOR1)

Γ1,Π ` {} : {}unique,Γ1

(T-CONSTRUCTOR2)

Γ1,Π ` ([e1] = e2)i : (Ki, Vi),Γi+1

T = {K1:V1, ..., Kn:Vn}unique wf(T) n = | [e1] = e2 |
Γf = merge(Γ1, ...,Γn+1)

Γ1,Π ` { [e1] = e2 } : T,Γf

(T-CONSTRUCTOR3)

Γ1,Π ` ([e1] = e2)i : (Ki, Vi),Γi+1

Γ1,Π ` me : Tn+1 × ...× Tn+m × Tn+m+1∗,Γn+2

T = {K1:V1, ..., Kn:Vn, 1 : Tn+1, ...,m : Tn+m, integer : Tn+m+1 ∪ nil}unique
wf(T) n = | [e1] = e2 | Γf = merge(Γ1, ...,Γn+2)

Γ1,Π ` { [e1] = e2 } : T,Γf

Appendix C. The type system of Typed Lua 128

(T-FIELD1)

Γ1,Π ` e2 : T2,Γ2 Γ2,Π ` e1 : T1,Γ3 T1 <: boolean

Γ1,Π ` [e1] = e2 : (T1, close(T2)),Γ3

(T-FIELD2)

Γ1,Π ` e2 : T2,Γ2 Γ2,Π ` e1 : T1,Γ3 T1 <: number

Γ1,Π ` [e1] = e2 : (T1, close(T2)),Γ3

(T-FIELD3)

Γ1,Π ` e2 : T2,Γ2 Γ2,Π ` e1 : T1,Γ3 T1 <: string

Γ1,Π ` [e1] = e2 : (T1, close(T2)),Γ3

(T-FIELD4)

Γ1,Π ` e2 : T2,Γ2 Γ2,Π ` e1 : T1,Γ3

Γ1,Π ` [e1] = e2 : (value, close(T2)),Γ3

(T-ARITH1)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3 T1 <: integer T2 <: integer

Γ1,Π ` e1 + e2 : integer,Γ3

(T-ARITH2)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3 T1 <: integer T2 <: number

Γ1,Π ` e1 + e2 : number,Γ3

(T-ARITH3)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3 T1 <: number T2 <: integer

Γ1,Π ` e1 + e2 : number,Γ3

(T-ARITH4)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3 T1 <: number T2 <: number

Γ1,Π ` e1 + e2 : number,Γ3

(T-ARITH5)

Γ1,Π ` e1 : any,Γ2 Γ2,Π ` e2 : T,Γ3

Γ1,Π ` e1 + e2 : any,Γ3

Appendix C. The type system of Typed Lua 129

(T-ARITH6)

Γ1,Π ` e1 : T,Γ2 Γ2,Π ` e2 : any,Γ3

Γ1,Π ` e1 + e2 : any,Γ3

(T-CONCAT1)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3 T1 <: string T2 <: string

Γ1,Π ` e1 .. e2 : string,Γ3

(T-CONCAT2)

Γ1,Π ` e1 : any,Γ2 Γ2,Π ` e2 : T,Γ3

Γ1,Π ` e1 .. e2 : any,Γ3

(T-CONCAT3)

Γ1,Π ` e1 : T,Γ2 Γ2,Π ` e2 : any,Γ3

Γ1,Π ` e1 .. e2 : any,Γ3

(T-EQUAL)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3

Γ1,Π ` e1 == e2 : boolean,Γ3

(T-ORDER1)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3 T1 <: number T2 <: number

Γ,Π ` e1 < e2 : boolean,Γ3

(T-ORDER2)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3 T1 <: string T2 <: string

Γ1,Π ` e1 < e2 : boolean

(T-ORDER3)

Γ1,Π ` e1 : any,Γ2 Γ2,Π ` e2 : T,Γ3

Γ1,Π ` e1 < e2 : any,Γ3

(T-ORDER4)

Γ1,Π ` e1 : T,Γ2 Γ2,Π ` e2 : any,Γ3

Γ1,Π ` e1 < e2 : any,Γ3

Appendix C. The type system of Typed Lua 130

(T-BITWISE1)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3 T1 <: integer T2 <: integer

Γ1,Π ` e1 & e2 : integer,Γ3

(T-BITWISE2)

Γ1,Π ` e1 : any,Γ2 Γ2,Π ` e2 : T,Γ3

Γ1,Π ` e1 & e2 : any,Γ3

(T-BITWISE3)

Γ1,Π ` e1 : T,Γ2 Γ2,Π ` e2 : any,Γ3

Γ1,Π ` e1 & e2 : any,Γ3

(T-AND1)
Γ1,Π ` e1 : nil,Γ2

Γ1,Π ` e1 and e2 : nil,Γ2

(T-AND2)
Γ1,Π ` e1 : false,Γ2

Γ1,Π ` e1 and e2 : false,Γ2

(T-AND3)
Γ1,Π ` e1 : nil ∪ false,Γ2

Γ1,Π ` e1 and e2 : nil ∪ false,Γ2

(T-AND4)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3 nil 6. T1 false 6. T1
Γ1,Π ` e1 and e2 : T2,Γ3

(T-AND5)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3

Γ1,Π ` e1 and e2 : T1 ∪ T2,Γ3

(T-OR1)

Γ1,Π ` e1 : T,Γ2 nil 6. T false 6. T

Γ1,Π ` e1 or e2 : T,Γ2

(T-OR2)
Γ1,Π ` e1 : nil,Γ2 Γ2,Π ` e2 : T,Γ3

Γ1,Π ` e1 or e2 : T,Γ3

Appendix C. The type system of Typed Lua 131

(T-OR3)

Γ1,Π ` e1 : false,Γ2 Γ2,Π ` e2 : T,Γ3

Γ1,Π ` e1 or e2 : T,Γ3

(T-OR4)

Γ1,Π ` e1 : nil ∪ false,Γ2 Γ2,Π ` e2 : T,Γ3

Γ1,Π ` e1 or e2 : T,Γ3

(T-OR5)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3

Γ1,Π ` e1 or e2 : filter(filter(T1,nil), false) ∪ T2,Γ3

(T-NOT1)
Γ1,Π ` e : nil,Γ2

Γ1,Π ` not e : true,Γ2

(T-NOT2)
Γ1,Π ` e : false,Γ2

Γ1,Π ` not e : true,Γ2

(T-NOT3)
Γ1,Π ` e : nil ∪ false,Γ2

Γ1,Π ` not e : true,Γ2

(T-NOT4)

Γ1,Π ` e : T nil 6. T false 6. T

Γ1,Π ` not e : false,Γ2

(T-NOT5)
Γ1,Π ` e : T,Γ2

Γ1,Π ` not e : boolean,Γ2

(T-LEN1)
Γ1,Π ` e : T,Γ2 T <: string

Γ1,Π ` # e : integer,Γ2

(T-LEN2)
Γ1,Π ` e : T,Γ2 T <: {}closed

Γ1,Π ` # e : integer,Γ2

(T-LEN3)
Γ1,Π ` e : any,Γ2

Γ1,Π ` # e : any,Γ2

Appendix C. The type system of Typed Lua 132

(T-EXPAPPLY1)

Γ1,Π ` e(el) : S,Γ2

Γ1,Π ` be(el)c1 : first(S),Γ2

(T-EXPINVOKE1)

Γ1,Π ` e:n(el) : S,Γ2

Γ1,Π ` be:n(el)c1 : first(S),Γ2

(T-EXPDOTS)

Γ1,Π ` ... : T∗,Γ2

Γ1,Π ` b...c1 : T ∪ nil,Γ2

(T-IDWRITE)

Γ1(id) = T1 T2 = write(T1)

Γ1,Π ` idl : close(T2),Γ1[id 7→ close(T2)]

(T-REFINE)

Γ1(id) = {K1:V1, ..., Kn:Vn}open|unique
Γ1,Π ` k : K,Γ2 6 ∃i ∈ 1..n K . Ki V = close(T)

Γ1,Π ` id[k]<T> : V,Γ2[id 7→ {K1:V1, ..., Kn:Vn, K:V }open|unique]

(T-LHSLIST)

Γ1,Π ` li : Ti,Γi+1 Γf = merge(Γ1, ...,Γn+1) n = | l |
Γ1,Π ` l : T1 × ...× Tn × value∗,Γf

(T-EXPLIST1)

Γ1,Π ` ei : Ti,Γi+1 Γf = merge(Γ1, ...,Γn+1) n = | e |
Γ1,Π ` e : T1 × ...× Tn × nil∗,Γf

(T-EXPLIST2)

Γ1,Π ` ei : Ti,Γi+1 Γ1,Π ` me : Tn+1 × ...× Tn+m × void,Γn+2

Γf = merge(Γ1, ...,Γn+2) n = | e |
Γ1,Π ` e,me : T1 × ...× Tn+m × nil∗,Γf

Appendix C. The type system of Typed Lua 133

(T-EXPLIST3)

Γ1,Π ` ei : Ti,Γi+1 Γ1,Π ` me : Tn+1 × ...× Tn+m∗,Γn+2

Γf = merge(Γ1, ...,Γn+2) n = | e |
Γ1,Π ` e,me : T1 × ...× Tn+m∗,Γf

(T-EXPLIST4)

Γ1,Π ` ei : Ti,Γi+1 Γ1,Π ` me : S,Γn+2

S = Tn+1 × ...× Tn+m × void t T ′
n+1 × ...× T ′

n+m × void

Γf = merge(Γ1, ...,Γn+2) n = | e |
Γ1,Π ` e,me : T1 × ...× Tn × πx

1 × ...× πx
m × nil∗,Γf , (x, S)

(T-APPLY1)

Γ1,Π ` e : S1 → S2,Γ2 Γ2,Π ` el : S3,Γ3 S3 . S1

Γ1,Π ` e(el) : S2,Γ3

(T-APPLY2)

Γ1,Π ` e : any,Γ2 Γ2,Π ` el : S,Γ3

Γ1,Π ` e1(el) : any∗,Γ3

(T-INVOKE1)

Γ1,Π ` e : Ts,Γ2

Γ2[σ 7→ Ts],Π ` e[id] : const S1 → S2,Γ3

Γ3[σ 7→ Ts],Π ` el : S3,Γ4 Ts × S3 . S1

Γ1,Π ` e:id(el) : [σ 7→ T]S2,Γ4

(T-INVOKE2)

Γ1,Π ` e : any,Γ2 Γ2,Π ` el : S,Γ3

Γ1,Π ` e:id(el) : any∗,Γ3

(T-DOTS)
Γ1(...) = T

Γ1,Π ` ... : T∗,Γ1

(T-SELF)
Γ1,Π ` e : self ,Γ2 Γ2(σ) = T

Γ1,Π ` e : T,Γ2

Appendix C. The type system of Typed Lua 134

(T-SETMETATABLE1)

Γ(id) = self

Γ,Π ` setmetatable({}, {[“ index”] = id}) : self ,Γ

(T-SETMETATABLE2)

Γ(id) = {K1:V1, ..., Kn:Vn}fixed
Γ,Π ` setmetatable({}, {[“ index”] = id}) : {K1:V1, ..., Kn:Vn}open,Γ

(T-SETMETATABLE3)

Γ1,Π ` e = T,Γ2 T = {K1:V1, ..., Kn:Vn}closed Γ1(id) = self Γ1(σ) <: T

Γ1,Π ` setmetatable(e, {[“ index”] = id}) : self ,Γ2[σ 7→ T]

(T-UNFOLD)

Γ1,Π ` e : µx.T,Γ2

Γ1,Π ` e : [x 7→ µx.T]T,Γ2

(T-FOLD)
Γ1,Π ` e : [x 7→ µx.T]T,Γ2

Γ1,Π ` e : µx.T,Γ2

(T-TERNARY)

Γ1,Π ` e1 : T1,Γ2 Γ2,Π ` e2 : T2,Γ3 Γ3,Π ` e3 : T2,Γ4

Γ1,Π ` e1 and e2 or e3 : T2,Γ4

C.3 Auxiliary functions

first(void) = nil

first(T∗) = T ∪ nil

first(T × P) = T

first(S1 t S2) = first(S1) ∪ first(S2)

read(Π, φ(T1, T2)) = T2

read(Π, πx
i) = proj(Π(x), i)

read(Π, T) = T

write(φ(T1, T2)) = T1

Appendix C. The type system of Typed Lua 135

write(T) = T

infer(T1 × ...× Tn∗, i) =

{
general(Ti) if i < n

general(Tn ∪ nil) if i >= n

general(false) = boolean

general(true) = boolean

general(int) = integer

general(float) = number

general(string) = string

general(T1 ∪ T2) = general(T1) ∪ general(T2)

general(S1 → S2) = general2(S1)→ general2(S2)

general({K1:V1, ..., Kn:Vn}tag) = {K1:general(V1), ..., Kn:general(Vn)}tag
general(µx.T) = µx.general(T)

general(T) = T

general2(void) = void

general2(T∗) = general(T)∗

general2(T × P) = general(T)× general2(P)

general2(S1 t S2) = general2(S1) t general2(S2)

proj(T1 × ...× Tn × T∗, i) = Ti if i <= n

proj(S1 t S2, i) = proj(S1, i) ∪ proj(S2, i)

filter(T1 ∪ T2, T1) = filter(T2, T1)

filter(T1 ∪ T2, T2) = filter(T1, T2)

filter(T1 ∪ T2, T3) = filter(T1, T3) ∪ filter(T2, T3)

filter(T1, T2) = T1

close(T1 ∪ T2) = close(T1) ∪ close(T2)

close({K1:V1, ..., Kn:Vn}unique|open) = {K1:V1, ..., Kn:Vn}closed
close(T) = T

Appendix C. The type system of Typed Lua 136

fix(T1 ∪ T2) = fix(T1) ∪ fix(T2)

fix({K1:V1, ..., Kn:Vn}unique|open) = {K1:V1, ..., Kn:Vn}fixed
fix(T) = T

open(T1 ∪ T2) = open(T1) ∪ open(T2)

open({K1:V1, ..., Kn:Vn}unique) = {K1:V1, ..., Kn:Vn}open
open(T) = T

fpt(T1 ×× Tn∗ t T ′
1 × ...× T ′

n∗, T, i) = T ′
1 × ...× T ′

n∗

gpt(T1 ×× Tn∗ t T ′
1 × ...× T ′

n∗, T, i) = T1 × ...× Tn∗

closeall(Γ[id1 7→ T1, ..., idn 7→ Tn]) = Γ[id1 7→ close(T1), ..., idn 7→ close(Tn)]

crall(Γ[id1 7→ T1, ..., idn 7→ Tn]) = Γ[id1 7→ close(write(T1)), ..., idn 7→ close(write(Tn))]

closeset(Γ, {id1, ..., idn}) = Γ[id1 7→ close(Γ(id1)), ..., idn 7→ close(Γ(idn))]

crset(Γ, {id1, ..., idn}) = Γ[id1 7→ close(write(Γ(id1))), ..., idn 7→ close(write(Γ(idn)))]

openset(Γ, {id1, ..., idn}) = Γ[id1 7→ open(Γ(id1)), ..., idn 7→ open(Γ(idn))]

merge(Γ1[id1 7→ T1, ..., idn 7→ Tn],Γ2[id1 7→ T ′
1, ..., idn 7→ T ′

n]) =

Γ3[id1 7→ merget(T1, T
′
1), ..., idn 7→ merget(Tn, T

′
n)]

Appendix C. The type system of Typed Lua 137

merget({K1:V1, ..., Kn:Vn, K:V }tag, {K1:V1, ..., Kn:Vn, K
′:V ′}tag) =

{K1:V1, ..., Kn:Vn, K:V,K ′:V ′}tag
merget(T, T ′) = T ′ if T <: T ′

fav(skip) = ∅

fav(s1 ; s2) = fav(s1) ∪ fav(s2)

fav(l = el) = fav(l) ∪ fav(el)

fav(while e do s) = fav(s)

fav(if e then s1 else s2) = fav(s1) ∪ fav(s2)

fav(local id:T = el in s) = fav(s)

fav(local id = el in s) = fav(el) ∪ fav(s)

fav(rec id:T = f in s) = fav(f) ∪ fav(s)

fav(return el) = fav(el)

fav(bac0) = fav(a)

fav(fun id1:id2 (pl):S s ; return el) = fav(s) ∪ fav(el)

fav(nil) = ∅

fav(k) = ∅

fav(id) = ∅

fav(e1[e2]) = ∅

fav(<T> id) = ∅

fav(fun (pl):S s ; return el) = fav(s) ∪ fav(el)

fav({ [e1] = e2 }) = fav(e1) ∪ fav(e2)

fav({ [e1] = e2,me }) = fav(e1) ∪ fav(e2) ∪ fav(me)

fav(e1 + e2) = fav(e1) ∪ fav(e2)

fav(e1 .. e2) = fav(e1) ∪ fav(e2)

fav(e1 == e2) = fav(e1) ∪ fav(e2)

fav(e1 < e2) = fav(e1) ∪ fav(e2)

fav(e1 & e2) = fav(e1) ∪ fav(e2)

fav(e1 and e2) = fav(e1) ∪ fav(e2)

fav(e1 or e2) = fav(e1) ∪ fav(e2)

fav(not e) = fav(e)

Appendix C. The type system of Typed Lua 138

fav(# e) = fav(e)

fav(bmec1) = fav(me)

fav(idl) = {id}

fav(id[k] <T>) = ∅

fav(e(el)) = fav(e) ∪ fav(el)

fav(e:n(el)) = fav(e) ∪ fav(el)

fav(...) = ∅

rv(skip) = ∅

rv(s1 ; s2) = rv(s1) ∪ rv(s2)

rv(l = el) = rv(l) ∪ rv(el)

rv(while e do s) = rv(e) ∪ rv(s)

rv(if e then s1 else s2) = rv(e) ∪ rv(s1) ∪ rv(s2)

rv(local id:T = el in s) = rv(el) ∪ rv(s)

rv(local id = el in s) = rv(el) ∪ rv(s)

rv(rec id:T = f in s) = rv(f) ∪ rv(s)

rv(return el) = rv(el)

rv(bac0) = rv(a)

rv(fun id1:id2 (pl):S s ; return el) = rv(s) ∪ rv(el)

rv(nil) = ∅

rv(k) = ∅

rv(id) = {id}

rv(e1[e2]) = ∅

rv(<T> id) = ∅

rv(fun (pl):S s ; return el) = rv(s) ∪ rv(el)

rv({ [e1] = e2 }) = rv(e1) ∪ rv(e2)

rv({ [e1] = e2,me }) = rv(e1) ∪ rv(e2) ∪ rv(me)

rv(e1 + e2) = rv(e1) ∪ rv(e2)

rv(e1 .. e2) = rv(e1) ∪ rv(e2)

rv(e1 == e2) = rv(e1) ∪ rv(e2)

rv(e1 < e2) = rv(e1) ∪ rv(e2)

rv(e1 & e2) = rv(e1) ∪ rv(e2)

Appendix C. The type system of Typed Lua 139

rv(e1 and e2) = rv(e1) ∪ rv(e2)

rv(e1 or e2) = rv(e1) ∪ rv(e2)

rv(not e) = rv(e)

rv(# e) = rv(e)

rv(bmec1) = rv(me)

rv(idl) = ∅

rv(id[k] <T>) = ∅

rv(e(el)) = rv(e) ∪ rv(el)

rv(e:n(el)) = rv(e) ∪ rv(el)

rv(...) = ∅

