
Hugo Musso Gualandi

Typing Dynamic Languages – a Review

DISSERTAÇÃO DE MESTRADO

Dissertation presented to the Programa de Pós-Graduação
em Informática at PUC-Rio, as partial fulfillment of the re-
quirements for the degree of Mestre em Informática.

Advisor: Prof. Roberto Ierusalimschy

Rio de Janeiro
September 2015

Hugo Musso Gualandi

Typing Dynamic Languages – a Review

Dissertation presented to the Programa de Pós-Graduação
em Informática at PUC-Rio, as partial fulfillment of the
requirements for the degree of Mestre em Informática.
Approved by the examining commission signed below.

Prof. Roberto Ierusalimschy
Departamento de Informática – PUC-Rio

Prof. Edward Hermann Haeusler
Departamento de Informática – PUC-Rio

Prof. Fábio Mascarenhas de Queiroz
UFRJ

Prof. José Eugenio Leal
Sectorial Coordinator of the Centro Técnico

Científico – PUC-Rio

Rio de Janeiro, September 8th, 2015

CDD: 004

All rights reserved

Hugo Musso Gualandi

Graduated in 2011 with a Bachelor’s Degree in Molecular
Sciences by the University of São Paulo (USP).

Ficha Catalográfica

Gualandi, Hugo Musso

Typing dynamic languages : a review / Hugo Musso
Gualandi ; advisor: Roberto Ierusalimschy. – 2015.

90 f. : il. color. ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Ca-
tólica do Rio de Janeiro, Departamento de Informática,
2015.

Inclui bibliografia

1. Informática – Teses. 2. Linguagens dinâmicas. 3.
Sistemas de tipos. I. Ierusalimschy, Roberto. II. Pontifí-
cia Universidade Católica do Rio de Janeiro. Departa-
mento de Informática. III. Título.

Acknowledgements

This work was funded by CNPq grant number 146516/2012-5.

Abstract
Gualandi, Hugo Musso ; Ierusalimschy, Roberto . Typing Dynamic
Languages – a Review. Rio de Janeiro, 2015. 90p. MSc. Dissertation
– Departamento de Informática , PUC-Rio.

Programming languages have traditionally been classified as either stati-
cally typed or dynamically typed, the latter often being known as scripting
languages. Dynamically typed languages are very popular for writing smaller
programs, a setting where ease of use and flexibility of the language are highly
valued. However, with time, small scripts tend to evolve into large systems
and the flexibility of the dynamic language may become a source of program
defects. For these larger systems, static typing, which offers compile-time
error detection, improved documentation and optimization opportunities, be-
comes more attractive. Since rewriting the whole system in a statically typed
language is not ideal from a software engineering point of view, investigating
ways of adding static types to existing dynamically typed programs has been
a thriving research area. In this work, we present a historical overview of this
research. We focus on general approaches that apply to multiple program-
ming languages, such as the Type Hints of Common LISP, the Soft Typing of
Fagan et al and the Gradual Typing of Siek et al, contrasting these different
solutions from a modern perspective.

Keywords
Dynamic languages; Type systems.

Resumo
Gualandi, Hugo Musso ; Ierusalimschy, Roberto . Tipando Linguagens
Dinâmicas – uma Revisão. Rio de Janeiro, 2015. 90p. Dissertação de
Mestrado – Departamento de Informática , PUC-Rio.

Linguagens de programação tem tradicionalmente sido classificadas como
estaticamente tipadas ou dinamicamente tipadas, estas últimas também
sendo conhecidas como linguagens de scripting. Linguagens com tipagem
dinâmica são bastante populares para a escrita de programas menores, um
cenário onde a facilidade de uso e flexibilidade da linguagem são altamente
valorizados. No entanto, com o passar do tempo, pequenos scripts podem
se tornar grandes sistemas e a flexibilidade da linguagem pode passar a ser
uma fonte de defeitos no programa. Para estes sistemas maiores, a tipagem
estática, que oferece detecção de erros em tempo de compilação, melhor do-
cumentação e oportunidades de otimização, passa a ser mais atrativa. Como
reescrever todo o sistema em uma linguagem estática não é ideal do ponto de
um vista da engenharia de software, encontrar formas de adicionar tipos está-
ticos em programas dinamicamente tipados já existentes tem sido uma área
de pesquisa bem rica. Nesse trabalho, nós apresentamos uma perspectiva
histórica dessa pesquisa. Nos focamos em abordagens que não são especí-
ficas para uma única linguagem de programação, como as Type Hints de
Common LISP, o Soft Typing de Fagan et al e o Gradual Typing de Siek et al,
contrastando essas diferentes soluções a partir de uma perspectiva moderna.

Palavras-chave
Linguagens dinâmicas; Sistemas de tipos

Contents

1 Introduction . 9
1.1 The Advantages of Static Typing 10
1.2 The Advantages of Dynamic Typing 11

2 Lambda Calculus and Type Systems 14
2.1 The Pure Lambda Calculus . 14
2.2 Additional Datatypes and Soundness 18
2.3 A Dynamically-Typed Lambda Calculus 19
2.4 Simple Types . 21
2.5 Type System Conservativeness and “Acceptable Losses” 24
2.6 Recursion . 25
2.7 Products and Records . 26
2.8 Sums and Variants . 28

3 Advanced Type Systems . 31
3.1 Recursive Types . 31
3.2 Universal Types . 33
3.3 Subtyping . 36
3.4 Union Types . 40
3.5 Intersection Types . 41

4 Soft Typing . 42
4.1 An Unification-based Soft Type System 43
4.2 A Flow-based Analysis Soft Type System 48
4.3 Unification-based vs Flow-based Soft Typing 52
4.4 Success Types . 53

5 Type Specifiers in Common LISP 56
5.1 Specialized operations in Common LISP 56
5.2 The effect of type annotations in Common LISP 57

6 Gradual Typing . 61
6.1 The Blame Calculus . 61
6.2 A Surface Syntax for the Blame Calculus 67
6.3 Properties of Gradually-Typed Systems 69
6.4 Challenges for Gradual-Typing 71

7 Optional Typing . 73
7.1 Optional Typing in Strongtalk 73
7.2 Optional Typing inspired by Gradual Typing 74

8 Conclusion . 77
8.1 Programmer-oriented comparison of type systems 77
8.2 Designer-oriented comparison of type systems 79
8.3 Miscellaneous Opinions and Recommendations 80

9 Bibliography . 83

All is fair in love and war, even trying to add a static
type system in a dynamically-typed programming
language.

Lindahl \& Sagonas

9

1 Introduction

Historically, programming languages have been classified as either statically-
typed or dynamically-typed . The simplicity and flexibility of dynamic lan-
guages makes them popular for writing prototypes and other small scripts.
However, as programs grow larger, maintenance and debugging costs in-
crease, which causes type systems and other forms of static program analysis
to become more appealing. Unfortunately, converting an existing untyped
program into a statically-typed one usually means rewriting the program in a
completely different programming language, which is a costly undertaking.

This begs the question: Is it possible to make the transition from a dy-
namic program to a static one easier, therefore allowing the programmer to
simultaneously benefit from the flexibility of dynamic languages and the
static guarantees of typed ones?

There is a vast literature on this topic, ranging from developing static type
systems that are expressive enough to reason about common dynamic idioms
to ways of embedding dynamically-typed programs inside statically-typed
ones. In this work we focus on the problem of adding a static type system to
a dynamically typed language and we aim to provide an overview of some
of the most important techniques used to achieve this goal.

In Section 1.1 and Section 1.2 we start by motivating the combination of
static and dynamic typing. Why should we bother with combining them
instead of just sticking to one or the other from the start? In Chapter 2 we
present a quick review of type systems and programming language theory.
In addition to clarifying the notation that we will be using throughout this
text, we also formally describe what it means for a programming language to
be statically-typed or dynamically-typed. Chapter 3 reviews the type system
theory behind some type system features that do not affect the evaluation
semantics of the underlying programming language. These techniques are
used to make type systems more expressive and many of them are commonly
used in type systems for dynamic languages. While we cannot give a com-
prehensive review of all the type systems for dynamic languages, we can
describe some of the more common features among them.

After the theory chapters we move on to presenting some of the major
branches of type systems for dynamic languages. Chapter 4 is about Soft
Typing, a form of static analysis for dynamic languages that is based around
automatic type inference. In Chapter 5 we present the optional type decla-
rations of Common LISP, which was one of the first dynamic languages to
allow optional type annotations. In Chapter 6 we discuss Gradual Typing,
which is a way to create programs that are divided into typed and untyped
regions in a way that prevents the untyped parts from violating the static
guarantees given by the statically-typed parts. Finally, in Chapter 7, we cover
Optional Typing, which is what happens when a type system has optional
type annotations that do not affect the runtime semantics of programs.

Chapter 1. Introduction 10

1.1 The Advantages of Static Typing
Despite the great variety of existing type systems, even in the dynamic typing
literature there is a lot of agreement over what are the main benefits of static
typing. Some of the benefits that are mentioned most often are the following:

Early detection of programmer errors

Like any other form of static program analysis, type systems can detect
program errors at compile time, without having to execute the program.
This early detection can shorten the software development cycle, and allows
programmers to be bolder while refactoring code. For example, if the interface
of a subroutine is changed by adding an additional input argument, a type
system can help the programmer by pointing out all the call sites that need
to be updated to pass the additional parameter.

Another general characteristic of static analysis when it comes to error
detection is that it does not depend on the program input. This is in contrast
to runtime testing, which offers no guarantees about how the program will
behave on the untested inputs.

Documentation and abstraction

Even in programming languages without a formal type system, it is com-
mon to use a type-based vocabulary to informally describe the contents of
variables, subroutine inputs and outputs, module APIs and other interfaces.
For example, in the Javascript documentation generator JSDoc [1] can parse
type annotations inside comments and these type annotations can use a rich
vocabulary including primitive types, union types and object types. This is
despite the fact that the annotations are purely used for documentation and
are completely ignored when the program is actually executed.

While these informal types are already useful, types can really shine when
they are automatically checked by the computer, which can guarantee that the
type declarations are always kept up to date. Information inside comments
can easily become outdated after the program code next to goes through a
rewrite.

External tooling

Types and type declarations are a form of metadata that can be used by a
variety of tools other than the type checker. One of the most visible examples
of this is how many text editors use type information to power autocompletion
functionality and other forms of inline documentation.

Another interesting examples is the Hoogle [2] tool for the Haskell lan-
guage, which can search though large APIs to find all functions that match a
given type. This allows the programmer to find the function he wants based
on the types of its inputs and outputs, even if he does not remember its name.

Chapter 1. Introduction 11

Efficiency

Type information can also allow the compiler to perform program optimiza-
tions or to allocate memory more efficiently. For example, compile-time type
information can allow the compiled program to use untagged representations
for data and avoid the branching operations that typically accompany tag
tests in dynamic languages.

1.2 The Advantages of Dynamic Typing
The main advantage of dynamic languages is that they tend to be simpler
and more flexible than static languages. Unfortunately, dynamic typing isn’t
formally defined like static typing is so most of the points that we list here as
advantages of dynamic typing may be seen as disadvantages of a static type
system.

Expressivity

As we will discuss in Section 2.5, any type system must be conservative and
reject some well-behaved programs, which would execute without runtime
errors if not for the type checker disallowing them from running at all. This
is not just a theoretical limitation because many programming patterns that
are possible to write in dynamic languages may require explicit support from
the type system to be used in a static language.

For example, writing a type-generic data structure in a dynamic language
is just a matter of writing code that does not directly inspect the elements
stored in the data structure. On the other hand, in a static language its
impossible to do the same unless the type system has been designed to
support type polymorphism. Additionally, in Chapter 3 we also list more
type system features that are meant to allow static languages to express
programming patterns that come “for free” in dynamic languages.

Complexity and learning curve

One positive characteristic of dynamic languages is that the programmer
only has to be aware of the language features that he is actually using in his
program, which may not be the case in a statically-typed language this might
not be the case. Firstly, if the language has type inference then the inferred
types might contain types that the programmer did not expect. Secondly,
type system features interact in complex ways and adding a new feature
to the type system may result in incidental complexity on top of existing
features. For example, type systems mixing parametric polymorphism and
subtyping must deal with variance issues which don’t exist in type systems
without both features.

Prototypes and other small programs

Dynamically-typed scripting languages [3] have proven themselves to be ex-
tremely popular for writing short disposable programs and prototypes. This

Chapter 1. Introduction 12

is party due to their simplicity and ease of embedding but also because in
these problems domains static typing is not as beneficial. For short scripts that
are constantly being changed flexibility is at a premium an runtime efficiency
tends to not be as important. Additionally, there is less need for compile-time
error detection when programs are small and easy to understand.

Heterogeneous data structures

In statically-typed language, the only way to package heterogeneous data
into a single list is to homogenize it by using variant records. In a dynamic
language, this is not necessary, since all values are already internally tagged.
This means that dynamic languages are naturally suited for manipulating
heterogeneous data structures, such as the following JSON [4] document:

{
”name”:{

”first”: ”John”,
”last”: ”Smith”

},
”age”: 25

}

In Javascript we can take advantage of the structure of JSON being similar
to the structure of Javascript’s (dynamically-typed) objects. For example, we
can obtain John Smith’s full name as follows:

var p = JSON.parse(...);
p.name.first + ” ” + p.name.last

The equivalent program in a statically typed language would be more verbose.
For example, the same operation in Java might require the programmer to
explicitly mention the type of every field [5].

JSONObject p = new JSONObject(...);
p.getJSONObject(”name”).getString(”first”) + ” ”

+ p.getJSONObject(”name”).getString(”last”)

Introspection

Dynamic languages make it easy to access type information at runtime. One
example where this is useful is for generic traversal of data structures. For
instance, the following Lua function performs a deep copy of its input, which
can be a value of any type.

function clone(obj)
if type(obj) == ”table” then

local copy = {}
for k,v in pairs(obj) do

copy[k] = clone(v)
end
return copy

Chapter 1. Introduction 13

else
return obj

end
end

In a static language, it is harder to write these generic functions and the
programmer may have to resort to creating a separate copy function for each
input type, perhaps via some metaprogramming system [6].

14

2 Lambda Calculus and Type Sys-
tems

One common technique in the study of programming languages is to translate
a larger language that we are interested in studying into a smaller core language
that is easier to reason about. We will be using variations of Church’s λ-
calculus as the core language for many of the languages and type systems
that we survey so in this chapter we provide a short will review the necessary
concepts from the λ-calculus that we will use. This material on the lambda
calculus and type theory is already covered in most introductory books
on programming languages or type systems, such as Pierce’s Types and
Programming Languages [7] and the main reason we present it here is to
clarify the notation we will be using. We also take the opportunity to view
dynamic typing in a more formal type-theoretic setting.

2.1 The Pure Lambda Calculus
The pure λ-calculus is the simplest version of the λ-calculus and is the founda-
tion we will use when we define our own programming languages in this text.
It is an untyped functional programming language where all computation is
represented as a combination of function definitions and applications.

The λ-calculus consists of two parts. Firstly, it has a syntax that specifies
the language of λ-calculus programs. Secondly, it has a set of rules that
describe the computational process of reducing λ-terms into other λ-terms.
In Fig. 1 we present the syntax for the pure λ-calculus and a pair of operational
semantics for it. We will explain these in detail in the subsections that follow.

2.1.1 Syntax
Expressions in the pure λ-calculus (also known as λ-terms) come in three
varieties:

1. Variables, represented by letters such as 𝑥, 𝑦 and 𝑧.

2. Lambda abstractions (also known as functions) are written λ𝑥. 𝑒 and
abstract over a sub-expression 𝑒 by parameterizing it over the variable
𝑥.

3. Function applications, written (𝑒1 𝑒2), represent the use of a function
abstraction.

To avoid excessive nesting of parenthesis, it is customary to treat function
application as a left-associative operation, with (𝑥 𝑦 𝑧) being equivalent to
((𝑥 𝑦) 𝑧). It is also common to omit lambdas from nested function definitions.
For instance, we can write λ𝑥 𝑦.𝑒 instead of λ𝑥. λ𝑦. 𝑒.

Chapter 2. Lambda Calculus and Type Systems 15

Syntax

Variable 𝑥 ::= 𝑥, 𝑦, 𝑧, …
Expression 𝑒 ::= 𝑥 | λ𝑥. 𝑒 | (𝑒1 𝑒2)

Free Variables 𝐹𝑉(𝑒)

𝐹𝑉(𝑥) = {𝑥}
𝐹𝑉(λ𝑥. 𝑒) = 𝐹𝑉(𝑒) − {𝑥}

𝐹𝑉((𝑒1 𝑒2)) = 𝐹𝑉(𝑒1) ∪ 𝐹𝑉(𝑒2)

Variable substitution 𝑒[𝑥 ← 𝑣]

𝑥[𝑥 ← 𝑣] = 𝑣
𝑦[𝑥 ← 𝑣] = 𝑦 if 𝑥 ≠ 𝑦

(λ𝑥. 𝑒)[𝑥 ← 𝑣] = (λ𝑥. 𝑒)
(λ𝑦. 𝑒)[𝑥 ← 𝑣] = (λ𝑦. 𝑒[𝑥 ← 𝑣]) if 𝑥 ≠ 𝑦 and 𝑦 ∉ 𝐹𝑉(𝑣)
(𝑒1 𝑒2)[𝑥 ← 𝑣] = (𝑒1[𝑥 ← 𝑣] 𝑒2[𝑥 ← 𝑣])

Irreducible expressions

Value 𝑣 ::= λ𝑥. 𝑒

Reduction contexts

𝐶 ∶∶= [] | (𝐶 𝑒) | (𝑣 𝐶)

Single-step reduction 𝑒 ⟼ 𝑒

𝐶[((λ𝑥. 𝑒) 𝑣)] ⟼ 𝐶[𝑒[𝑥 ← 𝑣]] (app)

Multi-step reduction 𝑒 ⟼∗ 𝑒

⟼∗ is the transitive and reflexive closure of ⟼

Big-step call-by-value semantics 𝑒 ⇓ 𝑣

val
𝑣 ⇓ 𝑣

app
𝑒1 ⇓ λ𝑥. 𝑒3 𝑒2 ⇓ 𝑣 𝑒3[𝑥 ← 𝑣] ⇓ 𝑣′

(𝑒1 𝑒2) ⇓ 𝑣′

Figure 1 – The pure λ-calculus

Chapter 2. Lambda Calculus and Type Systems 16

2.1.2 Variable Bindings
Each λ-abstraction introduces a new variable name and that name can be
used anywhere inside the body of the λ-abstraction. Variables without an
outer function binding their name are known as free variables. Conversely,
variables that have an outer function definition introducing their name are
known as bound variables. If there are two nested functions defining variables
with the same name, the inner function has priority and the inner definition
shadows the name from the outer scope. Bound variables can be renamed
without changing the meaning of the program.

Let expressions

Function abstractions are the only mechanism for naming things in the pure
λ-calculus. However, in many situations the following let-expression syntax
is more readable:

(let 𝑥 = 𝑒1 in 𝑒2) ≝ ((λ𝑥. 𝑒2) 𝑒1)

In some typed λ-calculi, such as the polymorphic calculus of Section 3.2 these
let-expressions are given special meaning but usually they can be considered
as syntactic sugar for function applications.

2.1.3 Evaluation
The fundamental operation in the pure λ-calculus is function application.
Terms of the form ((λ𝑥. 𝑒) 𝑣) are known as reducible terms or redexes and
can be reduced to the term 𝑒[𝑥 ← 𝑣], which is the body of the function
abstraction with the argument 𝑣 substituted for all instances of the parameter
𝑥. This rewrite is called β-reduction and is described formally in Fig. 1. If
the parameter 𝑣 contains free variables and the body of the function λ𝑥. 𝑒
contains variable definitions with the same name as the free variables in 𝑣
then the variables inside the function must be renamed to avoid capturing
the free variables in 𝑣.

Evaluating a λ-term consists of performing β-reductions in sequence until
no more reductions can be performed. This reduction process can continue
forever or it can result in a final term, which is called a normal form. An
evaluation strategy determines what redexes in the program can be reduced
and in what order they are reduced. In this text, all the languages that we
mention will use the call-by-value evaluation strategy, which is used by the
vast majority of “real world” programming languages.

In a call-by-value setting, there is a strict and deterministic evaluation
order. A redex can only be reduced if it is an outermost redex that is not
located inside any λ-abstractions and if the argument to the function applica-
tion has been fully reduced to a value, which is a normal form that is not a
free variable. In the pure λ-calculus the only values are λ-abstractions but in
more complex calculi values can also be booleans, numbers, strings, and so
on. We will describe the call-by-value evaluation order more precisely when
we describe the small-step and big-step semantics for the λ-calculus.

Under the call-by-value strategy, a normal form can be either a value
or a non-value term. If the evaluation terminates with a non-value normal

Chapter 2. Lambda Calculus and Type Systems 17

((λ𝑥. 𝑒) 𝑣) ⟼ 𝑒[𝑥 ← 𝑣] (app)
(𝑒1 𝑒2) ⟼ (𝑒′

1 𝑒2) if 𝑒1 ⟼ 𝑒′
1 (left)

(𝑣 𝑒2) ⟼ (𝑣 𝑒′
2) if 𝑒2 ⟼ 𝑒′

2 (right)

Figure 2 – Single-step reduction rules for the λ-calculus

form we say that it has gotten stuck. In the pure λ-calculus, the only way a
term can be stuck is if it contains free variables. For example, the function
application (𝑥 𝑦) cannot be evaluated any further if 𝑥 and 𝑦 are free. However,
this kind of stuck term is not very interesting because we could restrict
evaluation to terms with no free variables (which are called closed terms) or
just provide semantic meaning to free variables (perhaps by treating them
as global constants). However, in richer lambda-calculi with more primitive
types (integers, booleans, etc) or operations (other than function application)
there might be other kinds of terms that can get stuck. One of the larger
questions one can ask about a language semantics or type system is whether
it is possible for programs to get stuck. Getting stuck means that the program
evaluation reached a point where the way to proceed is undefined. In practical
programming languages, this sort of undefined behavior often manifests as
memory violations and other dangerous or unpredictable behavior.

2.1.4 Small-Step semantics
One way to more precisely describe the semantics of a λ-calculus program is
via a small-step semantics [8; 9]. The fundamental element in a small-step
semantics is the single-step reduction relation 𝑒1 ⟼ 𝑒2, which means that the
λ-term 𝑒1 reduces to the term 𝑒2 in a single step. In a call-by-value evaluation
order the ⟼ relation is a partial function. The evaluation is deterministic so
either an expression 𝑒1 has exactly one image 𝑒2 or it has no images, due to it
being a fully-reduced value or stuck term. Multi-step evaluation is denoted
by ⟼∗ and is defined to be the transitive and reflexive closure of ⟼. In
other words, 𝑒1 ⟼∗ 𝑒2 if and only if 𝑒1 reduces to 𝑒2 in zero or more steps.

The most direct way to define the ⟼ relation for the pure call-by-value
λ-calculus is via the evaluation rules in Fig. 2. Rule app is the β-reduction
transformation with the restriction that the argument has already been fully
reduced to a value. The remaining rules describe where reductions can
occur in a λ-expression. The presence of the left and right rules and the
absence of other rules permitting evaluation inside of λ-abstractions results
in a call-by-value evaluation order.

The reduction-context notation

Out of the three rules in Fig. 2 that we used to describe the ⟼ relation,
only the app rule is actually doing interesting computations. The remaining
rules are there to specify which redexes in the program can be reduced. For
more complex extensions of the λ-calculus, it can be clearer to separate the

Chapter 2. Lambda Calculus and Type Systems 18

computational reduction rules from these order of evaluation rules and one
way to do that is via Felleisen and Hieb’s reduction-context notation [10].

A reduction-context 𝐶 represents the part of the λ-term that surrounds a
redex that can be β-reduced. A reduction context is either a hole (denoted by
[]) or λ-term with a “hole” in it, with some additional restrictions to ensure
the correct evaluation order. In the pure λ-calculus with a left-to-right call-
by-value evaluation order, holes can appear either in the left operand of an
application or in the right operand of an application after the left operand
has already been fully reduced to a value:

𝐶 ∶∶= [] | (𝐶 𝑒) | (𝑣 𝐶)

We denote by 𝐶[𝑒] the operation of “filling in” the hole in a reduction context
with the λ-term 𝑒. This notation allows us to write a full description of the
reduction semantics of the pure λ-calculus using a single rule:

𝐶[((λ𝑥. 𝑒) 𝑣)] ⟼ 𝐶[𝑒[𝑥 ← 𝑣]] (app)

2.1.5 Big-Step Semantics
While small-step semantics describe the runtime behavior of programs by de-
scribing each step of the program evaluation, big-step semantics [11], describe
the behavior of programs by directly describing what value a term evaluates
to. The central part of a big-step semantics is a relation 𝑒 ⇓ 𝑣 that relates
expressions in the λ-calculus to the value to which they evaluate. In the pure
λ-calculus, this relation is a partial function: Evaluation is deterministic but
for some terms it does not terminate or might get stuck.

One way to define the ⇓ relation for the call-by-value λ-calculus is via the
following rules:

val

𝑣 ⇓ 𝑣

app
𝑒1 ⇓ λ𝑥. 𝑒3 𝑒2 ⇓ 𝑣 𝑒3[𝑥 ← 𝑣] ⇓ 𝑣′

(𝑒1 𝑒2) ⇓ 𝑣′

The way to read these evaluation rules is that if all the judgments on top
of the bar are valid then the judgment under the bar is valid. The val rule
specifies that function abstractions evaluate to themselves and the app rule
describes how to evaluate an application after the left and right operands
have been evaluated.

Big-step semantics are good for writing proofs that care about the final
value that an expression evaluates to but they cannot distinguish between
evaluation that does not terminate and evaluation that gets stuck in a non-
value. While it is possible to extend a big-step semantics with co-inductive
rules that can reason about non-termination [12], in this text we will use a
small-step semantic whenever we have to reason about non-termination.

2.2 Additional Datatypes and Soundness
Until now, the only values in the λ-calculus that we presented are function
abstractions. In this section we will show how to extend the λ-calculus with

Chapter 2. Lambda Calculus and Type Systems 19

additional primitive datatypes, which will introduce the problem of runtime
type errors, a central problem to the discussion on type systems and dynamic
languages.

For simplicity, we start by restricting ourselves to extending the pure
λ-calculus with the simplest datatype: the null datatype, which contains a
single value, also called null. In the type-theory literature this type is usually
called unit but we prefer the null name because it is a more familiar name
in a dynamic language setting. Anyway, we will call this extended calculus
λnull. As is shown in Fig. 3, the null type does not have any operations
associated with it so the language semantics of λnull contains exactly the
same evaluation rules as the pure λ-calculus. The only change between them
is the addition of null as a valid term and that the set of irreducible values
now includes null in addition to function abstractions.

This latter change in the set of irreducible values has a big consequence,
however, which is why we say that the λnull calculus is incomplete. It is now
possible for the evaluation of a λ-term to get stuck on a non-value if a null
value appears as the left operand of a function application.

Similar problems occur if we add any other datatype to the pure λ-calculus.
null is just the simplest possible case. For example, had we added a datatype
for booleans we would also have created the possibility of function applica-
tions getting stuck due to receiving a boolean where a function was expected
or if a function were passed as the conditional of an if-then-else expression.

2.2.1 Soundness
In real-world programming languages, undefined behavior due to stuck
terms can be a source of unpredictable program behavior, such as buffer
overflows and segmentation faults, which can lead to serious bugs. It is
therefore highly desirable for a programming language to not allow any
instances of such undefined behavior. This is known as soundness. In a sound
programming language, evaluating a program either terminates with a value
or enters an infinite loop – it never gets stuck.

There are two major approaches for making programming languages
sound. In Section 2.3 we present the approach taken in dynamic languages,
which is to assign a meaning to all the previously stuck terms. This is what
is done in dynamic languages. In Section 2.4 we cover the approach of
statically-typed languages, which use a static type system to restrict the set of
programs that can be executed to only the programs that can be guaranteed
at compile-time that they will never get stuck.

2.3 A Dynamically-Typed Lambda Calculus
Dynamically-typed languages use runtime checks to detect “stuck” terms and
assign an appropriate meaning to them. The simplest way to avoid having to
deal with stuck terms is to cleanly abort the program execution by raising
an exception. In this section we will present an example of this approach,
the λdyn calculus, a dynamically-typed version of the λnull calculus from
Section 2.2.

Chapter 2. Lambda Calculus and Type Systems 20

Syntax

Variable 𝑥 ::= 𝑥, 𝑦, 𝑧, …
Function 𝑓 ::= λ𝑥. 𝑒
Null ::= null
Expression 𝑒 ::= 𝑥 | 𝑓 | null | (𝑒1 𝑒2)

Irreducible expressions

Value 𝑣 ::= 𝑓 | null

Reduction contexts

𝐶 ∶∶= [] | (𝐶 𝑒) | (𝑣 𝐶)

Single-step reduction 𝑒 ⟼ 𝑒

𝐶[((λ𝑥. 𝑒) 𝑣)] ⟼ 𝐶[𝑒[𝑥 ← 𝑣]] (app)

Figure 3 – An incomplete λ-calculus with null (λnull)

2.3.1 Semantics of λdyn

The λdyn calculus and its semantics are described fully in Fig. 4. The main dif-
ference compared to the λnull calculus is the introduction of the not-a-function
exception. Instead of program evaluation always resulting in a value, it
can now result in either a value or an exception, which is reflected in the
codomains of the ⟼ and ⟼∗ partial functions.

The app-err rule deals with runtime errors. If at any point the evaluation
encounters a function application that would have gotten stuck in λnull, the
evaluation immediately aborts with a not-a-function exception.

From a type systems point of view, the distinctive feature of λdyn is that it
is a sound programming language. Evaluation never gets stuck because the
exception-handling rules now assign a meaning to all the terms that would
have gotten stuck in the λnull calculus.

2.3.2 Weak Typing
Raising a runtime exception when an operation receives inputs of an inap-
propriate type is the most direct way to create a sound dynamic language.
However, another possibility is to assign some non-error meaning to the
ill-typed terms, perhaps by coercing the inputs to a different type. These coer-
cions blur the distinction between the different types and many programmers
refer to the resulting language as a weakly-typed language.

One example of weak typing in a dynamic language is how in the PHP
language the arithmetic operators coerce string inputs to numbers. [13]. For
example, the PHP expression ”1a”+”2b” evaluates to the number 3 because
the addition converts its inputs to numbers and the conversion from strings
to numbers ignores all characters after the initial numeric prefix. These

Chapter 2. Lambda Calculus and Type Systems 21

Syntax

Variable 𝑥 ::= 𝑥, 𝑦, 𝑧, …
Function 𝑓 ::= λ𝑥. 𝑒
Null ::= null
Expression 𝑒 ::= 𝑥 | 𝑓 | null | (𝑒1 𝑒2)

Irreducible expressions

Value 𝑣 ::= null | 𝑓
Error Ω ::= not-a-function
Result 𝑟 ::= 𝑣 | Ω

Reduction contexts

𝐶 ∶∶= [] | (𝐶 𝑒) | (𝑣 𝐶)

Single-step reduction 𝑒 ⟼ (𝑒 ∪ Ω)

𝐶[((λ𝑥. 𝑒) 𝑣)] ⟼ 𝐶[𝑒[𝑥 ← 𝑣]] (app)
𝐶[(𝑣1 𝑣2)] ⟼ not-a-function if 𝑣1 ∉ Function (app-err)

Figure 4 – The dynamically-typed λ-calculus with null (λdyn)

permissive coercions can sometimes “swallow” programmer errors and hide
the true source of bugs by preventing or delaying desirable exceptions from
being raised.

What this all means is that the soundness of a programming language
is a relative thing. If we follow the definition to the letter, PHP is a sound
programming language where programs never get stuck. However, if a
programmer finds that one of the implicit coercions is a common source
of bugs than that coercion can end up being as undesirable as undefined
behavior would have been.

2.4 Simple Types
In this section, we introduce the simply-typed λ-calculus (λ→) and its type
system. The type system for the simply-typed λ-calculus is one of the sim-
plest type systems and it is used as a building block for many other more
advanced type systems. It is also a good starting place to introduce type
system terminology.

2.4.1 Syntax and Semantics
The syntax and semantics for λ→ are practically the same as the syntax and
semantics for the λnull calculus. The only difference is that the parameters in
function abstractions now carry explicit type annotations in order to simplify

Chapter 2. Lambda Calculus and Type Systems 22

Type Syntax

Type 𝜏 ::= null | 𝜏1 → 𝜏2

Typing rules Γ ⊢ 𝑒 ∶ 𝜏
var
Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 ∶ 𝜏

null

Γ ⊢ null ∶ null

lam
Γ[𝑥 ← 𝜏1] ⊢ 𝑒 ∶ 𝜏2

Γ ⊢ (λ𝑥 ∶ 𝜏1 . 𝑒) ∶ (𝜏1 → 𝜏2)

app
Γ ⊢ 𝑒1 ∶ (𝜏 → 𝜏′) Γ ⊢ 𝑒2 ∶ 𝜏

Γ ⊢ (𝑒1 𝑒2) ∶ 𝜏′

Figure 5 – The type system of the simply-typed lambda calculus with null
(λ→)

the type checking process. In a later section we will cover type inference, which
allows these annotations to be omitted.

2.4.2 Types
Informally, the type of an expression is a computable superset of the set of
values the expression may evaluate to. A type system consists of a definition
of what the types can be and a set of rules for computing the type of each
expression in a given program.

We show the type system for λ→ in Fig. 5. A type can be either a ground
type (which in our simplified system can only mean the null type) or a
function type (𝜏1 → 𝜏2), for functions that take inputs of type 𝜏1 and return
values of type 𝜏2.

A λ→ program is considered well-typed if it is possible to assign types to
each of its sub expressions in a way that respects the typing rules shown
in Fig. 5. The typing rules use type environments Γ, which map the names
of variables in scope to their types. Γ(𝑥) is the type of variable 𝑥 in the
environment Γ and Γ[𝑥 ← 𝜏] is the environment obtained by extending the
environment Γ with a variable 𝑥 of type 𝜏. Typing judgments take the form
Γ ⊢ 𝑒 ∶ 𝜏 and mean that in a type environment Γ the expression 𝑒 has type 𝜏.

Examples

First, let us show an example of an well-typed program. Consider the follow-
ing program:

((λ𝑥 ∶ null . 𝑥) null)
This program is well typed and can be assigned the type null, as is shown by
the following type derivation tree:

{𝑥 ∶ null} ⊢ 𝑥 ∶ null
var

{} ⊢ (λ𝑥 ∶ null . 𝑥) ∶ (null → null)
lam

{} ⊢ null ∶ null
null

{} ⊢ ((λ𝑥 ∶ null . 𝑥) true) ∶ null
app

Chapter 2. Lambda Calculus and Type Systems 23

For an example of a program that cannot be typed in the λ→ calculus consider
the following:

(null null)

This program cannot be assigned a type because the only rule that applies
to function applications is the app rule and that rule cannot be used for this
program because it requires the left operand to have a function type and null
is not a function.

2.4.3 Soundness
It is not a coincidence that the expression (null null) is ill-typed, as the type
system for the simply-typed λ-calculus was designed to be sound. All terms
that get stuck during evaluation are ill-typed or, as the popular saying goes,
well-typed programs do not go wrong (get stuck).

For the dynamically-typed λ-calculus in Section 2.3 it was easy to directly
prove the soundness of the language. For languages with multiple types,
such as λ→, this process is slightly more complicated. Soundness is usually
proved in two steps, by showing that the language has the progress property
and the preservation property:

Definition (Progress). A well-typed expression 𝑒1 is either a fully reduced
value or it can be further reduced to another expression 𝑒2. The evaluation
does not get immediately stuck.

Definition (Preservation). If a well-typed expression 𝑒1 reduces to another
expression 𝑒2 then 𝑒2 is also well typed and has the same type as 𝑒1.

A full proof of the soundness of the simply-typed λ-calculus can be found
in Pierce’s Types and Programming Languages [7] or any other book on type
systems. For brevity we include here only a proof sketch:

The proof of the progress property involves showing that all stuck terms
are ill-typed, which is the contrapositive of the progress property. There is
only one kind of term in λnull that gets stuck: function applications with a null
value as the left operand. Since none of the typing rules in the simply-typed
calculus apply to these stuck terms, they cannot be well-typed.

The proof of preservation can be done via an exhaustive case analysis
over the reduction rules of the λ→ and is left as an exercise for the reader.

2.4.4 Type Inference
So far, we have required explicit type annotations for all variable declarations
in the simply-typed λ-calculus. However, this can be very burdensome
and can also get in the way of using type systems to reason about dynamic
languages, where programs do not have any type annotations. The alternative
to using explicit type signatures is to use a type inferencing algorithm to
determine what types could fit the missing type annotations.

For the simply-typed λ-calculus, type inference can be formulated as
finding a solution to a system of equations involving type variables. Each
variable 𝑥 and each program subexpression 𝑒 in the program is associated

Chapter 2. Lambda Calculus and Type Systems 24

Phrase Constraints
null ⟦null⟧ = null
λ𝑥. 𝑒 ⟦λ𝑥. 𝑒⟧ = ⟦𝑥⟧ → ⟦𝑒⟧
(𝑒1 𝑒2) ⟦𝑒1⟧ = ⟦𝑒2⟧ → ⟦(𝑒1 𝑒2)⟧

Figure 6 – Type inference constraints for the simply-typed λ-calculus

with a type variable, which we will represent by ⟦𝑥⟧ and ⟦𝑒⟧, respectively.
The typing rules for the simply-typed λ-calculus impose a set of equality
restrictions between the types of different parts of the program. Each syntactic
form in the program leads to a different set of restrictions, as summarized
in Fig. 6. Type inference then consists of searching for a solution to the set
of constraints. One way to do this is via an unification algorithm. Its more
common to see this unification algorithm being presented for polymorphic
λ-calculi but a version specialized for the simply-typed calculus can be found
in Oleg Kiselyov’s class notes [14].

2.5 Type System Conservativeness and “Acceptable
Losses”

While type systems guarantee that well-typed programs don’t go wrong,
they do not guarantee the converse, that ill-typed programs will go wrong.
Whether a program gets stuck or not is a nontrivial runtime property, which is
undecidable according to Rice’s theorem [15]. Because of this undecidability,
any type system must err on the side of conservativeness and statically reject
some programs that would have successfully executed had the type system
not prevented them from being executed in the first place.

It is easy to come up with trivial example programs that do not get stuck
but which will be rejected by most type systems. For example, in the following
program the type error occurs inside a branch of the if-then-else expression
that never gets executed. 1

if true then 10 else (null null)

However, examples like this one are not the most interesting. Dead branches
are a code smell and usually are not added to a program intentionally. A
bigger problem occurs when the type system cannot type a useful program
that the programmer would have liked to be able to write.

A prime example of a type system rejecting useful programs is the fact
that the simply-typed λ-calculus, as we presented in Section 2.4, is not Turing-
complete [16]. Programs that use recursion are not just hard to write in the
simply-typed λ-calculus, they are impossible to write!

Another, less extreme, example of a type system limitation is the lack
of polymorphism in the simply-typed λ-calculus. Consider the following
1 We formally describe if-then-else expressions in Section 2.8. For now the reader can

assume that booleans and conditionals behave as expected

Chapter 2. Lambda Calculus and Type Systems 25

program which consists of a single function being applied to values of dif-
ferent types:

let 𝑓 = (λ𝑥. 𝑥) in
if (𝑓 true) then (𝑓 5) else (𝑓 7)

It successfully evaluates to 5 but it cannot be given a type in the simply-typed
λ-calculus because the 𝑓 function cannot be typed bool → bool and int → int
simultaneously. While it is possible to write an equivalent program that can
be typed using only simple types, doing so requires giving up 𝑓 ’s code reuse:

let 𝑓 = (λ𝑥. 𝑥) in
let 𝑔 = (λ𝑥. 𝑥) in
if (𝑓 true) then (𝑔 5) else (𝑔 7)

Given the advantages that type systems provide, the useful programs that
a typed language unable to express may be seen as acceptable losses in a
complex tradeoff. On the other hand, expressiveness and flexibility of the
programming language are highly valued by programmers so one of the
biggest endeavors of type-system research is developing expressive type-
systems that are able to type more useful programming patterns. For instance,
in Section 2.6 we show how to enrich the simply-typed λ-calculus so it can
support recursive functions and in Section 3.2 we will show a polymorphic
type system that solves the second limitation that we mentioned.

Changing topics a bit, the inherent expressiveness limitations of statically
are a compelling argument for dynamic languages. Dynamic languages
sacrifice static program checking for the freedom to execute every syntactically
valid program. The search for ways to benefit from both the expressiveness
of dynamic languages and the static guarantees of typed languages is the
driving force for research on type systems for dynamic languages, which is
the focus of this text.

2.6 Recursion
The pure λ-calculus is Turing-complete and it is possible to express recursive
functions by using fixed-point combinators. For example, the following figure
defines a factorial function FAC for a λ-calculus that has been extended with
numbers and arithmetic operations.

Z = λ𝑓 . (λ𝑥. 𝑓 (λ𝑣. ((𝑥 𝑥) 𝑣))) (λ𝑥. 𝑓 (λ𝑣. ((𝑥 𝑥) 𝑣)))
FAC = (𝑍 (λ𝑓 . λ𝑛. if (𝑛 = 0) then 1 else (𝑛 × (𝑓 (𝑛 − 1)))))

However, these fixed point combinators are very inconvenient to use and
they also cannot be typed in the simply-typed λ-calculus and many other
type systems. Because of this, it can be useful to add explicit support for
recursion to the language.

One approach is to add a fixed point operator fix as a language primitive,
as is shown in Fig. 7. In the expression (fix 𝑓 . 𝑒), the body 𝑒 can refer to itself

Chapter 2. Lambda Calculus and Type Systems 26

Additional syntactic forms

Expr 𝑒 ::= … | (fix 𝑓 . 𝑒)

Additional small-step semantics rules

𝐶[(fix 𝑓 . 𝑒)] ⟼ 𝐶[𝑒[𝑓 ← (fix 𝑓 . 𝑒)] (fix)

Additional typing rules
fix
Γ[𝑓 ← 𝜏] ⊢ 𝑒 ∶ 𝜏
Γ ⊢ (fix 𝑓 . 𝑒) ∶ 𝜏

Figure 7 – Adding recursion to the λ-calculus

via the variable 𝑓 . This can be seen in the fix evaluation rule, which reduced
(fix 𝑓 . 𝑒) into 𝑒[𝑓 ← (fix 𝑓 . 𝑒)].

The inclusion of the fix operator does not introduce any new runtime er-
rors (stuck terms), since evaluating a fix expression always succeeds. Because
of this, the typing rule for fix is not surprising.

Using fix, it is possible to define the factorial function from before as
follows:

FAC = (fix 𝑓 . λ𝑛. if (𝑛 = 0) then 1 else (𝑛 × (𝑓 (𝑛 − 1)))))

Letrec expressions

Just like let-expressions can be easier to read than function applications, it
is often clearer to define recursive functions with a letrec syntax instead of
using fix directly.

(letrec 𝑓 = λ𝑥. 𝑒1 in 𝑒2) ≝ (let 𝑓 = (fix 𝑓 . λ𝑥. 𝑒1) in 𝑒2)

2.7 Products and Records
A very important programming language feature is the ability to define
custom datatypes that aggregate multiple values in a single value that can be
passed around as a unit. The most general form of this are records, which are
a collection of named fields. However, aiming for simplicity, we will describe
in more detail the specific case of the pair datatype, which is also known as a
product.

In figure 8 we show an extension of the pure λ-calculus with a pair
datatype. The additions to the syntax are a pair function to create new
pairs and the fst and snd functions to extract values from pairs. The set of
irreducible values now also includes pairs of values in addition to the existing
functions and booleans. The additional evaluation rules are the fst and snd
rules to specify how to extract a value from a pair.

Chapter 2. Lambda Calculus and Type Systems 27

Variable 𝑥 ::= 𝑥, 𝑦, 𝑧, …
Function 𝑓 ::= λ𝑥. 𝑒
Null ::= null
Pair 𝑝 ::= (pair 𝑒1 𝑒2)
Expression 𝑒 ::= 𝑥 | 𝑓 | null | (𝑒1 𝑒2) | (fst 𝑒) | (snd 𝑒)

Irreducible expressions

Value 𝑣 ::= 𝑓 | null | (pair 𝑣1 𝑣2)

Small-step call-by-value semantics

Reduction contexts
𝐶 ∶∶= [] | (𝐶 𝑒) | (𝑣 𝐶) | (pair 𝐶 𝑒) | (pair 𝑣 𝐶)

Single-step reduction 𝑒 ⟼ 𝑒

𝐶[((λ𝑥. 𝑒) 𝑣)] ⟼ 𝐶[𝑒[𝑥 ← 𝑣]] (app)
𝐶[(fst (pair 𝑣1 𝑣2))] ⟼ 𝐶[𝑣1] (fst)
𝐶[(fst (pair 𝑣1 𝑣2))] ⟼ 𝐶[𝑣2] (snd)

Figure 8 – An incomplete λ-calculus with pairs

Pairs are a new datatype that we added to the λ-calculus so they will give
rise to type errors similarly to how the addition of a null datatype did. Again,
we can return the calculus to soundness via a dynamic or a static approach.

2.7.1 Dynamic error handling
Handling pair errors dynamically is a matter of adding a not-a-pair error
to the set of possible exceptions and adding the appropriate rules to the
language semantics:

𝐶[(fst 𝑣)] ⟼ not-a-pair if 𝑣 ∉ Pair (fst-err)
𝐶[(snd 𝑣)] ⟼ not-a-pair if 𝑣 ∉ Pair (snd-err)

2.7.2 Static type checking
To type pairs statically we extend the type language with pair-types, which
have the form 𝜏1 × 𝜏2. The typing rules for pair types are shown in Fig. 9.

2.7.3 Records
Records are a more powerful version of pairs. Instead of only storing two
elements, records can store any number of them. Each element is stored in a
field, which is identified by an unique label. The record notation we use in this
text consists of a list of fields enclosed in braces. For example, the following
record represents a point in three-dimensional space.

{𝑥 ∶10, 𝑦 ∶20, 𝑧 ∶30}

Chapter 2. Lambda Calculus and Type Systems 28

Type Syntax

Type 𝜏 ::= null | 𝜏1 → 𝜏2 | 𝜏1 × 𝜏2

Typing rules Γ ⊢ 𝑒 ∶ 𝜏
pair
Γ ⊢ 𝑒1 ∶ 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2

Γ ⊢ (pair 𝑒1 𝑒2) ∶ (𝜏1 × 𝜏2)

fst
Γ ⊢ 𝑒 ∶ (𝜏1 × 𝜏2)
Γ ⊢ (fst 𝑒) ∶ 𝜏1

snd
Γ ⊢ 𝑒 ∶ (𝜏1 × 𝜏2)
Γ ⊢ (snd 𝑒) ∶ 𝜏2

Figure 9 – Typing rules for pair types

The order of the fields does not matter. Accessing a field is done via dot
notation:

let 𝑟 = {𝑥 ∶10, 𝑦 ∶20, 𝑧 ∶30} in 𝑟.𝑥
Our syntax for record types is similar to the syntax for record values. The
type of the three-dimensional points we used as an example is:

{𝑥 ∶ int, 𝑦 ∶ int, 𝑧 ∶ int}

2.8 Sums and Variants
Sums and variants are the dual versions of products and records. While a
product contains a pair of values both at once, a sum contains one of a pair
of possible values each time.

In figure 10 we show an extension of the pure λ-calculus with a sum
datatype. The additions to the syntax are a pair of tagging functions left
and right and case expressions to consume these tagged values. The set of
irreducible values now also includes tagged values in addition to the existing
functions and booleans. The additional evaluation rules are the case-left and
case-right rules, which specify how to pattern-match over a tagged value.

Sums are a new datatype that we added to the λ-calculus so they will
give rise to type errors similarly to how the addition of a null datatype and
of pairs did. Again, we can return the calculus to soundness via a dynamic
or a static approach.

2.8.1 Dynamic error handling
Handling pattern-matching errors dynamically is a matter of adding a not-a-
tag error to the set of possible exceptions and adding the appropriate rules
to the language semantics:

𝐶[(case 𝑣 of (left 𝑥) ⇒ 𝑒1 ; (right 𝑦) ⇒ 𝑒1)] ⟼ not-a-tag if 𝑣 ∉ Tag
(case-err)

2.8.2 Static type checking
To type sums statically we extend the type language with sum-types, which
have the form 𝜏1 + 𝜏2. The typing rules for pair types are shown in Fig. 11.

Chapter 2. Lambda Calculus and Type Systems 29

Variable 𝑥 ::= 𝑥, 𝑦, 𝑧, …
Function 𝑓 ::= λ𝑥. 𝑒
Null ::= null
Tag 𝑡𝑎𝑔 ::= (left 𝑒) | (right 𝑒)
Expression 𝑒 ::= 𝑥 | 𝑓 | null | 𝑡𝑎𝑔 | (𝑒1 𝑒2) |

(case 𝑒1 of (left 𝑥) ⇒ 𝑒2 ; (right 𝑦) ⇒ 𝑒3)

Irreducible expressions

Value 𝑣 ::= 𝑓 | null | (left 𝑣) | (right 𝑣)

Small-step call-by-value semantics

Reduction contexts
𝐶 ∶∶= [] | (𝐶 𝑒) | (𝑣 𝐶) | (case 𝐶 of (left 𝑥) ⇒ 𝑒1 ; (right 𝑦) ⇒ 𝑒2)

Single-step reduction 𝑒 ⟼ 𝑒

𝐶[((λ𝑥. 𝑒) 𝑣)] ⟼ 𝐶[𝑒[𝑥 ← 𝑣]] (app)
𝐶[(case (left 𝑣) of (left 𝑥) ⇒ 𝑒1 ; (right 𝑦) ⇒ 𝑒2)] ⟼ 𝐶[𝑒1[𝑥 ← 𝑣]]

(case-left)
𝐶[(case (right 𝑣) of (left 𝑥) ⇒ 𝑒1 ; (right 𝑦) ⇒ 𝑒2)] ⟼ 𝐶[𝑒2[𝑦 ← 𝑣]]

(case-right)

Figure 10 – An incomplete λ-calculus with sums

Type Syntax

Type 𝜏 ::= null | 𝜏1 → 𝜏2 | 𝜏1 + 𝜏2

Typing rules Γ ⊢ 𝑒 ∶ 𝜏
left

Γ ⊢ 𝑒 ∶ 𝜏1

Γ ⊢ (left 𝑒) ∶ (𝜏1 + 𝜏2)

right
Γ ⊢ 𝑒 ∶ 𝜏2

Γ ⊢ (right 𝑒) ∶ (𝜏1 + 𝜏2)

case
Γ ⊢ 𝑒1 ∶ (𝜏1 + 𝜏2) Γ[𝑥 ← 𝜏1] ⊢ 𝑒2 ∶ 𝜏′ Γ[𝑦 ← 𝜏2] ⊢ 𝑒3 ∶ 𝜏′

Γ ⊢ (case 𝑒1 of (left 𝑥) ⇒ 𝑒2 ; (right 𝑦) ⇒ 𝑒3) ∶ 𝜏′

Figure 11 – Typing rules for sum types

Chapter 2. Lambda Calculus and Type Systems 30

2.8.3 Variants
Just like we informalliy presented records as a generalization of products,
we will introduce a gereralization of sums with named fields. A variant type
consists of a list of tag names and their associated data. We will denote
variant types between angle brackets and separated by “|”, to indicate that
the different cases are exclusive. For a concrete example, the following variant
type can be used as the return type of a function that can either succeed or
fail with an error message:

<Success ∶unit | Error ∶string>

2.8.4 Booleans
A very important particular case of variant types is the boolean type. Most
programming languages support booleans and if-then-else expressions even
if they do not offer support for general variants. It is possible to encode
booleans as variants as follows:

bool ≝<TagTrue ∶unit | TagFalse ∶unit>

true ≝ (TagTrue unit)
false ≝ (TagFalse unit)

if 𝑒1 then 𝑒2 else 𝑒3 ≝ (case 𝑒1 of (TagTrue _) ⇒ 𝑒2 ; (TagFalse _) ⇒ 𝑒3)

31

3 Advanced Type Systems

In Chapter 2 we introduced the λ-calculus and many basic extensions for
it, including records and fix-point operators. For each feature that we in-
troduced, we also explained the simplest type system that can be used to
integrate that feature into the λ-calculus.

In this chapter we will cover type system features that are commonly
used in the literature for types for dynamic languages but that do not require
extensions to the evaluation rules of the underlying λ-calculus. These type
system features make the typed languages more expressive by allowing things
that could not be typed before to be typed or by making it possible to create
types that are more specific than before.

In Section 3.1 we present recursive types, which make it possible to type
some data structures that were not typable before. Section 3.2 is about para-
metric polymorphism, which allows reusing functions that are indifferent
to the types of their inputs in many different contexts. In Section 3.3 we
present subtyping, which allows reasoning about types as subsets of other
types, as well as making it possible to implicitly convert from a more spe-
cific type to a more general type. Section 3.4 covers union types, which in
dynamic languages are often a more idiomatic alternative to variant types.
Finally, in Section 3.5 we describe a way to represent finitary overloading via
intersection types.

3.1 Recursive Types
Some datatypes are defined inductively. For example, the set of Peano nu-
merals is defined to be the smallest set that contains the number zero and
the successors of every numeral.

Adding recursion on the type level allows type system to give a finite
representation for the type of these inductively-defined data sets. The syntax
we will use for recursive types will be the type-level fix-point operator 𝜇. The
type 𝜇𝛼.𝜏 is a recursive type that can refer to itself via the 𝛼 type variable.

For example, using the variant type notation from Section 2.8 we can
represent the type of Peano numerals as follows:

𝜇𝑁. <zero ∶unit | succ ∶𝑁 >

Formally giving meaning to these recursive types is subtle. There are two
different approaches to do so: equi-recursive types and iso-recursive types.

In an equi-recursive setting, the recursive type 𝜇𝛼.𝜏 and its unfolding
𝜏[𝛼 ← 𝜇𝛼.𝜏] are considered to be equivalent and completely interchangeable.
In other words, the following typing rules apply:

fold
Γ ⊢ 𝑒 ∶ 𝜏[𝛼 ← 𝜇𝛼.𝜏]

Γ ⊢ 𝑒 ∶ 𝜇𝛼.𝜏

unfold
Γ ⊢ 𝑒 ∶ 𝜇𝛼.𝜏

Γ ⊢ 𝑒 ∶ 𝜏[𝛼 ← 𝜇𝛼.𝜏]

Chapter 3. Advanced Type Systems 32

Additional syntax

Expr 𝑒 ::= … | (fold 𝑒) | (unfold 𝑒)
Value 𝑣 ::= … | (fold 𝑒)

Changes to reduction semantics

Reduction contexts
𝐶 ∶∶= ... | (fold 𝐶) | (unfold 𝐶)

Evaluation rules

𝐶[(unfold (fold 𝑒))] ⟼ 𝐶[𝑒] (unfold-fold)

Additional typing rules
fold
Γ ⊢ 𝑒 ∶ 𝜏[𝛼 ← 𝜇𝛼.𝜏]
Γ ⊢ (fold 𝑒) ∶ 𝜇𝛼.𝜏

unfold
Γ ⊢ 𝑒 ∶ 𝜇𝛼.𝜏

Γ ⊢ (unfold 𝑒) ∶ 𝜏[𝛼 ← 𝜇𝛼.𝜏]

Figure 12 – Typing rules for iso-recursive types

While equi-recursive types are very simple, the typing rules are not syntax-
directed, which can make type checking and type inferencing considerably
more difficult.

In an iso-recursive setting, the recursive type 𝜇𝛼.𝜏 and its unfolding 𝜏[𝛼 ←
𝜇𝛼.𝜏] are not considered to be equal and interchangeable. They are just
isomorphic and the programmer must explicitly use a conversion function
to convert from one form to the other. In Fig. 12 we describe the changes
necessary to add iso-recursive recursive types to the simply-typed λ-calculus.
Two new syntactic forms are added to the language, the fold and unfold
annotations, ac can be seen in the evaluation rules. These annotations do not
have any computational meaning and exist solely to guide the type checker.
Unlike what happens in equi-recursive systems, the presence of the fold and
unfold annotations allows type checking to be syntax-directed.

3.1.1 Iso- vs Equi-recursive Types
The majority of statically-typed programming languages with recursive types
use iso-recursion instead of equi-recursion. Type checking and inference in
an iso-recursive setting is much simpler and type error messages can be more
predictable. At the same time, the downside of needing to insert fold and
unfold annotations is often not a problem in practice. For example, in ML
and related languages each use of a constructor for a recursive type implicitly
introduces a fold and pattern matching implicitly introduces the complemen-
tary unfolds. Therefore, the programmer does not need to actually introduce
additional annotations to the program in order to use recursive types.

However, in programming languages with no type annotations or explicit
constructor and tagging functions, equi-recursion may be the only feasible

Chapter 3. Advanced Type Systems 33

alternative. We will see an example of this in Section 4.1, where a type system
for a dynamic language uses equi-recursion.

3.1.2 Embedding Dynamic Typing in a Typed Language
One very important type that can be represented with type recursion is the
variant type for dynamically-typed values. For example, in a language with
booleans and integers as basic types, the following variant can represent any
possible value:

𝜇𝐷. <bool ∶bool | int ∶ int | func ∶𝐷 → 𝐷>

Because of this, some type theorists say that untyped languages are actually-
typed and just happen to have a single type that contains every value. This
“untyped languages are actually uni-typed” motto was popularized by Robert
Harper and is attributed to Dana Scott [17].

3.2 Universal Types
As we previously hinted in Section 2.5, some expressions in the simply-typed
λ-calculus can be assigned more than one type. For example, the identity
function λ𝑥. 𝑥 is indifferent to the type of its input and can be assigned any
type that has the form 𝜏 → 𝜏. One of the ways we can extend the simply-
typed λ-calculus to make it more expressive is to bring these higher-level
type-schemes into the type system.

Allowing a single program expression to be used with different types in
different parts of the program is known as polymorphism. One form of poly-
morphism is parametrically polymorphism, where types can be parameterized
by type variables. For example, the polymorphic type of the identity function
can be written as ∀𝛼.𝛼 → 𝛼.

In Fig. 13 we describe these universal types in more detail. In addition to
the ground types and function types from the simply-typed λ-calculus, a
calculus with parametric polymorphism also features type variables, usually
represented with Greek letters like 𝛼 and 𝛽, and universally quantified types,
like ∀𝛼.𝜏. Similarly to how regular variables are bound in λ-abstractions,
type variables are bound in ∀-quantifiers. We denote by FTV(𝜏) the set of
free type variables in the type 𝜏. Another similarity type variables have
with regular variables is the substitution operation, which we represent by
𝜏1[𝛼 ← 𝜏2] and works by substituting 𝜏2 for all free occurrences of 𝛼 in 𝜏1.

3.2.1 Let Polymorphism
Extending the simply-typed λ-calculus with the most general version of
universal types results in a calculus known as System F [18]. However, type
checking and type inference for System F are undecidable [19] so practical
versions of λ-calculi with universal types add some restrictions to how the
universal types can be used.

Chapter 3. Advanced Type Systems 34

Type Variable 𝛼 ::= 𝛼, 𝛽, …
Type 𝜏, 𝜎 ::= bool | 𝜏1 → 𝜏2 | 𝛼 | ∀𝛼.𝜏

Free type variables FTV(𝜏)

FTV(𝛼) = {𝛼}
FTV(bool) = {}

FTV(𝜏1 → 𝜏2) = FTV(𝜏1) ∪ FTV(𝜏2)
FTV(∀𝛼.𝜏) = FTV(𝜏) − {𝛼}

Type substitution 𝜏[𝛼 ← 𝜏]

𝛼[𝛼 ← 𝜏] = 𝜏
𝛽[𝛼 ← 𝜏] = 𝛽 𝛼 ≠ 𝛽

bool[𝛼 ← 𝜏] = bool
(𝜏1 → 𝜏2)[𝛼 ← 𝜏] = 𝜏1[𝛼 ← 𝜏] ∪ 𝜏2[𝛼 ← 𝜏]

(∀𝛼.𝜎)[𝛼 ← 𝜏] = (∀𝛼.𝜎)
(∀𝛽.𝜎)[𝛼 ← 𝜏] = ∀𝛽.(𝜎[𝛼 ← 𝜏]) 𝛽 ∈ FTV(𝜏)

Figure 13 – Type syntax for general universal types

One of these restrictions is Milner’s let polymorphism [20]. In a let-polymorphic
setting, types are divided between monotypes, which contain no type quan-
tifiers and polytypes, which abstract over a monotype via one or more type
variables. The main restriction in a let-polymorphic system and reason for
the separation between monotypes and polytypes is that type variables can
only be instantiated to monotypes.

The let-polymorphic calculus extends the syntax of the λ-calculus with let
expressions, which will be the only way to introduce polymorphically-typed
identifiers. These expressions are the reason for the name “let-polymorphism”.

let 𝑓 = λ𝑥. 𝑥 in if (𝑓 true) then (𝑓 5) else (𝑓 7)

3.2.2 Typing Rules
Typing judgments in the let-polymorphic λ-calculus have the form Γ ⊢ 𝑒 ∶ 𝜏
and mean that in a type environment Γ the expression 𝑒 has (mono)type 𝑡.
Type environments map program variable names to their (poly)types.

We show the typing rules for the let-polymorphic λ-calculus in Fig. 14.
There are two groups of typing rules. The first group consists of the bool, if,
lam and app rules, which are the same as in a simply-typed λ-calculus. The
remaining let and var rules are responsible for the type polymorphism.

Chapter 3. Advanced Type Systems 35

Monotypes and polytypes

Type Variable 𝛼 ::= 𝛼, 𝛽, …
Monotype 𝜏 ::= bool | 𝜏1 → 𝜏2 | 𝛼
Polytype 𝜎 ::= ∀𝛼1…∀𝛼u�.𝜏

Typing rules Γ ⊢ 𝑒 ∶ 𝜏

var
Γ(𝑥) = 𝜎 𝜏 ⊑ 𝜎

Γ ⊢ 𝑥 ∶ 𝜏

bool
𝑏 ∈ Boolean
Γ ⊢ 𝑏 ∶ bool

if
Γ ⊢ 𝑒1 ∶ bool
Γ ⊢ 𝑒2 ∶ 𝜏 Γ ⊢ 𝑒3 ∶ 𝜏

Γ ⊢ (if 𝑒1 then 𝑒2 else 𝑒3) ∶ 𝜏

lam
Γ[𝑥 ← 𝜏1] ⊢ 𝑒 ∶ 𝜏2

Γ ⊢ (λ𝑥 ∶ 𝜏1. 𝑒) ∶ (𝜏1 → 𝜏2)

app
Γ ⊢ 𝑒1 ∶ (𝜏 → 𝜏′) Γ ⊢ 𝑒2 ∶ 𝜏

Γ ⊢ (𝑒1 𝑒2) ∶ 𝜏′

let
Γ ⊢ 𝑒1 ∶ 𝜏1 Γ[𝑥 ← Gen(𝜏1, Γ)] ⊢ 𝑒2 ∶ 𝜏2

Γ → (let 𝑥 = 𝑒1 in 𝑒2) ∶ 𝜏2

Gen(𝜏, Γ) = ∀ ⃗𝛼.𝜏
where

⃗𝛼 = FreeVars(𝜏) − EnvFreeVars(Γ)
EnvFreeVars(Γ) = ⋃

(u�∶u�)∈Γ
FreeVars(𝜎)

Figure 14 – Let polymorphic λ-calculus

The let rule introduces program variables with universal types. In an
expression let 𝑥 = 𝑒1 in 𝑒2, the type of 𝑥 inside 𝑒2 is a generalized version of
the type of 𝑒1, which is obtained by quantifying all the free type variables that
do not already appear as free variables in types present in the environment Γ.

In the let-polymorphic type calculus, only variables can be polymorphi-
cally typed and the var rule is the place where these polymorphic types
are used. If a variable 𝑥 has an universal type 𝜎 according to the current
type environment Γ, then uses of that variable can be assigned any type that
is an instance of that universal type. These instances can be obtained by
instantiating all the quantified variables in 𝜎 with suitable monotypes.

3.2.3 Principal Types and Type Inference
Some terms in the let-polymorphic λ-calculus can be assigned multiple types.
For example, the identity function λ𝑥. 𝑥 can be typed as either bool → bool
or ∀𝛼.𝛼 → 𝛼, as was previously mentioned.

These different types for a given term can be partially ordered based on

Chapter 3. Advanced Type Systems 36

how specific they are. Types with more quantifiers are more generic and
types with less quantifiers are more specific.

One interesting property of the let-polymorphic λ-calculus is that each
term has a single most general type, which is known as a principal type.
This principal type can be found via an unification-based type inference
algorithm [21; 22]. Finding principal types takes exponential time on some
pathological inputs but is very efficient in practice [23; 24].

3.2.4 Static Guarantees
We initially presented universal types as a less restricted alternative to simple
types. However, in this text we are framing type systems in terms of what
they can statically guarantee about the behavior of the program when it is
executed.

The additional guarantee that universal types offer over simple types is
that if a function variable is universally quantified, then that variable will
only be passed around to other functions or returned to the caller. It will
not be used as the function in a function application expression and it will
not be used as the conditional in an if-then-else expression. This can tell us
a lot about the runtime behavior of a program. As shown by Wadler, each
parametric type gives rise to a free theorem that is valid for all functions that
have that type [25]. For example, in a purely functional language, the free
theorem for the ∀𝛼.𝛼 → 𝛼 type is that any function with that type is either the
identity function or a function that enters an infinite loop and never returns.

3.3 Subtyping
Sometimes it is useful to organize types in hierarchies instead of as disjoint
sets of values, as is done in the simply-typed λ-calculus. For a motivating
example, consider the record types that we introduced in Section 2.7. Since
record types list all the fields in the record, it is not possible for a function
to receive inputs with extra fields that are not mentioned in the type of its
domain. The following program executes successfully in an untyped setting
but a simple type system for records cannot assign a type to the 𝑓 function
because each call site passes it an input of a different type.

let 𝑓 = λ𝑟. 𝑟.𝑥 in
(𝑓 {𝑥 ∶10}) + (𝑓 {𝑥 ∶20, 𝑦 ∶30})

3.3.1 The Subtyping Relation (<∶)
Subtyping is characterized by a transitive and reflexive relation between
types, the <∶ subtyping relation. A type 𝑆 is said to be a subtype of a type 𝑇
if any operation expecting a value of type 𝑇 can also receive a value of type 𝑆.
This is known as the Liskov Substitution Principle and can be formalized via

Chapter 3. Advanced Type Systems 37

the following subsumption rule:

Γ ⊢ 𝑒 ∶ 𝑆 𝑆 <∶ 𝑇
Γ ⊢ 𝑒 ∶ 𝑇

The precise definition of the <∶ subtyping relation depends on the type system
and what features it contains. In the following subsections we describe how
the subtyping relation works on records, variants and function types.

Subtyping Records

There are two ways that a record type can be a subtype of another. The first
one is that a record type with more fields is a supertype of a record type with
only a subset of those fields. This is known as width-subtyping. The second
kind of subtyping is depth–subtyping. If two record types contain the same
field names and the types of the contents of the fields in the first record type
are all subtypes of the types of the respective fields in the second record type,
then the first type is a subtype of the second.

record-width

{ℓ1 ∶𝑇1, …, ℓu� ∶𝑇u�} <∶ {ℓ1 ∶𝑇1, …, ℓu� ∶𝑇u�, ℓu�+1 ∶𝑇u�+1}

record-depth
𝑆u� <∶ 𝑇u�

{ℓu� ∶𝑆u�} <∶ {ℓu� ∶𝑇u�}

Having a subtyping rule for record types is very useful in object-oriented
programming languages, where class inheritance hierarchies map naturally
to subtyping hierarchies.

Subtyping Variants

The subtyping rules for variants are very similar to the ones for records,
except that width subtyping is the other way around. A type with more
variants is a subtype of a type with only a subset of those variants.

variant-width

<ℓ1 ∶𝑇1 | … | ℓu� ∶𝑇u� | ℓu�+1 ∶𝑇u�+1 > <∶ <ℓ1 ∶𝑇1 | … | ℓu� ∶𝑇u� >

variant-depth
𝑆u� <∶ 𝑇u�

<ℓu� ∶𝑆u� > <∶ <ℓu� ∶𝑇u� >

Subtyping Functions

The interesting thing about subtyping for function types is that the subtyping
behaves differently in the domain and the codomain. A function that returns
a more specific type can be used in the place of a function that returns a more
general type. For the input type it is the other way around. A function that
can receive a more general type can be used in the place of a function that
receives a more specific type.

𝑆′ <∶ 𝑆 𝑇 <∶ 𝑇′

(𝑆 → 𝑇) <∶ (𝑆′ → 𝑇′)

Chapter 3. Advanced Type Systems 38

3.3.2 The Top Type
Many type systems have the concept of a most general type that contains
every single value, therefore being a supertype of every other type. In the
type systems literature, this type is most often named Top. In object-oriented
languages, this Top type is most often named Object, a name that is also
borrowed by many non-OO languages.

𝑆 <∶ Top

The only operations that can be performed on expressions of type Top are
operations that are valid for every single type in the language. In the λ-calculi
we described in this text there are no such operations, so expressions of type
Top may only be passed around or returned. However, in some programming
languages there are operations that work on any value. For example, some
languages allow any value to be serialized into a string or to be tested for
identity-based equality.

3.3.3 The Bottom Type
The dual of the Top type is the Bottom type, which is a subtype of every other
type. The Bottom type is not inhabited by any values and can only be used
on expressions that never produce a value when evaluated. One example of
this are expressions that always fail by raising an exception.

Bottom <∶ 𝑆

The presence of a Bottom type in the type system makes type inference more
difficult. For example, in a language without bottom types the type of 𝑓 in
(𝑓 𝑥) must be a function type while in a language with the bottom type it
can be either a function type or Bottom. Because of these extra difficulties,
not every language with subtyping has a Bottom type. The Top type, on the
other hand, is almost always present.

3.3.4 Variance
Variance is the name we use to describe the subtyping behavior a higher-order
type constructor has depending on its parameter types. Type constructors
can be either covariant, contravariant, or invariant.

Covariance 𝐶[𝑆] <∶ 𝐶[𝑇] iff 𝑆 <∶ 𝑇
Contravariance 𝐶[𝑆] <∶ 𝐶[𝑇] iff 𝑇 <∶ 𝑆
Invariance 𝐶[𝑆] <∶ 𝐶[𝑇] iff 𝑆 = 𝑇

For example, the function type constructor → is covariant in the type of the
return values and contravariant in the type of the inputs. The most famous
example of an invariant type constructor is the Ref[𝑇] type constructor for
mutable reference cells. As a rule of thumb, locations out of which values flow
(reads) are covariant, locations into where they flow (writes) are contravariant
and locations where values flow both in and out (read and write) are invariant.

Chapter 3. Advanced Type Systems 39

Additional evaluation rules 𝑒 ⟼ 𝑒′

𝐶[⟨𝜏⟩ 𝑣] ⟼ 𝐶[𝑣] 𝑣 ∈ 𝜏 (cast)
𝐶[⟨𝜏⟩ 𝑣] ⟼ cast-error 𝑣 ∉ 𝜏 (cast-err)

Additional typing rules Γ ⊢ 𝑒 ∶ 𝜏

Γ ⊢ 𝑒 ∶ 𝜏′ 𝜏 <∶ 𝜏′

Γ ⊢ ⟨𝜏⟩ 𝑒 ∶ 𝜏

Figure 15 – Runtime semantics and typing rule for the downcast operator

3.3.5 Downcasting
In languages with subtyping, the type of an expression can be freely converted
to its supertype. Some languages provide a way to go in the other direction,
and use values of a supertype as if they belonged to a subtype. This is known
as downcasting and typically requires the programmer to add explicit type
casts to their program, which we will denote by writing the name of the type
in angle brackets: ⟨𝜏⟩ 𝑒.

Adding downcasts to a programming language has semantic consequences,
which we describe in Fig. 15. When evaluated, a downcast can either succeed
or raise a cast-error exception.

Poor-man’s parametric polymorphism

The following program is an example of a program using downcasts. It
upcasts an integer to the Top type and then downcasts it back to an integer
so it can be used in an arithmetic operation.

let 𝑥 ∶ Top = 1 in
(⟨int⟩ 𝑥) + 2

One use of this style of downcasting is writing “generic” functions and data
structures in programming languages that do not have parametric types. For
example, the original collection classes in the standard library for the Java
programming language work by storing values as Objects. When an user
wants to insert an object into a collection, that object is first upcasted to the
Object type. When the user reads values from the collection, he downcasts
them back to the original type in order to be able to use them.

This style of programming is less type safe than using parametric poly-
morphism, since there is now a possibility of cast-error exceptions being
raised at runtime. However, it is very appealing due to its simplicity. Down-
casts are easy to add to a language with subtyping without adding a lot of
complexity and cognitive overhead, which happens when adding parametric
types to the type system. In languages with subtyping, parametric types
need to have ways to specify the variance of the type parameters, which
introduces significant complexity to an already complex type-system fea-
ture. Subtyping also pushes the language designer towards the more general

Chapter 3. Advanced Type Systems 40

bounded-polymorphism, which is even more complex than regular parametric
polymorphism.

3.4 Union Types
The type system for the simply-typed λ-calculus partitions the set of values in
distinct categories (ground types such as booleans and integers and various
function types) and each expression is restricted to evaluate to values from
only one of the categories. Union types make this more flexible, by making
it possible to represent types that are the union of zero or more of those
categories. A union type 𝜏1 ∪ 𝜏2 represents the set of values that belong
either to the 𝜏1 or to the 𝜏2 type.

Union types suggest a natural subtyping relation:

union-sub1

𝑆 <∶ 𝑆 ∪ 𝑇

union-sub2

𝑇 <∶ 𝑆 ∪ 𝑇

The difference between unions and variant records is that unions are not
tagged. The union int ∪ int is the same as the type int, which is not the case
for the sum type int + int, where values tagged with the left tag are different
from values tagged with the right tag.

The only operations that are allowed on expressions of a union type are
operations that can work on any of the types in the union. One example of
an operation that can work on multiple types is a tag-checking operation in a
dynamically-typed language:

𝐶[(isInt 𝑣)] ⟼ 𝐶[true] 𝑣 ∈ int (isInt-true)
𝐶[(isInt 𝑣)] ⟼ 𝐶[false] 𝑣 ∉ int (isInt-false)

In dynamically-typed languages, values carry type information with them
at runtime and programmers can use those tags directly instead of needing
to create their own tags via variant records. For example, in a statically-typed
language, a function to search for a value in a data structure may return
a value of the Option variant type, but in a dynamic language it is more
idiomatic to just return the result directly on success, without adding an
additional wrapper to it, and null on failure.

// Idiomatic typed programming

type Option =< Just ∶ int | Nothing ∶unit>
if (…) then (Just 10) else Nothing

// Idiomatic untyped programming

if (…) then 10 else null

Due to this programming idiom, many type systems for dynamic languages
have some form of union types.

Chapter 3. Advanced Type Systems 41

3.5 Intersection Types
Intersection types are the dual of union types. The intersection type 𝜏1 ∩ 𝜏2
contains values that belong to both the 𝜏1 type and the 𝜏2 type.

inter-sub1

𝑆 ∩ 𝑇 <∶ 𝑆

inter-sub2

𝑆 ∩ 𝑇 <∶ 𝑇

In the context of type systems for dynamic languages, the biggest use for
intersection types is to allow finitary overloading, also known as ad-hoc polymor-
phism. For example, in many programming languages the addition operator
+ is overloaded to work on either a pair of integers or a pair of floating point
numbers. This can be typed in a system with function types by saying the
type of the + operation is an intersection of two function types.

+ ∶ (int → int → int) ∩ (float → float → float)

3.5.1 Intersection Types vs Union Types
Intersection types work for finitary overloading because the subtyping rules
mean that the overloaded function can be seen as having either of the types
in the intersection. For example, by applying the inter-sub1 rule to the type
of the addition operator +, its type becomes (int → int → int), which lets it
be used on integers. Similarly, using the inter-sub2 rule lets it receive floating
point inputs.

At first, it might seem that union types might be able to serve this same
purpose. Since the + operator can take inputs that are either ints or floats,
one might expect that the following type would be a good fit for it:

((int ∪ float) → (int ∪ float) → (int ∪ float))

However, this type is less precise than the alternative with intersection types
because it does not enforce the correlations between the input and return
types. It does not assert that the sum of two integers is also an integer and
it does not enforce that both of the operands to the addition must have the
same type.

42

4 Soft Typing

In dynamic languages some program operations may raise type errors at run
time. For example, in the λdyn calculus from Section 2.3, function applications
may raise a not-a-function exception if they receive null as their input. Soft
typing is a family of static analysis techniques that use type inferencing to
classify the uses of these potentially error-raising operations in a dynamically-
typed program into three cases:

Provably safe operations always receive well-typed inputs

Potentially unsafe operations may or may not receive well-typed inputs.

Provably unsafe operations never receive well-typed inputs.

Provably safe operations present opportunities for optimization, from
being able to skip runtime tag checks or from allowing the use of untagged
memory representations for some values [26].

Provably unsafe operations most likely correspond to program bugs be-
cause they will always raise an error if they are evaluated. According to
Sagonas [27], these provably unsafe operations are most often found in error-
handlers and other rarely executed code paths.

Potentially unsafe operations happen in parts of the program that the type
system could not reason about precisely. This is an inevitable consequence of
the presence of runtime type errors being a nontrivial program property that
is undecidable according to Rice’s Theorem [15].

Fig. 16 contains an example of this classification in the graphical interface
of the MrSpidey soft typing system [28]. MrSpidey colors in green all the
provably safe operations in the program and underlines and colors in red all
the remaining operations. For example, the first car operation is marked in red
because according to MrSpidey’s reasoning, that operation could possibly
receive a nil value as input (which is in fact what happens if we run the
program). Finally, MrSpidey presents a report summarizing what percentage
of the operations in the program could not be proven to be safe (1 out of 10).
MrSpidey does not differentiate between potentially unsafe and provably
unsafe operations but this is not due to a limitation of its algorithm. We will
further discuss theses error reporting choices in Section 4.4.

Note that MrSpidey, like all other soft type checkers, does not check the
types of function arguments or return values. All warnings point to value
destruction sites such as function applications and arithmetic operations
because these are the program locations that might actually raise exceptions
at runtime.

Another thing that can be noted is the lack of type annotations in the
program in Fig. 16. The original goal behind the development of soft typing
systems was to add a type verification step to scripting languages being used
for rapid prototyping, without interfering with their flexibily by requiring ad-
ditional type annotations [29]. Because of this requirement, type annotations
would not make much sense in a soft type system setting. Since soft type

Chapter 4. Soft Typing 43

Figure 16 – MrSpidey’s program analysis result window

systems do not change the semantics of their underlying dynamically-typed
language the type annotations cannot have any semantic meaning and since
the type inference algorithms must be able to infer types for completely unan-
notated programs the type system must not have any features that require
type annotations for inference.

In the remainder of this chapter, we will present two soft type systems for
a dynamic λ-calculus with booleans as the only ground type. The first soft
type system is based on the type system of Cartwright and Fagan [30; 31],
which uses ML-like type inference via unification and the second one is based
on the safety analysis of Palsberg and O’Keefe [32], which uses flow analysis
for inference. Most of the soft typing systems in the literature follow one of
these two approaches.

4.1 An Unification-based Soft Type System
In this section we present a soft type system based on the type systems of
Fagan, Wright and Cartwright. Fagan and Cartwright introduced the first
soft type system and also coined the term “Soft Typing” [30; 31]. Wright and
Cartwright later expanded Fagan’s system to cover the full Scheme language,
including features such as assignment, variable-arity functions and first-class
continuations [33; 34]. Our simplified type system is closer to Fagan’s original
system but some of our presentation is closer to Wright’s.

We divide our exposition of the system into two parts. Firstly we describe

Chapter 4. Soft Typing 44

a static type system and corresponding inference algorithm that can reason
about common patterns found in dynamically-typed programs. Secondly
we describe how to soften this type system, making it classify operations
according to their safety instead of simply rejecting programs that cannot be
proven to be totally safe.

4.1.1 Static Types in Fagan’s Type System
To determine if an operation is provably safe or not in a λ-calculus with
booleans as the only ground type there are 4 cases that matter for the inputs
of that operation:

1. Expressions that always evaluate to booleans

2. Expressions that always evaluate to a function

3. Expressions that might evaluate to either a boolean or a function

4. Expressions that never evaluate to any value (for example, expressions
that abort the execution of the program)

The central part of Fagan’s type system is the use of union types and recursive
types to model these four cases. As shown in Fig. 17, monotypes in this type
system are the union of a boolean part and a function part. The boolean
part being bool+, indicates that expressions with that type may evaluate to a
boolean. Conversely, the boolean part being bool−, indicates that expressions
with that type never evaluate to a boolean. The function part behaves similarly.
The function part being (𝜏1 →+ 𝜏2) means that the type contains functions
which receive 𝜏1 and return 𝜏2 and if the function part is →− then expressions
with that type never evaluate to a function.

In addition to the union types, Fagan’s type system also features paramet-
ric polymorphism. Recall that the instantiation relation 𝜏 ⊑ 𝜎 means that
there is an instantiation of the quantified variables in 𝜎 that results in 𝜏 and
that the generalization function 𝐺𝑒𝑛(𝜏, Γ) returns a parametrically polymor-
phic type created by universally quantifying all the free type variables in 𝜏
that are not bound in Γ.

Fig. 18 provides some concrete examples of these union types. bool+ ∪ →−

is the boolean type, for values that may be either true or false and may not be
functions; bool− ∪ →− is the empty type, for expressions that never return
a value; 𝜇𝛼.bool+ ∪ (𝛼 →+ 𝛼) is the recursive type for expressions that may
evaluate to any value.

The most notable feature of Fagan’s static type system is that it has union
types but does not have any form of subtyping. The reason for this is that
type inference efficiency is of paramount important in a soft type system
(since programs have no type annotations) and, according to Wright, type
inference for type systems with structural subtyping and recursive types
“consumes exorbitant amounts of memory and execution time for even small
examples” [33, p135].

Instead of subtyping, Fagan’s type system provides the required flexi-
bility for unions via type variables. This technique is often called row poly-
morphism [22; 35] and, according to Fagan, it was inspired on Remy’s record

Chapter 4. Soft Typing 45

Type Syntax

Type Variable 𝛼 ::= 𝛼, 𝛽, …
Monotype 𝜏 ::= (𝜑u� ∪ 𝜑u�) | 𝛼 | 𝜇𝛼.𝜏
Boolean Part 𝜑u� ::= bool− | bool+

Function Part 𝜑u� ::= →− | (𝜏1 →+ 𝜏2)
Polytype 𝜎 ::= 𝜏 | ∀𝛼.𝜎

Typing rules Γ ⊢ 𝑒 ∶ 𝜏
var
Γ(𝑥) = 𝜎 𝜏 ⊑ 𝜎

Γ ⊢ 𝑥 ∶ 𝜏

bool
𝑏 ∈ Boolean 𝜏 ⊑ ∀𝜑u�(bool+ ∪ 𝜑u�)

Γ ⊢ 𝑏 ∶ 𝜏

if
Γ ⊢ 𝑒1 ∶ 𝜏1 𝜏1 ⊑ ∀𝜑u�(𝜑u�∪ →−)
Γ ⊢ 𝑒2 ∶ 𝜏2 Γ ⊢ 𝑒3 ∶ 𝜏2

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ∶ 𝜏2

lam
Γ[𝑥 ← 𝜏1] ⊢ 𝑒 ∶ 𝜏2 𝜏 ⊑ ∀𝜑u�.(𝜑u� ∪ (𝜏1 →+ 𝜏2))

Γ ⊢ (λ𝑥. 𝑒) ∶ 𝜏

app
Γ ⊢ 𝑒1 ∶ 𝜏1 𝜏1 ⊑ (bool− ∪ (𝜏2 →+ 𝜏3))
Γ ⊢ 𝑒2 ∶ 𝜏2

Γ ⊢ (𝑒1 𝑒2) ∶ 𝜏3

app-empty
Γ ⊢ 𝑒1 ∶ 𝜏1 𝜏1 ⊑ (bool−∪ →−)
Γ ⊢ 𝑒2 ∶ 𝜏2

Γ ⊢ (𝑒1 𝑒2) ∶ 𝜏3

let
Γ ⊢ 𝑒1 ∶ 𝜏1 Γ[𝑥 ← 𝐺𝑒𝑛(𝜏1, Γ)] ⊢ 𝑒2 ∶ 𝜏2

Γ → (let 𝑥 = 𝑒1 in 𝑒2) ∶ 𝜏2

Gen(𝜏, Γ) = ∀ ⃗𝛼.𝜏
where

⃗𝛼 = FreeVars(𝜏) − EnvFreeVars(Γ)
EnvFreeVars(Γ) = ⋃

(u�∶u�)∈Γ
FreeVars(𝜎)

Figure 17 – Fagan’s (non-soft) type system

Chapter 4. Soft Typing 46

Nothing bool− ∪ →−

Boolean bool+ ∪ →−

“Bool to Bool” function bool− ∪ ((bool+ ∪ →−) →+ (bool+ ∪ →−))
Anything 𝜇𝛼.(bool+ ∪ (𝛼 →+ 𝛼))

Figure 18 – Examples of types in Fagan’s type system

system for ML [36]. The basic idea behind row polymorphism is that instead
of “throwing away” information from the more specific type when converting
it to a more general type, a row variable 𝜑 is used to represent the difference
between the more specific and the more general type. Any type inequality
constraints in the program get converted into equality constraints with a row
variable acting as a slack variable, as is illustrated in the following equations:

𝐴 ⊆ 𝐵
𝐴 ∪ 𝜑 = 𝐵

These equality constraints with slack variables are not as powerful as real
subsumption (as will be discussed in Section 4.3) but they allow for an effi-
cient unification-based type inference algorithm while still providing lots of
flexibility to the type system.

For a concrete example of this use of slack variables, consider the typing
rules bool and lam for boolean and function literals. If boolean literals had
type (bool+∪ →−) and functions had type (bool− ∪ (𝜏1 →+ 𝜏2)), without
any slack variables, it would not be possible to type the following program:

λ𝑏. if 𝑏 then true else (λ𝑥. 𝑥)

Without slack variables, the types of the expressions in the then and else
branches would be different but the if rule requires them to be the same. With
slack variables, both branches can be given the type (bool+ ∪ (𝛼 →+ 𝛼)).

The other unintuitive aspect of the typing rules is how the if and app rules
use polymorphic types for their input parameters instead of just saying that
they receive exactly booleans and functions, respectively. The reason for this
is to allow the input expression to have the empty type. This mitigates the
reverse flow problem, which is mentioned in Section 4.3.

4.1.2 Softening Fagan’s Type system
The presence of union types allows the type system that we have presented
so far to reason about code that mixes booleans and functions. However
it is not yet a complete soft type system because it either determines that
all operations are provably safe or it gives up without pinpointing which
operations are the potentially unsafe ones.

The following two programs are examples that cannot be typed in the non-
soft system we have presented so far. Program 𝑃 fails to typecheck because
of the unsafe function application. Program 𝑄 evaluates successfully and is

Chapter 4. Soft Typing 47

only untypable because the type system is not sufficiently expressive.

𝑃 = (true false)
𝑄 = λ𝑏. if 𝑏 then 𝑏 else (λ𝑥. 𝑥)

The reason these programs fail to typecheck is the presence of conflicting pos-
itive and negative type information in the typing rules. The 𝑃 program cannot
be typed because the only typing rules for applications, app and app-empty,
require that the function parameter does not have a boolean part. As for the
𝑄 program, the if rule demands that both the then and else branches have
the same type, meaning that the type of the 𝑏 in the then branch must include
the type of the functions from the else branch. However, 𝑏 is also used as the
conditional in the if-expression and the if rule requires that the type of the
conditional does not contain a function part.

Since all type-inference failures come from conflicts between rules that
require the presence of a type and rules that require its absence, one way to
soften the type system is to get rid of all the rules requiring that a type be
absent. As shown in Fig. 19 the changes all involve replacing instances of
negative type information in the typing rules (ie. bool− and →−) by a soft
type variable ̃𝜑. These soft type variables act as slack variables during type
inference and behave similarly to regular universally-quantified variables.
The difference between soft type variables and regular slack variables is that
once type inference is complete the soft type checker checks how the soft
type variables were instantiated to determine the safety of each program
operation:

• In provably safe operations the soft type variables can be instantiated
to an empty type, such as bool− or →−.

• In potentially unsafe operations both the soft and non-soft variables
are instantiated to non-empty types such as bool+ or 𝛼 →+ 𝛽.

• In provably unsafe operations the soft type variables are instantiated
to a non-empty type and the associated non-soft type variables are
instantiated to an empty type.

4.1.3 A Concrete Example
Lets return to the program 𝑄 that we previously mentioned. Under the
more flexible soft typing rules, the variable 𝑏 can now be given the type
(bool+ ∪(𝛼 →+ 𝛼)). The bool+ part is required because the function is called
with true as a parameter and the (𝛼 →+ 𝛼) part is because both branches of
the if statement must have the same types. The softness comes into play in
the if-soft rule, where the ̃𝜑u� variable gets instantiated to (𝛼 →+ 𝛼). Since
the soft type variable was instantiated to a non-empty type, the type checker
produces a warning saying that the condition in the if-then-else expression
is potentially unsafe.

Chapter 4. Soft Typing 48

if-soft
Γ ⊢ 𝑒1 ∶ 𝜏1 𝜏1 ⊑ 𝜑u� ̃𝜑u�(𝜑u� ∪ ̃𝜑u�)
Γ ⊢ 𝑒2 ∶ 𝜏2 Γ ⊢ 𝑒3 ∶ 𝜏2

Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ∶ 𝜏2

app-soft
Γ ⊢ 𝑒1 ∶ 𝜏1 𝜏1 ⊑ ∀ ̃𝜑u�(̃𝜑u� ∪ 𝜏2 →+ 𝜏3)
Γ ⊢ 𝑒2 ∶ 𝜏2

Γ ⊢ (𝑒1 𝑒2) ∶ 𝜏3

app-empty-soft
Γ ⊢ 𝑒1 ∶ 𝜏1 𝜏1 ⊑ ∀ ̃𝜑u�(̃𝜑u�∪ →−)
Γ ⊢ 𝑒2 ∶ 𝜏2

Γ ⊢ (𝑒1 𝑒2) ∶ 𝜏3

Figure 19 – Soft typing rules for Fagan’s type system

4.2 A Flow-based Analysis Soft Type System
In this section, we present a soft type system based on the safety analysis of
Palsberg and Schwartzbach [37], a global static analysis technique similar to
Shiver’s 0CFA, a context-insensitive form of control-flow analysis [38; 39].

The aim of safety analysis is to compute an approximation for what values
flow to each expression and function parameter in the program and use
this to determine if runtime type errors may occur. If the flow analysis can
prove that only booleans flow into a certain variable, then its safe to use
that variable in a conditional. On the other hand, if the analysis concludes
that both booleans and functions might flow into a variable then there is a
possibility of a runtime error if that variable is used in a conditional. The
hard part of safety analysis is that in programming languages with higher
order functions it is impossible to statically compute the control-flow graph
of the program. The solution taken in 0CFA and in Palsberg’s safety analysis
is to approximate the control-flow graph by tracking to where each lambda
in the program might flow as part of the value-flow computation.

Safety analysis partitions the set of values in the core language into disjoint
sets. As shown in the following table, booleans are grouped together in the
bool set and function abstractions are grouped together according to which
λ-expression in the original program they originate from. We could have
labeled each λ-abstraction in the original program with an unique label but,
since in a call-by value semantics the variable name of a function abstraction
never needs to be renamed, we instead refer to functions by their variable,
to keep the notation lighter. Another way to look at this approximation of
the set of function values is that in an environment-based semantics, with
function closures instead of substitution, our approximation is equivalent to

Chapter 4. Soft Typing 49

Phrase: Basic constraints:
𝑏 {bool} ⊆ ⟦𝑏⟧u�
λ𝑥. 𝑒 {λ𝑥} ⊆ ⟦λ𝑥. 𝑒⟧u�

Phrase: Connecting constraints:
(𝑒1 𝑒2) For every λ𝑥. 𝑒3, if λ𝑥 ∈ ⟦𝑒1⟧u� then

⟦𝑒2⟧u� ⊆ ⟦𝑥⟧u�
⟦𝑒3⟧u� ⊆ ⟦(𝑒1 𝑒2)⟧u�

if 𝑒1 then 𝑒2 else 𝑒3 ⟦𝑒2⟧u� ⊆ ⟦if 𝑒1 then 𝑒2 else 𝑒3⟧u�
⟦𝑒3⟧u� ⊆ ⟦if 𝑒1 then 𝑒2 else 𝑒3⟧u�

Phrase: Safety constraints:
(𝑒1 𝑒2) ⟦𝑒1⟧u� ⊆ {λ_}
if 𝑒1 then 𝑒2 else 𝑒3 ⟦𝑒1⟧ ⊆ {bool}

Figure 20 – Set constraints for safety analysis via 0CFA

ignoring the captured environment of closure values.

Concrete Value 𝑣 ∶∶= true | false | λ𝑥.𝑒
Abstract Value ̂𝑣 ∶∶= bool | λ𝑥

The abstract-value name comes from the abstract interpretation literature. 0CFA
can be seen as a form of abstract interpretation and the abstract interpretation
framework leads to many more powerful alternatives to 0CFA. However in
this text we will keep to a simpler presentation based on systems of equations.

For a given program 𝑃, safety analysis computes an approximation ⟦ ⟧u� ∶
(Expr ∪ Var) → 2û� that maps program subexpressions and variable bindings
into a set of abstract values. This approximation is specified by a set of set-
inclusion restrictions. The reason the approximation depends on 𝑃 is that
safety analysis is a form of whole-program analysis. The approximations for
the function values depend on what are the λ-abstractions in the original
source code of 𝑃.

Each subexpression in 𝑃 produces one or more set-inclusion restrictions,
which can be read as a series of “flows-to” relations between subexpressions
in the program. The full list of rules is shown in Fig. 20. For each boolean
literal subexpression 𝑏 in 𝑃, a {bool} ⊆ ⟦𝑏⟧u� constraint is generated, for each
function literal subexpression λ𝑥. 𝑒, a {λ𝑥} ⊆ ⟦λ𝑥. 𝑒⟧u� constraint is generated
and so on.

If a solution exists for the system of equations that safely analysis produces
for 𝑃 then the safety constraints will be satisfied, which allows us to say that
the program is provably safe. If there are no solutions then the program is
deemed potentially unsafe.

Proof sketch for the correctness of Safety Analysis

To prove that the system of equations is a sound approximation of the evalu-
ation of the program we must show that if a subexpression 𝑒 may evaluate to

Chapter 4. Soft Typing 50

a value 𝑣 during the evaluation of the program, then we must have ̂𝑣 ∈ ⟦𝑒⟧u�.
That is, if 𝑒 evaluates to a boolean then we must have bool ∈ ⟦𝑒⟧u� and if 𝑒
evaluates to a function λ𝑥.𝑒 then we must have λ𝑥 ∈ ⟦𝑒⟧u�. For variables we
also need to prove a similar property: if a variable 𝑥 may be bound to a value
𝑣 at some point of the program execution, then ̂𝑣, the abstraction of that value,
must be a member of ⟦𝑥⟧u�.

The evaluation of the program can be represented by a derivation tree
built using the big-step semantics of the language we are using. The proof of
soundness analysis can be found via an induction on these evaluation trees.

4.2.1 Softening the Safety Analysis
Similar to what happened in our exposition of Fagan’s type system, our
initial version of safety analysis is not suitable as a soft type checker because
it does not pinpoint which operations are the potentially unsafe ones, if any
such operations exist. One way to soften the type system is to ignore the
safety constraints when solving the system of equations, using only the basic
constraints and connecting constraints for that. Without the safety constraints,
there is always at least one solution to the system, the supremum solution that
assumes that all values may flow to all program locations.

What the soft type checker then does is compute the least solution for the
system of inequalities without the safety constraints (considering a partial
ordering based on set inclusion) and check if that least solution also happens
to satisfy the safety constraints. Each satisfied safety constraint corresponds to
a provably safe operation and each unsatisfied safety constraint corresponds
to an unsafe operation. For an unsatisfied constraint 𝐴 ⊈ 𝐵, if 𝐴 ∩ 𝐵 ≠ ∅
then the operation is potentially unsafe. If 𝐴 ∩ 𝐵 = ∅ then the operation is
provably unsafe.

4.2.2 Finding Solutions For the System of Constraints
It is possible to find a minimal solution for the system of equations from 0CFA
in 𝑂(𝑛3) time via an iterative process that starts by assigning the empty set
to every variable and proceeds by relaxing constraints until a fixed point is
reached [38; 40; 41]. However, for our purposes it suffices to show that a least
solution exists and that an algorithm can find it, no matter how inneficiently.
Since the intersection of two solutions is also a solution, the intersection of
all solutions will be the least solution. This least solution must exist because
the set of solutions is non-empty (the supremum solution is always there).
Finally, since the search space for the constraint system is finite (the number of
variables is finite, as is the number of primitive types and lambda abstractions)
it is possible to enumerate all the solutions to the system by brute force, which
will end up finding the least solution.

Chapter 4. Soft Typing 51

4.2.3 A Concrete Example of 0CFA
To demonstrate 0CFA in action, we ideally want a program using higher order
functions. One of the simplest ones that fits that description is the following:

𝑃 = ((λ𝑖𝑑. ((𝑖𝑑 𝑖𝑑) true)) (λ𝑥. 𝑥))

The 0CFA constraint system and the least solution for this program are shown
in Fig. 21 and Fig. 22. To find out if the soft type system emits warnings for
this program we check the operations that may potentially raise runtime
errors, which are the three function applications: (𝑖𝑑 𝑖𝑑), ((𝑖𝑑 𝑖𝑑) 1) and
((λ𝑖𝑑. (…))(λ𝑥. 𝑥)).

1. The first function application, (𝑖𝑑 𝑖𝑑), is provably safe because ⟦𝑖𝑑⟧u� =
{λ𝑥} only contains functions.

2. The second function application, ((𝑖𝑑 𝑖𝑑) 1), is potentially unsafe be-
cause the flow analysis concludes that the 𝑖𝑑 function could return either
functions or booleans so (𝑖𝑑 𝑖𝑑) is not guaranteed to be a function.

3. The third function application is provably safe because ⟦(λ𝑖𝑑.(…))⟧u� =
{λ𝑖𝑑} only contains functions.

In this particular example, the program evaluates without errors and the
warning from the potentially unsafe operation is a false positive caused by
0CFA inferring monomorphic types for all identifiers.

4.2.4 Interpreting 0CFA as a Type System
0CFA computes set approximations that range over labeled function expres-
sions. This is not very similar to typical type systems, where function types
are described by the types of their domains and codomains. While keep-
ing track of the function labels is necessary for approximating the program
control flow graph and is also helpful for providing helpful error messages,
this level of detail is not needed if we only want to report which operations
are provably safe and which are not. For this, it suffices to determine what
expressions may evaluate to booleans, what expressions may evaluate to
functions (any function at all), and what expressions may evaluate to some
combination of both. Palsberg and O’Keefe show [32] that the simply-typed
lambda calculus with recursive types and subtyping [42] is equivalent to
0CFA, in that it will statically type the same programs that 0CFA accepts
without any warnings.

However, this will be useful mostly just as a comparison to other soft type
systems. There are no unification-based type inference algorithms for the
simply-typed lambda calculus with recursive types and subtyping [43] so
the only way to infer the types is to compute the 0CFA approximation and
then translate it to the type-system formulation (or use another equivalent
algorithm).

Type 𝑇 ::= bool | 𝑇1 → 𝑇2 | 𝛼 | 𝜇𝛼.𝑇 | ⊥ | ⊤

Chapter 4. Soft Typing 52

bool ∈ ⟦1⟧u� λ𝑥 ∈ ⟦(λ𝑥.𝑥)⟧u� λ𝑖𝑑 ∈ ⟦(λ𝑖𝑑.(…))⟧u�

If λ𝑥 ∈ ⟦𝑖𝑑⟧u� then
⟦𝑖𝑑⟧u� ⊆ ⟦𝑥⟧u�
⟦𝑥⟧u� ⊆ ⟦(𝑖𝑑 𝑖𝑑)⟧u�

If λ𝑖𝑑 ∈ ⟦𝑖𝑑⟧u� then
⟦𝑖𝑑⟧u� ⊆ ⟦𝑖𝑑⟧u�
⟦((𝑖𝑑 𝑖𝑑) 1)⟧u� ⊆ ⟦(𝑖𝑑 𝑖𝑑)⟧u�

If λ𝑥 ∈ ⟦(𝑖𝑑 𝑖𝑑)⟧u� then
⟦1⟧u� ⊆ ⟦𝑥⟧u�
⟦𝑥⟧u� ⊆ ⟦((𝑖𝑑 𝑖𝑑) 1)⟧u�

If λ𝑖𝑑 ∈ ⟦(𝑖𝑑 𝑖𝑑)⟧u� then
⟦1⟧u� ⊆ ⟦𝑖𝑑⟧u�
⟦((𝑖𝑑 𝑖𝑑) 1)⟧u� ⊆ ⟦((𝑖𝑑 𝑖𝑑) 1)⟧u�

If λ𝑥 ∈ ⟦(λ𝑖𝑑.(…))⟧u� then
⟦(λ𝑥.𝑥)⟧u� ⊆ ⟦𝑥⟧u�
⟦𝑥⟧u� ⊆ ⟦((λ𝑖𝑑.(…))(λ𝑥.𝑥))⟧u�

If λ𝑖𝑑 ∈ ⟦(λ𝑖𝑑.(…))⟧u� then
⟦(λ𝑥.𝑥)⟧u� ⊆ ⟦𝑖𝑑⟧u�
⟦((𝑖𝑑 𝑖𝑑) 1)⟧u� ⊆ ⟦((λ𝑖𝑑.(…))(λ𝑥.𝑥))⟧u�

Figure 21 – Constraint system for the example program 𝑃

⟦1⟧u� = {bool}
⟦𝑥⟧u� = {bool, λ𝑥}

⟦𝑖𝑑⟧u� = {λ𝑥}
⟦(λ𝑥.𝑥)⟧u� = {λ𝑥}
⟦(𝑖𝑑 𝑖𝑑)⟧u� = {bool, λ𝑥}

⟦((𝑖𝑑 𝑖𝑑) 1)⟧u� = {bool, λ𝑥}
⟦(λ𝑖𝑑.(…))⟧u� = {λ𝑖𝑑}

⟦((λ𝑖𝑑.(…))(λ𝑥.𝑥))⟧u� = {bool, λ𝑥}

Figure 22 – Result of 0CFA for the example program 𝑃

4.3 Unification-based vs Flow-based Soft Typing
There are two main advantages for unification-based algorithms. The first one
has to do with performance. While unification-based type inference has expo-
nential worst case runtime in the presence of parametric polymorphism [23],
in practice unification-based inference is has almost linear runtime [22; 24].
Another positive feature of unification-based algorithms is that they infer the
most general type for each expression, which allows for an easy implementa-
tion of parametric polymorphism and separate compilation of modules.

Inference algorithms based on control flow analysis take more time to
run (worst case cubic time and often at least quadratic time), specially once
polymorphism is added (some variations of flow-based-analysis, such as
1CFA, have exponential time complexity). Control flow analysis is also a
form of global program analysis and therefore does not easily lend itself to
separate compilation. Flanagan had to introduce contraint-simplification
heuristics to make it feasible to run his flow-based inference algorithm on
programs with many modules [44].

That said, an advantage of control-flow analysis is that it can be more
accurate than unification-based analysis. Type information only flows in a
forward direction, unlike what happens in unification algorithms, where the

Chapter 4. Soft Typing 53

Figure 23 – Flow-based inference can point out the origins of the values that
may cause potential runtime exceptions

ubiquitous presence of equality constraints means that type information can
flow both ways.

This additional accuracy also allow control-flow analysis to give more
understandable error messages. While error messages in unification-based
inference algorithms only mention that the inferred types for two things
do not match (which does not always point towards the real cause of the
problem), flow-based analysis can often pinpoint the precise reason for a
type mismatch. For example, the GUI for the MrSpidey typechecker can
display an “inference-trace” that graphically displays what values flow into
a given expression, as shown in Fig. 23. Another example not related to
soft typing is the Helium compiler for Haskell [45]. Helium is focused on
educational applications and uses a flow-based type inference algorithm to
generate error messages that are more easily understandable than the mes-
sages typically generated by Haskell compilers. Heeren’s thesis on Helium
includes a good explanation on why flow-based type inference can lead to
better error messages [46].

4.4 Success Types
According to Felleisen, who during his time at Rice university was part of
many research groups working on soft-typing systems for Scheme, the soft-
typing experiment was a failure [29]. According to him, the soft typing
systems for Scheme had a tendency to infer very large and complex types,
which resulted in error messages that were very difficult to comprehend. It
was also hard to know just from reading the error message, what fix should be
applied to the program. Programmers would often ignore the error messages
from the soft-typing engine and fall back to using a traditional debugger to
step through the buggy program.

Chapter 4. Soft Typing 54

However, there is one soft-typing system that has managed to achieve
some form of success outside academia. Dialyzer, the DIscrepancy AnalYZer
for ERlang, is a static analyzer for the Erlang programming language based
on soft-typing principles [47]. Dialyzer is very popular among Erlang pro-
grammers and, according to a 2008 survey, it was the most used tool for
testing or statically-analyzing Erlang programs [48]. Dialyzer is currently
bundled with the standard Erlang/OTP distribution [49] and is also covered
in introductory books for Erlang [50].

What did Dialyzer do differently from other soft typing systems to achieve
this status? The distinctive feature of Dialyzer is that, unlike other soft-typing
systems, it does not create warnings for potentially unsafe operations. It only
outputs warning messages for operations that are provably unsafe. One of
the main reasons for this is to avoid overwhelming the programmer with
a large number of error messages for potentially unsafe operations that are
actually perfectly safe. According to the Dialyzer developers, if there are
too many of these “false alarms”, programmers will avoid using the static
analysis tool [51].

To justify the unusual error-reporting strategy behind Dialyzer, Lindahl
and Sagonas introduced the concept of success typings [47]. The purpose of
traditional type systems is to rule out all programs that go wrong. On the
other hand, the purpose of success types is to rule in all programs that go
right.

Definition (Success Typings). A success typing of a function 𝑓 is a type
signature 𝛼 → 𝛽, such that whenever an application (𝑓 𝑥) reduces to a value
𝑣, then 𝑣 is a 𝛽 and 𝑥 is an 𝛼.

In a traditional type system if a function 𝑓 has the type 𝛼 → 𝛽, it means
that if given an 𝛼 as input, it will certainly return a 𝛽. On the other hand, in a
success-typing framework if a function 𝑓 has the type 𝛼 → 𝛽, it means that it
is guaranteed to go wrong if it receives an input that is not an 𝛼 and that it
never returns a value that is not a 𝛽.

If we look at types as sets of values, the traditional type of an expression
is a conservative subset of the values that expression may evaluate to, with
the goal of ensuring that no well-typed programs go wrong. Success types
are the other way around. The success type of an expression is a conservative
superset of the values that expression may evaluate to, with the goal of
ensuring that all programs that go right are well-typed.

One consequence of the success-typing approach is that in a type system
based on success types, every function can be assigned the type any → any,
where any is the Top type in Dializer’s type system. While giving a function
this permissive type will never detect an unsafe application of it, it allows
Dialyzer to analyze a module even if the definitions of some of the functions
it is using are unknown. Meanwhile, the equivalent trivial function type in a
traditional type system is ⊥ → ⊤, which is not very useful because a function
with this type cannot be applied to any inputs.

Success-typing also offers a solution to the problem of large types resulting
in complex and incomprehensible error messages. If during the type inference
process the type of that term gets too big and complicated, Dialyzer relaxes

Chapter 4. Soft Typing 55

the type of that term to any 1 . This choice of a less precise type causes more
operations to be classified as potentially unsafe. However, in a success-typing
framework this is not as big of problem as it is for traditional type systems. In
a traditional type system, increasing the set of potentially unsafe programs
increases the chance that a perfectly functioning program will be rejected by
the type system, which forces the programmer to adapt the program just to
appease the type systems. To avoid this, type system designers have a strong
incentive to make their types as powerful and flexible as they can. On the
other hand, in a success-typing framework making types less precise will
just cause some provably unsafe operations to stop being detected. The type
system designer has more freedom to make tradeofs between the accuracy of
the type system and its simplicity and runtime efficiency.

1 Another reason why Dialyzer relaxes some inferred types to any is to ensure that its
inference algorithm terminates, by preventing inferred types from growing infinitely
large.

56

5 Type Specifiers in Common LISP

In this chapter, we discuss the type declaration system in Common LISP [52],
which was one of the first dynamic languages with a system for optional type
annotations. Differently from the more recent uses of types for dynamic lan-
guages, in Common LISP the type annotation system was primarily meant as
an aid for program optimization, since at the time computers had very limited
processing power and program efficiency was a very important concern.

We first describe how Common LISP uses type declarations to guide
compiler optimizations and then discuss the effect that they have on the
language semantics and how Common LISP sacrifices soundness in the name
of these optimizations.

5.1 Specialized operations in Common LISP
One approach dynamic languages can take to allow programmers to extract
extra performance in hot code paths is to provide type-specialized operations
that skip runtime checks. For example, in MACLISP the +$, -$, *$ and
/$ operators are specialized for floating-point numbers [53]. In the follow-
ing MACLISP program, which computes the discriminant of the quadratic
formula, these operators will be compiled down to efficient floating-point
arithmetic instructions without any runtime tag checks. It is the responsi-
bility of the programmer to ensure that the discriminant function only
receives floating-point inputs because the behavior of the type-specialized
operators is undefined if they receive non-floating-point inputs.

(defun discriminant (a b c)
(-$ (*$ b b) (*$ 4.0 a c)))

The Common LISP language standard descended from MACLISP and
also supports type-specialized operations [52]. However, instead of provid-
ing specialized operations for every possible type and combination of types
(single-precision and double-precision floats, fixed-width integers, rational
numbers, etc.) in Common LISP the only arithmetic operators are the generic
+,-,* and / operators. Specialization occurs through type-directed optimiza-
tions guided by type declarations. In the following program, the a, b and
c parameters are all declared to be single-precision floating-point numbers
and an optimizing Common LISP implementation is allowed to replace the
generic arithmetic operations with floating-point ones, just like what was
done by hand in the previous MACLISP example.

(defun discriminant (a b c)
(declare (single-float a b c))
(- (* b b) (* 4.0 a c)))

In addition to optimizing arithmetic expressions, type annotations in
Common LISP can also optimize a variety of other operations and data

Chapter 5. Type Specifiers in Common LISP 57

structures. The following program illustrates the use of type annotations in a
program that sums the elements of a 1000 by 1000 matrix:

(defvar my-matrix (make-array ’(1000 1000)
:element-type ’single-float
:initial-element 1.0s0))

(defun sum-elts (xs)
(declare (type (simple-array single-float (1000 1000))
xs))↪

(let ((sum 0.0s0))
(declare (type single-float sum))
(dotimes (i 1000)

(dotimes (j 1000)
(incf sum (aref xs i j))))

sum))

(format t ”~A~%” (sum-elts my-matrix))

The type specification in make-array allows for a more efficient, un-
boxed, memory representation for the array and the type declarations inside
sum-elts allow the compiler to use efficient floating-point arithmetic inside
the main loop. According to tests performed by Graham [54, page 221], the
version of the program with the type declarations runs an order of magnitude
faster than the version without them.

5.2 The effect of type annotations in Common LISP
Common LISP type annotations allow the programmer to specify to the
compiler their intent about the types in their code. This mainly affects the
program behavior in two ways: error detection and type-directed optimiza-
tion. In this section we illustrate some of these properties of the Common LISP
type annotation system by providing some example programs and observing
how they behave. Since the Common LISP language specification does not
specify many aspects of the type system, we will not attempt to provide a
general semantics for type annotations and will limit ourselves to reporting
the behavior of a single Common LISP implementation. We chose Steel Bank
Common LISP (SBCL) version 1.3 [55] because it allowed us to showcase
undefined behavior and other observable effects of type annotations. All our
tests were run on 64 bit Debian Linux.

5.2.1 Error detection
Common LISP implementations are allowed to produce type errors if the
type annotations the programmer provides do no match. We can see this in
the two programs in Fig. 24, which SBCL 1.3 refuses to run due to static type
errors.

Common LISP implementations can also insert runtime type checks to
verify the validity of type declarations that are not verifiable at compile time.

Chapter 5. Type Specifiers in Common LISP 58

Function where Int is expected

(defun foo (a b)
(declare (function a))
(declare (fixnum b))
(+ a b)) ;; <– ”a” is not a number

Int where Function is expected

(defun foo (f x)
(declare (fixnum f))
(declare (fixnum x))
(funcall f x)) ;; <– ”f” is not a function

Figure 24 – Compile-Time Type Errors in Common LISP

(defun add1 (x)
(declare (fixnum x))
(+ x 1))

(format t ”~A~%” (add1 1)) ;; Prints ”2”
(format t ”~A~%” (add1 1.0)) ;; Runtime TYPE-ERROR

Figure 25 – Runtime Type Errors in Common LISP

This is demonstrated in the program in Fig. 25, where the (add1 1.0)
function call raises a runtime type error. Note that this error was not detected
at compile time because the type declaration for x only affects the body of
add1.

There are some limits to Common LISP’s type checking, however. One
notable one is that the input and return types are ignored when comparing
two function types. As shown in Fig. 26, the type checker considers the types
of integer and floating-point numbers to be incompatible but does not do the
same when the type declarations are for functions over these incompatible
types.

5.2.2 Type-directed optimization
Although Common LISP type declarations can be used for error checking
and documentation, these were not the most important reasons why type dec-
larations were added to Common LISP. According to Guy Steele’s Overview
of Common LISP [52], the primary motivation behind type declarations was
their use in type-directed compiler optimizations:

A type declaration facility is provided by which the user can ad-
vise an optimizing compiler. [...] the user undertakes to guarantee
that the arguments will be of the specified type. Compiled code
may assume this or may perform runtime-checks to confirm the

Chapter 5. Type Specifiers in Common LISP 59

Contradictory number-type annotations

;; These declarations cause a compile-time error
(defun foo (x)

(declare (fixnum x))
(declare (single-float x))
x)

Contradictory function-type annotations

;; These declarations do not cause any errors
(defun bar (f)

(declare (ftype (function (fixnum) fixnum) f))
(declare (ftype (function (single-float) single-float)

f))↪

f)

Figure 26 – Compile-Time Type Errors in Common LISP

declaration: in any case the compiler may be able to generate more
efficient code for the body of the function.

This focus on performance and the willingness to allow undefined behavior
in the cases if type annotations are not respected at runtime are the most
distinctive characteristics of Common LISP’s type annotation system. Since
Common LISP implementations are allowed to assume that type declarations
are always correct, programs mixing statically-typed and dynamically-typed
parts are susceptible to undefined behavior.

One example of such undefined behavior can be seen in Fig. 27. The
add-DD and add-FF functions simply add their two inputs together and the
only difference between them is that add-FF declares its inputs as floating-
point numbers while add-DD is dynamically-typed (the default). According
to my tests, SBCL 1.3 prints the nonsensical 0.0 when integers are passed
to the add-FF function. The precise value of this wrong number is not
important. What is really important is that its existence indicates that when
SBCL is configured with a safety setting of zero the optimizer fully trusts the
type annotations and add-FF is compiled to blindly add its operands with
floating-point arithmetic and to always return a floating-point number.

Undefined behavior is not limited to incorrect arithmetic coercions. The
program in Fig. 28 attempts to access an invalid memory address when it
treats an integer as if it were a function pointer. The address of the memory
fault,0x7, is correlated to the value of 𝑥. In fact, the address is always equal
to 2𝑥 − 3, which likely has to do with the internal tagged representation for
fixnums and function pointers in SBCL.

Chapter 5. Type Specifiers in Common LISP 60

(declaim (optimize (safety 0)))

(defun add-DD (x y)
(+ x y))

(defun add-FF (x y)
(declare (single-float x y))
(+ x y))

;; add-DD performs dynamic arithmetic.
(format t ”~A~%” (add-DD 1 2)) ;; 3
(format t ”~A~%” (add-DD 1.0 2.0)) ;; 3.0

;; add-FF returns nonsense floating-point numbers if its
inputs are not of the declared type.↪

(format t ”~A~%” (add-FF 1 2)) ;; 0.0 (wrong value)
(format t ”~A~%” (add-FF 1.0 2.0)) ;; 3.0

Figure 27 – Type Directed Optimization in Common LISP

Program

(declaim (optimize (safety 0) (speed 3)))

(defun foo (x)
(declare (function x))
(funcall x 0))

(format t ”~A~%” (foo 5))

Error message

CORRUPTION WARNING in SBCL pid 24990(tid 140737353897728):
Memory fault at 0x7 (pc=0x10039e0c6f, sp=0x7ffff2d1ecd0)
The integrity of this image is possibly compromised.
Exiting.

Figure 28 – Memory corruption in Common LISP

61

6 Gradual Typing

It is very hard to design a type system or static analysis tool that can reason
about all the idioms that are commonly used in dynamically-typed program-
ming languages [29; 56]. Because of this, one approach that has become very
popular recently is Gradual Typing [57–63], which is based on explicitly seg-
regating programs in dynamically-typed and statically-typed sections. This
allows the programmer to leave the some parts of the program intentionally
untyped and gradually convert untyped code to typed code, one part at a
time.

In this chapter, we focus on one of the simplest gradually-typed systems,
the gradually-typed λ-calculus of Siek and Taha [57]. In Section 6.1 we cover
the blame calculus, a programming language that is ideal for studying the
mixing of static and dynamic typing, but which is too verbose to use directly.
In Section 6.2 we describe the gradually-typed λ-calculus in terms of the
blame calculus and in Section 6.3 we show the most important properties
that a gradual type system should follow. Finally, in Section 6.4 we briefly
discuss the challenges that need to be faced in order to create gradually-typed
languages with type systems that are more powerful than the simply-typed
one.

6.1 The Blame Calculus
The central idea of gradual typing is to allow programmers to write part of
their code in a dynamically-typed language and another part of their code in
a statically-typed dialect of that language, while still having them interact in
a sound manner. The meaning of this soundness is something that we will
explain soon, in Section 6.1.4.

One of the simplest model languages for this interaction between typed
and untyped code is the blame calculus of Wadler and Findler [64]. The blame
calculus is an intermediate language that makes the static and dynamic parts
of the program fully explicit. We will describe it in detail in the following
subsections.

6.1.1 Syntax of the Blame Calculus
We show the syntax for the Blame Calculus in Fig. 29. The statically-typed
part of the blame calculus is essentially the simply-typed λ-calculus. In our
presentation we use null and int as the base types, as they will suffice for
most of the examples we will use. To streamline the semantics and type
system we model arithmetic operations as function constants instead of as
primitive language operations.

Dynamic typing in the blame calculus is represented explicitly on top
of the statically-typed λ-calculus using a variant record, a technique we
mentioned in Section 3.1.2. Tagged values have the dynamic type ⋆ and are
written (Dynu�𝑣). The tag 𝐺 is a ground type, which can be a base type (null

Chapter 6. Gradual Typing 62

Type syntax

Base Type 𝐵 ::= null | int
Type 𝑇 ::= 𝐵 | 𝑇1 → 𝑇2 | ⋆
Ground Type 𝐺 ::= 𝐵 | ⋆ → ⋆

Term syntax

Var 𝑥 ::= 𝑥, 𝑦, 𝑧, …
Function 𝑓 ::= λ𝑇 ∶ 𝑥 . 𝑒
Integer 𝑛 ::= 0, 1, 2, …
Primitive Functions 𝑘 ::= +, −, ×, ÷, ...
Constant 𝑐 ::= null | 0, 1, 2, … | 𝑘
Blame Label ℓ ::= ℓ1, ℓ2, …
Expr 𝑒 ::= 𝑐 | 𝑥 | 𝑓 | (Dynu�𝑒) | (𝑒1 𝑒2) | ⟨𝑇2 ⇐ 𝑇1⟩ℓ 𝑒

Figure 29 – Syntax of the blame calculus

or int) or the type of dynamic functions, ⋆ → ⋆. These are the types that can
be checked dynamically at runtime. The interface between statically-typed
and dynamically-typed parts of the language is bridged by explicit casts,
written ⟨𝑇2 ⇐ 𝑇1⟩ℓ . The label ℓ is unique for each cast and corresponds to
their position in the original program source code (line and column number).

Some examples and a lighter notation

The following program adds together a typed integer with another integer
that is wrapped inside a dynamic value. The addition operation uses prefix
notation because in the blame calculus addition is just a regular function of
two parameters.

let 𝑥 ∶ ⋆ = (Dynint1) in
(+ 2 (⟨int ⇐ ⋆⟩ℓ 𝑥))

Note how all the variables are accompanied by explicit type annotations and
how there is an explicit difference between untagged, statically-typed num-
bers (such as 2) and tagged, dynamically-typed numbers (such as (Dynint1)).
Function calls are statically-typed and dynamic values must be cast down to
untagged integers before they can be passed to arithmetic operations.

Since writing down all the Dyns and casts from ⋆ is very notationally
heavy, we will use Wadler’s ⌈ ⌉ notation to embed a more familiar-looking
untyped λ-calculus inside the blame calculus. The precise meaning of ⌈ ⌉ nota-
tion is described in Fig. 30. The ⌊ ⌋ notation is used as a form of quasi-quoting
to embed typed blame calculus expressions inside the untyped expressions.
Bracket notation is specially space-saving when there are many function calls
in the dynamically-typed parts of the code, as can be seen in the examples
in Fig. 31. Notice how a cast needs to be inserted to convert the typed 𝑖𝑛𝑐
function into a dynamic value and how that dynamic value needs to be casted
back to ⋆ → ⋆ when its called, to check if its really a function.

Chapter 6. Gradual Typing 63

⌈𝑥⌉ = 𝑥
⌈null⌉ = (Dynnullnull)

⌈𝑛⌉ = (Dynint𝑛)
⌈+⌉ = (Dyn⋆→⋆⟨⋆ → ⋆ → ⋆ ⇐ int → int → int⟩ +)

⌈λ𝑥. 𝑒⌉ = (Dyn⋆→⋆λ𝑥 ∶ ⋆ . ⌈𝑒⌉)
⌈(𝑒1 𝑒2)⌉ = ((⟨⋆ → ⋆ ⇐ ⋆⟩ ⌈𝑒1⌉) ⌈𝑒2⌉)

⌈⌊𝑒⌋⌉ = (Dynu�⟨𝐺 ⇐ 𝑇⟩ 𝑒) if 𝑒 ∶ 𝑇 and 𝐺 ∼ 𝑇

Figure 30 – Wadler’s ⌈⌉ notation

A program using ⌈⌉ notation

let 𝑖𝑛𝑐 = λ𝑥 ∶ int. (+ 𝑥 1) in
⌈(⌊𝑖𝑛𝑐⌋ null)⌉

A program without ⌈⌉ notation

let 𝑖𝑛𝑐 = λ𝑥. (+ 𝑥 1) in
((⟨⋆ → ⋆ ⇐ ⋆⟩ (Dyn⋆→⋆⟨⋆ → ⋆ ⇐ int → int⟩ 𝑖𝑛𝑡)) (Dynnullnull))

Figure 31 – Example of ⌈⌉ notation

6.1.2 The Static Type System of the Blame Calculus
In Fig. 32 we show the typing rules for the blame calculus. The first group
of rules – var, const, lam and app – is responsible for typing the static parts
of blame calculus programs and is lifted straight from the simply-typed
λ-calculus. The only changes compared to the simply-typed calculus we
presented in Section 2.4 is that the const rule unifies the various rules for
typing literals under a single rule. The meta function TypeOf returns the type
of a given constant. For example, Typeof(1) = int and Typeof(+) = int →
int → int.

The second kind of rule is the dyn rule, which says that dynamic values
have the type ⋆. Note that the ⋆ type is just a regular variant type, except that
we use casts instead of case expressions to extract fields from it. In particular,
the ⋆ type is not a supertype of the other types, as would be found in a type
system with subtyping. This is a common source of confusion for people
being introduced to gradual typing, specially since many gradually-typed
languages call the ⋆ type by any, which suggests a set-subtyping relation.

Finally, the cast rule governs the transition between the typed and untyped
parts of the programs. The cast rule refers to a type consistency relation, written
∼. 𝑆 ∼ 𝑇 means that it is possible to make the types 𝑆 and 𝑇 equal to one
another by replacing all the occurrences of the dynamic type ⋆ in 𝑆 and 𝑇

Chapter 6. Gradual Typing 64

Typing rules Γ ⊢ 𝑒 ∶ 𝑇
var
Γ(𝑥) = 𝑇
Γ ⊢ 𝑥 ∶ 𝑇

const

Γ ⊢ 𝑐 ∶ TypeOf(𝑐)

lam
Γ[𝑥 ← 𝑆] ⊢ 𝑒 ∶ 𝑇

Γ ⊢ λ𝑥 ∶ 𝑆 . 𝑒 ∶ 𝑆 → 𝑇

app
Γ ⊢ 𝑒1 ∶ 𝑆 → 𝑇 Γ ⊢ 𝑒2 ∶ 𝑆

Γ ⊢ (𝑒1 𝑒2) ∶ 𝑇

dyn
Γ ⊢ 𝑒 ∶ 𝐺

Γ ⊢ (Dynu�𝑒) ∶ ⋆

cast
Γ ⊢ 𝑒 ∶ 𝑆 𝑆 ∼ 𝑇
Γ ⊢ ⟨𝑇 ⇐ 𝑆⟩ℓ 𝑒 ∶ 𝑇

Type consistency 𝑆 ∼ 𝑇

null ∼ null int ∼ int 𝑇 ∼ ⋆ ⋆ ∼ 𝑇
𝑆 ∼ 𝑆′ 𝑇 ∼ 𝑇′

𝑆 → 𝑇 𝑆′ → 𝑇′

Figure 32 – Type system for the blame calculus

with appropriate types that do not contain ⋆.
The consistency relation rules out foolish casts at compile time, such as

⟨int ⇐ null⟩ . The only way to write a program that tries to use a null as
if it were an int is by casting to the dynamic type as an intermediate step:
⟨int ⇐ ⋆⟩ ⟨⋆ ⇐ null⟩ .

Type consistency is reflexive and symmetric but is not transitive. For
example, we have null ∼ ⋆ and ⋆ ∼ int but null ≁ int. Another thing to note
is that the consistency relation is not a subtyping relation. ∼ is covariant in
the first parameter of function types, unlike subtyping relations, which are
contravariant at that position.

6.1.3 Reduction Semantics of the Blame Calculus
The reduction semantics of the blame calculus is shown in Fig. 33. The
evaluation of the statically-typed parts is not surprising and the rules are the
same as they are in the simply-typed λ-calculus. The ⟦𝑘⟧ in the primop rule is
the mathematical function that denotes the meaning of the function constant.
For example, ⟦+⟧(1, 2) = 3.

The interesting part of the blame calculus semantics is in the rules gov-
erning the casts. In addition to the trivial id-cast rule, there are three kinds
of rule for casts: the rules for casting to ⋆, the rules for casting from ⋆, and
the rule for casting between function types.

Casting to the dynamic type

According to the base-to-dyn rule, casting a value of a base type to ⋆ consists
of wrapping it inside a tagged Dyn. The rule for casting functions to ⋆,
fun-to-dyn is slightly more complicated. We must first cast the function to
⋆ → ⋆ if it does not already have that type, because this is the only function
type that can be tested for by simply checking the type tag of the value. The
importance of this added cast will become clearer when we discuss casts
between function types.

Chapter 6. Gradual Typing 65

Casting from the dynamic type

The rules governing casts from the dynamic type are the dyn-to-t and cast-error
rules. As suggested by the name of the second rule, these casts from the
dynamic type are where runtime errors can possibly come from. The result
of a cast ⟨𝑇 ⇐ ⋆⟩ℓ (Dynu�𝑣) will depend on whether the runtime type tag 𝐺
is compatible with the desired result type 𝑇.

If 𝐺 ≁ 𝑇, we abort the evaluation of the program, returning the error
blame ℓ. This error message contains the line and column number of the cast
in the original program that is responsible for the error that just occurred.
This blame tracking is important because stack traces are not sufficient to
pinpoint the true source of runtime type errors in the blame calculus. As we
will see later, casts between function types report their type errors when the
casted function is applied, not when the function cast is evaluated.

On the other hand, if 𝐺 ∼ 𝑇, the cast does not immediately fail. If 𝑇 is
a base type or the function type ⋆ → ⋆, then the cast succeeds and returns
the unwrapped value, after applying the id-cast rule once. On the other
hand, if 𝑇 is a function type that is not ⋆ → ⋆, then it is not possible to
immediately detect if the casts succeed or not. Instead, it is converted to
the cast ⟨𝑇 ⇐ ⋆ → ∗⟩ℓ 𝑣, which may fail at a later date, as will be explained
when we describe function casts. Note that the new cast contains the location
information ℓ from the old cast, so the error message will point to the correct
line and column number in case of a runtime type error.

Casts between function types

The only casts that are neither to or from the ⋆ type and that still respect
the consistency rule discussed in Section 6.1.2 are casts where a base type is
cast to itself or casts between function types. The first kind of cast succeeds
trivially. The second kind of cast is not so simple because it is impossible to
immediately tell if doing the cast will result in a runtime error. For example,
consider the following program, where a typed function 𝑔 is given an untyped
implementation 𝑓 :

let 𝑓 ∶ ⋆ → ⋆ = λ𝑦. ⌈(+ 1 ⌊𝑦⌋)⌉ in
let 𝑔 = ⟨int → int ⇐ ⋆ → ⋆⟩ℓ 𝑓 in
(𝑔 2)

By inserting the ⟨int → int ⇐ ⋆ → ⋆⟩ 𝑓 cast, the programmer is asserting
that if the untyped function 𝑓 receives an input that is an integer, then it will
return an output that is an integer. However, this assertion is undecidable
at compile time so the blame calculus must check at runtime that this belief
from the programmer actually holds. As shown in rule fun-to-fun, function
casts are evaluated into wrapper functions that perform runtime checks on
the inputs and outputs. In our case it will look like this:

⟨int → int ⇐ ⋆ → ⋆⟩ℓ 𝑓 ⟼
λ𝑥 ∶ int. ⟨int ⇐ ⋆⟩ℓ (𝑓 (⟨⋆ ⇐ int⟩ℓ 𝑥))

Note the presence of the ⟨int ⇐ ⋆⟩ℓ cast just before the wrapper returns. If 𝑓
ever returns a value that is not an integer then the program will be aborted

Chapter 6. Gradual Typing 66

Irreducible expressions

Value 𝑣 ::= 𝑐 | 𝑓 | (Dynu�𝑣)
Result 𝑟 ::= 𝑣 | blame ℓ

Reduction contexts

Reduction context 𝐶 ::= [] | (Dynu�𝐶) | (𝐶 𝑒) | (𝑣 𝐶) | ⟨𝑇2 ⇐ 𝑇1⟩ℓ 𝐶

Reduction rules 𝑒 → 𝑒 ∪ blame ℓ

𝐶[((λ𝑥 ∶ 𝑇 . 𝑒) 𝑣)] ⟼ 𝐶[𝑒[𝑥 ← 𝑣]] (app)
𝐶[(𝑘 𝑣)] ⟼ 𝐶[⟦𝑘⟧(𝑣)] (primop)

𝐶[⟨𝑇 ⇐ 𝑇⟩ℓ 𝑣] ⟼ 𝐶[𝑣] (id-cast)
⟨𝑆′ → 𝑇′ ⇐ 𝑆 → 𝑇⟩ℓ 𝑣 ⟼λ𝑥 ∶ 𝑆′ . ⟨𝑇′ ⇐ 𝑇⟩ℓ (𝑣 (⟨𝑆 ⇐ 𝑆′⟩ℓ 𝑥)) (fun-to-fun)

with 𝑥 ∉ 𝐹𝑉(𝑣)
𝐶[⟨⋆ ⇐ 𝐵⟩ℓ 𝑣] ⟼ 𝐶[(Dynu�𝑣)] (base-to-dyn)

𝐶[⟨⋆ ⇐ 𝑆 → 𝑇⟩ℓ 𝑣] ⟼ 𝐶[(Dyn⋆→⋆⟨⋆ → ⋆ ⇐ 𝑆 → 𝑇⟩ℓ 𝑣)] (fun-to-dyn)
𝐶[⟨𝑇 ⇐ ⋆⟩ℓ (Dynu�𝑣)] ⟼ 𝐶[⟨𝑇 ⇐ 𝐺⟩ℓ 𝑣] if 𝐺 ∼ 𝑇 (dyn-to-t)
𝐶[⟨𝑇 ⇐ ⋆⟩ℓ (Dynu�𝑣)] ⟼ blame ℓ if 𝐺 ≁ 𝑇 (cast-error)

Figure 33 – Reduction semantics for the blame calculus

and the original cast will be the one blamed because the casts in the wrapper
function contain the location information of the original cast. This blame
tracking means that the error messages for type errors do not point to the
place in the program where they occur, as typically happens when a dynamic
language aborts and shows a stack trace. Instead, type errors point toward
the cast whose assertion was violated.

The cast at the start of the wrapper function is for when we pass a typed
function to an untyped context. For example, in the following program we
have a ⟨⋆ ⇐ int → int⟩ cast instead of a ⟨int → int ⇐ ⋆ → ⋆⟩ one.

let 𝑓 ∶ int → int = λ𝑦. (+ 1 𝑦) in
let 𝑔 ∶ ⋆ = ⟨⋆ ⇐ int → int⟩ℓ 𝑓 in
⌈(𝑔 2)⌉

This time, the assertion the programmer is making is that the untyped func-
tion 𝑔 will always receive inputs that are integers. The purpose of the check
at the start of the wrapper created by the function-type cast is to detect at
runtime if this assumption is violated.

6.1.4 Soundness of the blame calculus
The most basic statement of soundness for the blame calculus is the same
kind of statement that is made for the simply-typed λ-calculus and for the

Chapter 6. Gradual Typing 67

dynamically-typed λ-calculus: well-typed programs don’t go wrong. In the
blame calculus this translates to the following type safety theorem:

Theorem (Type-safety of the Blame Calculus). Let 𝑒 be a well-typed term in the
blame calculus. One of the following holds:

• 𝑒 →∗ 𝑣

• 𝑒 →∗ blame ℓ, for some blame label ℓ in 𝑒

• the evaluation of 𝑒 diverges

A proof of this type safety can be found in most papers introducing a
gradual type system. For instance, Siek and Taha’s original gradual typing
paper [57].

There are also other more advanced soundness theorems that we do not
ennunciate formally also assign a direction to the blame in addition to a
location [65; 66]. Informally, when a cast error occurs in a function call, blame
may be assigned either to the caller (which passed an invalid value to the
function) or to the function (which returned an invalid result to the caller).
With this sense of direction these soundness theorems manage to say that in
a program mixing statically-typed and untyped code, blame will always lie
on the untyped side.

6.2 A Surface Syntax for the Blame Calculus
Wadler’s blame calculus works very well as a low-level language for mixing
statically-typed and dynamically-typed programming. However it is too
verbose to use on a day to day basis. In this section, we present Siek and
Taha’s gradually-typed λ-calculus [57], which is a programmer-facing syntax
for the blame calculus.

Fig. 34 describes the syntax of the gradually-typed λ-calculus and a set
of rules for converting gradually-typed programs into the blame calculus.
These rules simultaneously fulfill the role of a type system and a semantics.
A gradually-typed program is considered well-typed if it can be converted
to the blame calculus. Evaluating a gradually-typed program consists of
converting it to its blame calculus equivalent and evaluating that program.

Marking sections as typed or untyped in the gradually-typed calculus is
just a matter of adding optional type annotations to variable declarations.
Omitting a type declaration by writing (λ𝑥. 𝑒) is equivalent to writing (λ𝑥 ∶
⋆ . 𝑒). If a variable declaration is annotated then that variable is statically-
typed and if a variable has no type annotation then it has the dynamic type ⋆.
Other gradually-typed languages may use type inference to decide the type
of unannotated variables instead of always using ⋆. However, this can result
in the type system eagerly rejecting a program that would have executed
correctly had the variables been typed with ⋆.

The more interesting rules in the conversion process are the rules for
converting function applications. These are the rules that insert the type casts
that the blame calculus expects, which is also why the function applications

Chapter 6. Gradual Typing 68

Syntax of the surface language

Var 𝑥 ::= 𝑥, 𝑦, 𝑧, …
Function 𝑓 ::= λ𝑥 ∶ 𝑇 . 𝑒
Integer 𝑛 ::= 0, 1, 2, …
Primitive Functions 𝑘 ::= +, −, ×, ÷, ...
Constant 𝑐 ::= null | 0, 1, 2, … | 𝑘
Blame Label ℓ ::= ℓ1, ℓ2, …
Expr 𝑒 ::= 𝑐 | 𝑥 | 𝑓 | (𝑒1 𝑒2)ℓ

Optional type annotations

λ𝑥. 𝑒 is syntactic sugar for λ𝑥 ∶ ⋆ . 𝑒.

Conversion to the blame calculus Γ ⊢ 𝑒 ↪ 𝑒′ ∶ 𝑇
var

Γ(𝑥) = 𝑇
Γ ⊢ 𝑥 ↪ 𝑥 ∶ 𝑇

const
TypeOf(𝑐) = 𝑇
Γ ⊢ 𝑐 ↪ 𝑐 ∶ 𝑇

lam
Γ[𝑥 ← 𝑆] ⊢ 𝑒 ↪ 𝑒′ ∶ 𝑇

Γ ⊢ λ𝑥 ∶ 𝑆 . 𝑒 ↪ λ𝑥 ∶ 𝑆 . 𝑒′ ∶ (𝑆 → 𝑇)

app-no-check
Γ ⊢ 𝑒1 ↪ 𝑒′

1 ∶ (𝑆 → 𝑇) Γ ⊢ 𝑒2 ↪ 𝑒′
2 ∶ 𝑆

Γ ⊢ (𝑒1 𝑒2)ℓ ↪ (𝑒1 𝑒2) ∶ 𝑇

app-check-arg
Γ ⊢ 𝑒1 ↪ 𝑒′

1 ∶ (𝑆 → 𝑇) Γ ⊢ 𝑒2 ↪ 𝑒′
2 ∶ 𝑆′ 𝑆 ≠ 𝑆′ 𝑆 ∼ 𝑆′

Γ ⊢ (𝑒1 𝑒2)ℓ ↪ (𝑒1 (⟨𝑆 ⇐ 𝑆′⟩ℓ 𝑒2)) ∶ 𝑇

app-check-fun
Γ ⊢ 𝑒1 ↪ 𝑒′

1 ∶ ⋆ Γ ⊢ 𝑒2 ↪ 𝑒′
2 ∶ 𝑆

Γ ⊢ (𝑒1 𝑒2)ℓ ↪ ((⟨𝑆 → ⋆ ⇐ ⋆⟩ℓ 𝑒1) 𝑒2) ∶ ⋆

Figure 34 – A high-level syntax convertible to the blame calculus

are identified by labels, for blame-tracking purposes. There are two cases
that matter when converting a function application (𝑓 𝑥)ℓ.

The first case is when the type of 𝑓 is a function type. In this case, a cast
is inserted to convert the input to the domain type of the function. If the
two types are equal then the application is fully statically-typed and the
cast is not actually needed, as shown in Rule app-no-check. Otherwise, Rule
app-check-arg applies.

The second possibility for function applications is that the function has
the dynamic type ⋆. In this case, the cast is inserted at the function instead of
at the parameter, per the app-check-func rule.

If the type of the function parameter is a base type then the program cannot
be converted to the blame calculus and is considered ill-typed. Similarly, a
program where a function receives an input that is not compatible with its
domain type according to the ∼ relation is also ill-typed.

Chapter 6. Gradual Typing 69

6.3 Properties of Gradually-Typed Systems
In Section 6.2 we describe a gradually-typed programming language but
we do not say much about what can be deduced from its type system and
evaluation semantics. In this section, we will fill this void by describing three
properties that define what it means to be gradually-typed. These properties
are the simulation of fully-typed and fully-untyped calculi, the soundness of
the blame tracking, and the gradual guarantee, that describes what happens as
type annotations are added or removed from a program [67].

6.3.1 Gradual Typing is a Superset of Static and Dynamic Typ-
ing

The first important property of a gradually-typed language is that for fully
annotated programs it should behave like a statically-typed language, and
for fully un-annotated programs it would behave like a dynamically-typed
language. If a program is fully annotated with type declarations, evaluating
it should never result in a runtime type error. On the flip side, if the program
has no type annotations, then it should be as flexible as a dynamic calculus.

In the case of the gradually-typed λ-calculus of Siek and Taha, this means
that fully annotated programs should behave exactly as the simply-typed
λ-calculus and fully un-annotated programs should behave exactly like the
dynamically-typed λ-calculus.

The fully annotated case can be formalized in the following theorem. ⊢u�
and ⊢u� are the typing judgments for the gradually-typed and simply-typed
calculi, respectively. ⇓u� and ⇓u� are their big-step evaluation relations.

Theorem (Equivalence to the simply-typed λ-calculus). For every program 𝑒
in the statically-typed λ-calculus it holds that:

• ⊢u� 𝑒 ∶ 𝑇 if and only if ⊢u� 𝑒 ∶ 𝑇

• 𝑒 ⇓u� 𝑣 if and only if 𝑒 ⇓u� 𝑣

The proof of this theorem is easy to demonstrate. When every term
is annotated with static types that do not contain ⋆, the translation from
the gradually-typed λ-calculus to the blame calculus never inserts any type
casts (as is determined by the app-no-check rule). The fragment of the blame
calculus without any type casts has precisely the same evaluation and typing
rules as the simply-typed λ-calculus.

The equivalence of the dynamically-typed case is slightly more subtle.
We must convert all literals to the dynamic type, to avoid ever raising a
static type error. Since our syntax for the surface language does have a cast
operator to convert numeric literals to the ⋆ type, the theorem instead shows
the equivalence between the dynamically-typed λ-calculus and the dynamic
fragment of the blame calculus. The ⌈ ⌉ operation is the same one described
in Section 6.1. ⇓u� and ⇓u� are the big step evaluation relations for the blame
calculus and the dynamically-typed λ-calculus, respectively.

Theorem (Equivalence to the dynamically-typed λ-calculus). For every pro-
gram 𝑒 in the dynamically-typed λ-calculus it holds that:

Chapter 6. Gradual Typing 70

• ⊢u� ⌈𝑒⌉ ∶ ⋆

• 𝑒 ⇓u� 𝑣 if and only if 𝑒 ⇓u� 𝑣

The proof of this theorem is slightly more involved than the proof for
the static case and we omit it for brevity. It can be found in Siek and Taha’s
original gradual typing paper [57].

6.3.2 Soundness of the Interaction Between Static and Dy-
namic Typing

As we previously discussed in Section 6.1.4, a gradually-typed system should
be type sound and it should also guarantee that the more typed parts of the
program are not to blame for any type errors.

The type safety ensures that the interaction between typed and untyped
code never results in undefined behavior. The purpose of the blame tracking
is to guarantee that the types written by the programmer are respected. This
is what separates full gradually-typed systems from optionally typed systems
that use a similar type system with dynamic types and the consistency rela-
tion, but without adding runtime checks to the boundaries between typed
and untyped code.

6.3.3 The Gradual Guarantee
The third final important property of a gradually-typed system concerns with
how program behaves after after type annotations are added to them. The
main objective of gradual typing is to allow untyped programs to be gradually
transitioned into typed programs and it is important that this process can
happen in a sound and predictable manner.

Adding a type annotation should never change the result evaluating the
program, except that the extra type annotation may cause the program to
start raising a runtime error it did not raise before. If the program with
the additional type annotation does not raise a runtime type error when
evaluated then its result should be the same as the program without the type
annotation.

To be able to formally formulate the Gradual Guarantee, we first define
what it means for a program to be more precisely typed than another. In
Fig. 35, we define a pair of relations 𝑇1 ⊑ 𝑇2 and 𝑒1 ⊑ 𝑒2 that define what it
means for a type 𝑇1 to be more static than 𝑇2 and what it means for a program
𝑒1 to be more statically-typed than another program 𝑒2.

With the ⊑ relations at our disposal, we define the Gradual Guarantee as
follows:

Theorem (Gradual Guarantee). Given a pair of programs 𝑒 and 𝑒′, where 𝑒 ⊑ 𝑒′

and ⊢ 𝑒 ∶ 𝑇, the following hold:

• ⊢ 𝑒′ ∶ 𝑇′ and 𝑇 ⊑ 𝑇′

• If 𝑒 ⇓ 𝑣 then 𝑒′ ⇓ 𝑣′ and 𝑣 ⊑ 𝑣′

• If 𝑒 diverges then 𝑒′ diverges.

Chapter 6. Gradual Typing 71

Type Precision 𝑇1 ⊑ 𝑇2

null ⊑ null int ⊑ int 𝑇 ⊑ ⋆
𝑆 ⊑ 𝑆′ 𝑇 ⊑ 𝑇′

𝑆 → 𝑇 ⊑ 𝑆′ → 𝑇′

Term Precision 𝑒1 ⊑ 𝑒2

𝑥 ⊑ 𝑥 𝑐 ⊑ 𝑐
𝑇1 ⊑ 𝑇2 𝑒1 ⊑ 𝑒2

λ𝑥 ∶ 𝑇1 . 𝑒1 ⊑ λ𝑥 ∶ 𝑇2 . 𝑒2

𝑒1 ⊑ 𝑒′
1 𝑒2 ⊑ 𝑒′

2

(𝑒1 𝑒2)ℓ ⊑ (𝑒′
1 𝑒′

2)ℓ

Figure 35 – Type-precision relations

• if 𝑒′ ⇓ 𝑣′ then either 𝑒 ⇓ 𝑣, with 𝑣 ⊑ 𝑣′ or 𝑒 ⇓ blame ℓ

• if 𝑒′ diverges then either 𝑒 diverges or 𝑒 ⇓ blame ℓ

It is possible to show, using the Blame Theorem, that the gradually-typed
λ-calculus offers the Gradual Guarantee. However, for languages with more
complex type systems, it is not hard to violate this guarantee, even if the
language designer has the best intentions from the start.

One example of a language feature that would violate the Gradual Guar-
antee is a try-catch statement that can handle runtime type errors. If the
runtime errors from the type casts don’t immediately abort the execution
of the program it is possible to write a typed program that evaluates to
something different than its untyped equivalent.

A second example of a language feature that can violate the Gradual
Guarantee is a === operator for equality testing via object-identity. With this
operation, it might be possible to tell apart a function and a version of the
same function that is wrapped by a higher-order cast [68].

6.4 Challenges for Gradual-Typing
The gradually-typed calculus of Siek and Taha guarantees that blame is as-
signed in a sound manner and also upholds the Gradual Guarantee. However,
doing this is not as easy once the gradually-typed language starts having
a type system that is more advanced than the simply-typed one. And in
addition to the problem of just providing blame tracking for advanced type
system features, there is also the problem of doing so in a performant manner.

One example of a type system feature that is not easy to integrate with
gradual typing is parametric polymorphism. In a statically-typed language,
the type system can guarantee relational parametricity (theorems for free) at
compilation time and erase all type information during execution. On the
other hand, a gradually-typed system must provide some way to dynami-
cally enforce relational parametricity, in case a statically-typed function with
parametric types is given a dynamically-typed implementation. Ahmed et al
show that it is possible to do this by inserting opaque wrappers around values
with parametric types [69]. However, it is not yet clear if these wrappers are
viable in practical languages.

Chapter 6. Gradual Typing 72

Mutable objects and data structures are another example of a language
feature that is not easy to implement in a gradually-typed setting. To prevent
object invariants from being violated by dynamically-typed code, statically-
typed objects that are passed to dynamically-typed functions must be wrapped
in a wrapper that only allows the dynamically-typed code to perform reads,
not writes.

Recursive types also present a problem. It only takes a single tag check to
verify whether a dynamic value is an integer but it might take an arbitrarily
large number of checks to verify that a dynamic value is a list of integers.

In an effort to sidestep this issue, some gradually-typed languages sacrifice
the expression-level granularity present in Siek’s gradually-typed calculus in
exchange for simplifying the blame tracking. The poster child of this approach
is the Typed Racket programming language [65; 70]. In Typed Racket, gradual
typing happens at the granularity of whole modules. Typed Racket modules
can interact with regular untyped Racket modules but a single module must
be either fully typed or fully untyped. What Typed Racket gains from this
restriction is that the typed modules are allowed to use many type system
features that are hard to gradually-type, such as parametric polymorphism.

73

7 Optional Typing

In Chapter 5 and Chapter 6 we had a look at type systems based on optional
type annotations, both of which use type annotations to influence the runtime
behavior of the program. In Common LISP’s case the type annotations aid
aggressive compiler optimizations (which are observable when undefined be-
havior is triggered) while in gradually-typed languages the type annotations
are used to insert powerful runtime assertions and blame tracking. However,
there is a third path that can be taken in a system with type annotations,
which is to simply ignore them at runtime and only use them for tooling and
other compiler diagnostics. This approach is commonly known as Optional
Typing, a term coined by Gilad Bracha [71], whose Strongtalk [72] was one of
the first type systems intentionally designed to have type annotations that
do not affect the program at runtime.

In this chapter we discuss Optionally Typed systems for dynamic lan-
guages and why their designers chose to not have their type annotations
affect the program runtime. We start with a brief overview of Strongtalk in
Section 7.1. In Section 7.2 we discuss more recent Optionally Typed languages
whose type systems are inspired by Gradual Typing’s type-consistency rela-
tion but which intentionally do not attempt to perform blame tracking.

7.1 Optional Typing in Strongtalk
The original Optional Typing system is the type system of Strongtalk [72],
a commercial Smalltalk dialect from Longview Technologies. Although
Strongtalk development was halted before it was publicly released (its devel-
opment team was hired by Sun Microsystems to work in the Java VM), the
papers and presentations about its type systems were some of the earliest to
feature this style of optional type signatures.

In Strongtalk, type annotations are completely erased before the program
executes and therefore have no effect on the semantics of the program. In
principle, fully-annotated Strongtalk programs are guaranteed to never “go
wrong” with a “method missing” error, although there is no formal proof
of that. The behavior of partially-typed programs is defined to be the same
behavior as the unannotated version of the program. This means that as long
as there is a single untyped class or module in the whole program, the type
system cannot offer any hard guarantees for the statically typed sections of
the code.

However, an optional type system can still be useful even when it is not
producing strong guarantees about the behavior of the program. Some of the
advantages of types that we mentioned in Section 1.1, such as documentation
and IDE support, apply even if the type system is not fully sound.

Chapter 7. Optional Typing 74

7.2 Optional Typing inspired by Gradual Typing
One style of optionally-typed type system that has become relatively popular
recently are type systems inspired by gradually-typed systems, which have a
dynamic type ⋆ type and an accompanying consistency relation ∼, etc). The
difference is that these optional type systems only check types at compile time
and do not attempt to perform additional type checking or blame tracking
at compile time. This can be done for performance reasons (efficient blame
tracking is still an open problem) or also due to the optional type system being
unsound in the first place (which would make blame tracking pointless).

Examples of optionally-typed systems in the gradual-typing style are
TypeScript [62] (a Javascript dialect), Typed Lua [73] and Dart [74]. In this
section we will focus our discussion on Typescript, which is notable for
its popularity and relative success. Typescrypt is already being used in
production in many Javascript projects, such as the popular Angular front-
end framework [75] and some IDEs such as Microsoft’s Visual Studio [76]
already use its types to power auto-completion and other features.

7.2.1 Error checking and Type erasure in Typescript
Similarly to traditional gradually-typed type systems, the Typescript compiler
produces compile-time warnings for static types that do not match. This
can be seen in the program in Fig. 36. Dynamically-typed values can also be
freely passed to statically-typed functions as we demonstrate in the program
in Fig. 37, which compiles successfully with no warnings. However, unlike
in traditional gradually-typed systems, the type declarations in this second
program are ignored at run-time. The resulting error message and stack trace
points to the method call in Line 2 instead of to the function call in Line 6.

Type erasure in Typescript is an intentional design choice. One reason for
this is that Typescript programs must be compiled down to regular Javascript
(the only programming language with universal web-browser support) and
it would be hard to implement efficient checking for higher-order contracts
without support from the language runtime. Additionally, the main goal of
Typescript is to support and enhance existing Javascript development and
according to the developers [62], richer runtime type-checking was not their
highest priority:

The types of a TypeScript program leave no trace in the JavaScript
emitted by the compiler. There are no run-time representations
of types, and hence no run-time type checking. Current dynamic
techniques for “type checking” in JavaScript programs, such as
checking for the presence of certain properties, or the values of
certain strings, may not be perfect, but good enough.

7.2.2 Unsound Types in Typescript
One interesting aspect of Typescript’s type system is that it includes many
unsound features, such as downcasting, covariance of mutable properties,
and string-based indexing of objects. We illustrate this in Fig. 38 with a classic

Chapter 7. Optional Typing 75

Program

1 function hello(s:string){
2 alert(s.toUpperCase());
3 }
4

5 hello(10);

Compile time error message

Line 5: Argument of type ’number’ is not assignable to
parameter of type ’string’

Figure 36 – A compile-time error in Typescript

Program

1 function hello(s:string){
2 alert(s.toUpperCase());
3 }
4

5 var n:any = 10;
6 hello(n);

Runtime error message

Line 2: Uncaught TypeError: s.toUpperCase is not a
function

Figure 37 – A run-time type error in Typescript

array-covariance example. Typescript allows the covariant assignment in Line
9, which makes it possible to indirectly add a Dog to an array of Cats. This
breaks the property access in Line 12, which assumes that objects in the cats
array have the meow property.

The presence of these unsound features is intentional. Since Typescript
types are erased, unsoundness is not as dangerous as in a system that does
type-directed optimizations (where unsoundness can result in undefined
behavior). The worst that can happen in a Typescript program is that it
will fail like a typical Javascript program would. Additionally, the design
of Typescript prioritizes the tooling and documentation aspect of static type
checking, which does not depend on soundness as much. Finally, although
unsound type systems cannot guarantee that well-typed programs don’t go
“wrong”, they can still be useful for early error detection.

Chapter 7. Optional Typing 76

1 interface Animal { }
2 interface Dog { bark: string }
3 interface Cat { meow: string }
4

5 var felix: Cat = {meow:”mrooow”}
6 var pluto: Dog = {bark:”woof woof”}
7

8 var cats : [Cat] = [];
9 var animals : [Animal] = cats;

10 animals[0] = pluto;
11

12 var s:string = cats[0].meow;
13 alert(s);

Figure 38 – Unsound array covariance in Typescript

77

8 Conclusion

In this section, we compare the various type systems we covered in this text
from the point of view of the programmer and the type system designer. The
programmer is primarily concerned with what aspects of static typing the
type system lets him take advantage of while the type system designer has
to focus on the design trade-offs of programing language and type-system
design.

To recapitulate, the type systems we will be comparing are the Type
Specifiers for Common LISP, Optional and Gradual Typing and two variations
of Soft Typing: traditional Soft Typing and Success Typing. Although in
theory all soft-typing systems operate similarly (by classifying operations as
provably-safe, potentially-unsafe and provably-unsafe) it is worth treating
success typing separately because the different error reporting strategy has a
big effect on how the type system is designed and used.

8.1 Programmer-oriented comparison of type sys-
tems

In this section we compare the type systems for dynamic languages using
as criteria the static-typing advantages we listed in Section 1.1. In Fig. 39 we
subjectively rate how each type system fares on each category. We explain
our reasoning in the following paragraphs.

Static Error Checking

Does this type system help detect compile-time errors? Most static type
systems for dynamic language are developed with the primary purpose of
detecting errors at compilation time but Common LISP’s type specifier system
is a notable exception. While some Common LISP implementations, such as

LISP Optional Gradual Soft Success
Static Errors ? + + + +
Documentation ++ ++ +
Abstraction + ++
Efficiency ++ - +

Legend
++ Much better than untyped
+ Better than untyped

Same as untyped
- Worse than untyped
? Depends on the implementation

Figure 39 – Comparison of static-typing benefits

Chapter 8. Conclusion 78

SBCL, use the annotations to guide compile-time and run-time type checking,
this is not universal and many Common LISP implementations never issue
compile-time warnings for mismatched type annotations.

Documentation

Does the type system help document program interfaces and the contents of
variables? Type systems designed around optional type annotations, such as
Optional Typing and Gradual Typing are ideal for using types as documenta-
tion. The exception is the Common LISP type system: since type annotations
can allow unsafe program optimizations, the programmer is discouraged
from using them unless they are really needed.

Type systems designed around type inference are less helpful when it
comes to documentation. In theory, traditional Soft Typing and Success
Typing should score the same in this category, since both work by categorizing
expressions as provably-safe, potentially unsafe and provably safe. However,
traditional Soft Typing encourages having a more complex and expressive
type system, which results in less readable inferred types.

Abstraction

Can the programmer define his own types and type abstractions? Again, type
systems designed around type annotations have an edge in this category. We
give a higher rating to Gradual Typing because not only is it possible to create
new type abstractions but the inserted run-time checks and blame tracking
can be used to enforce that these abstractions are respected. As for Common
LISP, the type specifiers are usually used to speed up operations involving
primitive types (numbers, arrays, etc) and do not encourage programmers to
define their own abstractions.

Efficiency

Do types help compiler optimizations? Common LISP stands out here, be-
cause its type-directed optimizations are predictable and can be reliably used
for performance tuning. For the remaining languages, which are not willing
to sacrifice the safety of dynamic typing, the answer depends mostly on the
soundness of the type system.

Optional Typing systems do not have efficiency as a primary concern
and often feature unsound type systems, which are unsuited for program
optimization.

While Gradual Typing does allow for optimization inside statically-typed
sections of the program, in practice the run-time checks inserted between dy-
namic and static code add significant overhead [77]. Reducing this overhead
and making gradually-typed programs competitive with untyped programs
in terms of performance is still an open research problem.

Soft typing accurately predicts what operations in the program are prov-
ably safe and has a long tradition of being used for compiler optimization,
even when the type system is not exposed to the programmer [78].

Chapter 8. Conclusion 79

LISP Optional Gradual Soft Success
Sound ✓ ✓
Flexible ✓ ✓ ✓
Simple ✓ ? ? ✓

Figure 40 – Type system design trade-offs

Finally, Success Typing often infers types that are “too general”, frequently
falling back to the any type. These types are not suitable for optimization
purposes, although the underlying type algorithm might, if it differentiates
between provably-safe and potentially-safe operations.

8.2 Designer-oriented comparison of type systems
Anecdotally, type system design usually needs to balance three different
desirable properties: correctness, expressiveness and simplicity. A correct,
or sound, type system can guarantee that well-typed programs do not “go
wrong” (for some definition of “go wrong”). Expressive type systems can
type a greater variety of programs and finally, simple type systems are easy
to use and learn. Unfortunately, in practice it is very difficult to achieve these
three goals simultaneously and type systems designers must sacrifice one or
more of them.

In this section we again subjectively rate the type systems we covered
in previous chapters but this time we focus on soundness, flexibility and
simplicity, which are language and type system design concerns. A summary
of our rating can be found in Fig. 40.

Common LISP

The Common LISP type system sacrifices soundness for the simplicity and
predictability of being able to know that a type annotation will always result
in operations being optimized to type-specific versions. The type system
assumes that the programmer knows what he is doing with the type declara-
tions and fully trusts them.

As for flexibility, the Common LISP type system was not designed to
statically type whole programs. The type system has a very rich set of primi-
tive types (numbers of various sizes, arrays, etc) but is lacking in flexibility-
oriented features, such as parametric polymorphism.

Optional and Gradual Typing

There is a large range of type systems that could falls under the umbrella of
Optional or Gradual typing, ranging from very symple type systems to very
complex ones. Because of this variability, we think it is more prudent to not
grade these type systems in the Simplicity criterion.

When it comes to Soundness vs Flexibility, Optional and Gradual typing
take different sides of the trade-off. Gradual type systems have soundness and

Chapter 8. Conclusion 80

blame tracking as high priorities but restrict themselves to only supporting
type system features that can be checked at tun-time. Some type system
features that are hard to check at run-time, such as parametric polymorphism,
are often missing from gradual type systems. On the other hand, Optional
type systems often sacrifice soundness to make the type system less restrictive
or to include conflicting features in the type system.

Soft and Success Typing

Soft Type systems are designed to infer types without the need for type
annotation or other forms of human intervention. Because of this, these type
systems must be very flexible. Even the most simple soft type systems found
in papers include advanced type system features, such as recursive types and
subtyping.

The main difference between traditional Soft Typing and Success Typing
is the treatment of potentially-unsafe operations. Traditional Soft Typing
issues warnings for the potentially-unsafe operations while Success Typing
is optimistic sees these operations as potentially-safe. This choice will end up
resulting in a Soundness vs Simplicity trade-off in the type system design.

In traditional type systems, well-typed programs never “go wrong” and
potentially-unsafe programs are considered ill-typed. From this point of
view, traditional Soft Typing would be considered to be a sound type system,
while success typing systems would be seen as unsound.

However, soundness comes at a cost of complexity. In a soft-typing setting,
the only way to get rid of a compiler warning is to rewrite the program to
please the type system. It is not possible to just fall back to dynamic typing,
as would be done in type-systems based around type annotations. Because
of this, issuing warnings about potentially-unsafe operations since program-
mers are forced to perform “useless” rewrites to get rid of the warning. In
traditional Soft Typing systems, the only way to minimize these false positives
is to make type inference as precise as possible, to avoid classifying an opera-
tion as potentially unsafe. This added accuracy comes at a high complexity
cost – traditional soft typing systems are notoriously hard to use [29] and
the programmer needs to learn the nuances of type inference to be able to
understand the error messages. Conversely, Success Typing systems avoid
this problem in the first place, by never complaining about potentially-unsafe
operations. This allows the type system to remain simple and with smaller,
easier to understand inferred types.

8.3 Miscellaneous Opinions and Recommendations
Type system designers often need to balance conflicting desires such as sound-
ness, expressiveness, and simplicity. Because of this, no single approach for
typing dynamic languages is going to be superior to all the others and the
ideal approach is going to depend on what properties of static and dynamic
typing are most desirable to preserve. In this section we highlight some
miscellaneous points that highlight positive aspects of different type systems
that we analyzed.

Chapter 8. Conclusion 81

Soundness is relative

Type-system soundness is usually defined along the lines of the motto “well-
typed programs don’t go wrong”, which means that evaluation of well-typed
programs never gets stuck or runs into undefined behavior. However, maybe
for type systems for dynamic languages there should be more than one
definition of soundness.

• The first definition is the traditional one: well-typed programs do not get
stuck. All the type systems mentioned in this text are sound according
to this definition, except for the type specifiers of Common LISP, which
sacrifice soundness for performance.

• The second kind of soundness is whether type declarations written
by the programmer are respected at runtime, which is the main dif-
ference between Gradual Typing and Optional Typing. If annotations
are respected, then they can be used for optimization purposes. On the
other hand, enforcing this level of correctness in an efficient manner is
still an open problem.

Error messages should be actionable

An important factor for the usability of a type system is how easy it is to
understand type-error messages and how easy it is to locate what part of the
program needs to be fixed to make the error go away.

The largest evidence for this are the success-typing systems. The un-
derstandability of error messages was one of the factors why flow-based
inference was more successful than unification-based alternatives. However,
the only soft-typing system to really gain traction outside academia was the
success-typing system. A success-typing system produces less error mes-
sages but the error messages they produce will almost always correspond to
real bugs.

Explicit types are good for documentation and tool support

The large popularity of optionally typed languages relative to the other ap-
proaches discussed in this text suggests that type annotations are very useful,
even if they are not providing many static guarantees. Just being able to docu-
ment the types of APIs empowering IDEs with autocompletion is apparently
very useful in practice, as can be seen by the popularity of Typescript.

Type inference has a niche in bug-finding

The biggest success case for type inference among the type systems in this
text is how it enabled the Dialyzer tool to search for bugs on codebases with
millions of lines of code, without any need for human intervention.

Except for the soft-typing systems, most of the type systems did not de-
pend on type inferencing. In many of the type systems for dynamic languages,
the parts of the program that have no type annotations are considered to
be dynamically typed instead of making them be statically typed with an
inferred type.

Chapter 8. Conclusion 82

One possible explanation for this is that in statically-typed languages, type
inference is fundamental for writing real programs, since no programmer
would be bothered to use the programming language if it required extensive
type annotations everywhere. On the other hand, in dynamic languages there
is always the option of using dynamic typing when there are no annotations.

Extracting performance from type systems for dynamic languages is hard

One of the largest challenges for type systems for dynamic languages is being
able to preserve as much of the intrinsic flexibility of the dynamic language
as possible. However, if we ignore the gradually-typed systems, which are
still an open area of research (as discussed in Section 6.4), then type systems
in this text tend to sacrifice either soundness or performance. The Common
Lisp type declarations allow undefined behavior and the Optional Typing
systems give up on performance.

Soft typing does not really count for this trade-off between safety and
performance. Soft typing is limited to types that can be automatically in-
ferred and compilers for dynamic languages can already use type inference
internally, without exposing it to the programmer, as it is done with Soft
Typing.

Summing up
Combining the advantages of statically-typed and dynamically-typed pro-
gramming is a worthy goal. However, it is not possible to simultaneously
combine all the advantages of the two approaches in a single language. At a
fundamental level there will always exist a trade-off between the expressive-
ness of the type system and its simplicity.

As we discussed in Section 1.1, there are multiple different reasons why
static typing is appealing and different applications will prioritize them dif-
ferently. We believe that if language designers and users are aware of which
properties of static typing they prioritize more highly, then they will be able
to make more informed choices.

83

9 Bibliography

[1] Jeff Williams. JSDoc documentation for the @type tag. User man-
ual. URL http://usejsdoc.org/tags-type.html. Accessed in
17/03/2014.

[2] Neil Mitchell. Hoogle Manual (Haskell Wiki), 2005. URL https://wiki.
haskell.org/Hoogle.

[3] John K. Ousterhout. Scripting: Higher-level programming for the 21st
century. Computer, 31(3):23–30, March 1998. ISSN 0018-9162. doi:
10.1109/2.660187. URL http://web.stanford.edu/~ouster/
cgi-bin/papers/scripting.pdf.

[4] Douglas Crockford. RFC 4627 - The application/json Media Type for
JavaScript Object Notation (JSON). Technical report, IETF, 2006. URL
http://tools.ietf.org/html/rfc4627.

[5] Douglas Crockford. Jsonobject class documentation, 2002. URL http:
//www.json.org/javadoc/org/json/JSONObject.html.

[6] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate:
A practical design pattern for generic programming. In Proceed-
ings of the 2003 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, TLDI ’03, pages 26–37, New
York, NY, USA, 2003. ACM. ISBN 1-58113-649-8. doi: 10.1145/
604174.604179. URL http://research.microsoft.com/en-us/
um/people/simonpj/papers/hmap/index.htm.

[7] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002. ISBN 0-262-16209-1. URL http://www.cis.upenn.edu/
~bcpierce/tapl.

[8] Gordon Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, Aarhus University, 1981. URL http:
//homepages.inf.ed.ac.uk/gdp/publications/SOS.ps.

[9] Gordon Plotkin. The origins of structural operational seman-
tics. Journal of Logic and Algebraic Programming, 60–61(0):3 –
15, 2004. ISSN 1567-8326. doi: http://dx.doi.org/10.1016/j.
jlap.2004.03.009. URL http://homepages.inf.ed.ac.uk/gdp/
publications/Origins_SOS.pdf.

[10] Matthias Felleisen and Robert Hieb. The revised report on the syn-
tactic theories of sequential control and state. Theoretical Computer Sci-
ence, 103(2):235 – 271, 1992. ISSN 0304-3975. doi: http://dx.doi.org/
10.1016/0304-3975(92)90014-7. URL http://www.ccs.neu.edu/
home/matthias/papers.html#tcs92-fh.

http://usejsdoc.org/tags-type.html
https://wiki.haskell.org/Hoogle
https://wiki.haskell.org/Hoogle
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
http://web.stanford.edu/~ouster/cgi-bin/papers/scripting.pdf
http://tools.ietf.org/html/rfc4627
http://www.json.org/javadoc/org/json/JSONObject.html
http://www.json.org/javadoc/org/json/JSONObject.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/hmap/index.htm
http://research.microsoft.com/en-us/um/people/simonpj/papers/hmap/index.htm
http://www.cis.upenn.edu/~bcpierce/tapl
http://www.cis.upenn.edu/~bcpierce/tapl
http://homepages.inf.ed.ac.uk/gdp/publications/SOS.ps
http://homepages.inf.ed.ac.uk/gdp/publications/SOS.ps
http://homepages.inf.ed.ac.uk/gdp/publications/Origins_SOS.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/Origins_SOS.pdf
http://www.ccs.neu.edu/home/matthias/papers.html#tcs92-fh
http://www.ccs.neu.edu/home/matthias/papers.html#tcs92-fh

Chapter 9. Bibliography 84

[11] Gilles Kahn. Natural semantics. In Proceedings of the 4th Annual Sympo-
sium on Theoretical Aspects of Computer Science, STACS ’87, pages 22–39,
London, UK, UK, 1987. Springer-Verlag. ISBN 3-540-17219-X. doi:
http://dx.doi.org/10.1007/BFb0039592.

[12] Xavier Leroy and Hervé Grall. Coinductive big-step operational se-
mantics. Information and Computation, 207(2):284–304, February 2009.
ISSN 0890-5401. doi: 10.1016/j.ic.2007.12.004. URL http://gallium.
inria.fr/~xleroy/publi/coindsem-journal.pdf.

[13] Daniel Brown, Nuno Lopes, Felipe Pena, Thiago Pojda, and Maciek
Sokolewicz. String conversion to numbers. PHP 5 Language Refer-
ence, august 2015. URL http://php.net/manual/en/language.
types.string.php#language.types.string.conversion.

[14] Oleg Kiselyov and Chung-chieh Shan. Interpreting types as abstract
values. Lecture notes from the Formosan Summer School on Logic,
Language, and Computation, July 2008. URL http://okmij.org/
ftp/Haskell/AlgorithmsH.html#teval.

[15] Henry G. Rice. Classes of recursively enumerable sets and
their decision problems. Transactions American Methemati-
cal Society, 74:358–366, 1953. doi: 10.2307/1990888. URL
http://www.ams.org/journals/tran/1953-074-02/
S0002-9947-1953-0053041-6/home.html.

[16] Richard Statman. The typed λ-calculus is not elementary recursive. In
18th Annual Symposium on Foundations of Computer Science, FOCS ’77,
pages 90–94, Oct 1977. doi: 10.1109/SFCS.1977.34.

[17] Robert Harper. Practical Foundations for Programming Languages, chap-
ter 17, pages 149 – 150. Cambridge University Press, New York, NY,
USA, 2012. ISBN 1107029570, 9781107029576. URL http://www.cs.
cmu.edu/~rwh/plbook/book.pdf.

[18] John C. Reynolds. Logical Foundations of Functional Programming, chap-
ter 5, pages 77–86. Addison-Wesley, 1990.

[19] J.B. Wells. Typability and type checking in system f are equivalent and
undecidable. Annals of Pure and Applied Logic, 98(1–3):111 – 156, 1999.
ISSN 0168-0072. doi: 10.1016/S0168-0072(98)00047-5.

[20] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17(3):348 – 375, 1978. ISSN 0022-0000.
doi: 10.1016/0022-0000(78)90014-4.

[21] Luis Damas and Robin Milner. Principal type-schemes for functional
programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’82, pages 207–212, New York,
NY, USA, 1982. ACM. ISBN 0-89791-065-6. doi: 10.1145/582153.582176.

http://gallium.inria.fr/~xleroy/publi/coindsem-journal.pdf
http://gallium.inria.fr/~xleroy/publi/coindsem-journal.pdf
http://php.net/manual/en/language.types.string.php#language.types.string.conversion
http://php.net/manual/en/language.types.string.php#language.types.string.conversion
http://okmij.org/ftp/Haskell/AlgorithmsH.html#teval
http://okmij.org/ftp/Haskell/AlgorithmsH.html#teval
http://www.ams.org/journals/tran/1953-074-02/S0002-9947-1953-0053041-6/home.html
http://www.ams.org/journals/tran/1953-074-02/S0002-9947-1953-0053041-6/home.html
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://www.cs.cmu.edu/~rwh/plbook/book.pdf

Chapter 9. Bibliography 85

[22] François Pottier and Didier Rémy. Advanced Topics in Types and Pro-
gramming Languages, chapter The Essence of ML Type Inference, pages
404–489. MIT Press, 2005.

[23] Harry G. Mairson. Deciding ML typability is complete for deterministic
exponential time. In Proceedings of the 17th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’90, pages
382–401. ACM, 1990. ISBN http://id.crossref.org/isbn/0897913434.
doi: 10.1145/96709.96748.

[24] David McAllester. A logical algorithm for ML type inference. In Pro-
ceedings of the 14th International Conference on Rewriting Techniques and
Applications, RTA’03, pages 436–451, Berlin, Heidelberg, 2003. Springer-
Verlag. ISBN 3-540-40254-3. doi: 10.1007/3-540-44881-0_31. URL
http://ttic.uchicago.edu/~dmcallester/rta03.ps.

[25] Philip Wadler. Theorems for free! In Proceedings of the Fourth International
Conference on Functional Programming Languages and Computer Architecture,
FPCA ’89, pages 347–359, New York, NY, USA, 1989. ACM. ISBN 0-
89791-328-0. doi: 10.1145/99370.99404. URL http://homepages.
inf.ed.ac.uk/wadler/topics/parametricity.html.

[26] Fritz Henglein. Global tagging optimization by type inference. In
Proceedings of the 1992 ACM Conference on LISP and Functional Program-
ming, LFP ’92, pages 205–215, New York, NY, USA, 1992. ACM. ISBN
0-89791-481-3. doi: 10.1145/141471.141542. URL http://www.diku.
dk/~henglein/bib/publications//henglein92c.html.

[27] Konstantinos Sagonas. Experience from developing the dialyzer: A
static analysis tool detecting defects in erlang applications. Presented
at the ACM SIGPLAN Workshop on the Evaluation of Software Defect
Detection Tools (Bugs’05), June 2005. URL http://user.it.uu.se/
~kostis/Papers/bugs05.pdf. This conference did not have formal
proceedings.

[28] Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie
Weirich, and Matthias Felleisen. Catching bugs in the web of pro-
gram invariants. In Proceedings of the ACM SIGPLAN 1996 Con-
ference on Programming Language Design and Implementation, PLDI
’96, pages 23–32. Association for Computing Machinery (ACM),
1996. ISBN http://id.crossref.org/isbn/0897917952. doi: 10.1145/
231379.231387. URL http://cs.brown.edu/~sk/Publications/
Papers/Published/ffkwf-mrspidey/.

[29] Matthias Felleisen. From soft scheme to typed scheme: Experiences
from 20 years of script evolution, and some ideas on what works.
1st International Workshop on Script to Program Evolution (STOP
2009), July 2009. URL http://ccs.neu.edu/home/matthias/
Presentations/STOP/stop.pdf. Invited talk.

[30] Robert Cartwright and Mike Fagan. Soft typing. In Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and

http://ttic.uchicago.edu/~dmcallester/rta03.ps
http://homepages.inf.ed.ac.uk/wadler/topics/parametricity.html
http://homepages.inf.ed.ac.uk/wadler/topics/parametricity.html
http://www.diku.dk/~henglein/bib/publications//henglein92c.html
http://www.diku.dk/~henglein/bib/publications//henglein92c.html
http://user.it.uu.se/~kostis/Papers/bugs05.pdf
http://user.it.uu.se/~kostis/Papers/bugs05.pdf
http://cs.brown.edu/~sk/Publications/Papers/Published/ffkwf-mrspidey/
http://cs.brown.edu/~sk/Publications/Papers/Published/ffkwf-mrspidey/
http://ccs.neu.edu/home/matthias/Presentations/STOP/stop.pdf
http://ccs.neu.edu/home/matthias/Presentations/STOP/stop.pdf

Chapter 9. Bibliography 86

Implementation, PLDI ’91, pages 278–292, New York, NY, USA, May 1991.
ACM. ISBN 0-89791-428-7. doi: 10.1145/113445.113469. URL http:
//doi.acm.org/10.1145/113445.113469.

[31] Mike Fagan. Soft Typing: an approach to type checking for dynamically
typed languages. PhD thesis, Rice University, April 1991. URL http:
//www.ccs.neu.edu/scheme/pubs/thesis-fagan.ps.gz.

[32] Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow
analysis. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’95, pages 367–378,
New York, NY, USA, 1995. ACM. ISBN 0-89791-692-1. doi: 10.
1145/199448.199533. URL http://www.cs.ucla.edu/~palsberg/
paper/toplas95-po.pdf.

[33] Andrew K. Wright and Robert Cartwright. A practical soft type system
for scheme. Transactions on Programming Languages and Systems, 19(1):
87–152, January 1997. ISSN 0164-0925. doi: 10.1145/239912.239917.

[34] Andrew K. Wright. Practical Soft Typing. PhD thesis, Rice University,
1994. URL http://www.cs.rice.edu/CS/PLT/Publications/
Scheme/thesis-wright.ps.gz.

[35] Mitchell Wand. Type inference for record concatenation and multiple
inheritance. Information Computation, 93(1):1–15, July 1991. ISSN 0890-
5401. doi: 10.1016/0890-5401(91)90050-C. URL http://www.ccs.
neu.edu/home/wand/Bibliography.html.

[36] Didier Rémy. Type inference for records in a natural extension of
ML. Technical report, INRIA, Rocquencourt, BP 105, 78 153 Le Ches-
nay Cedex, France, May 1991. URL http://gallium.inria.fr/
~remy/ftp/type-inf-records.pdf.

[37] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus
type inference. Inf. Comput., 118(1):128–141, April 1995. ISSN 0890-
5401. doi: 10.1006/inco.1995.1058. URL http://www.cs.ucla.edu/
~palsberg/paper/ic95-ps.pdf.

[38] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, May 1991. URL http://ccs.neu.edu/
home/shivers/papers/diss.pdf.

[39] Jan Midtgaard. Control-flow analysis of functional programs. Technical
report, University of Aarhus, 2007. URL http://www.brics.dk/RS/
07/18/index.html.

[40] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Pinciples
of Program Analysis. Springer Berlin Heidelberg, 1 edition, 1999. doi:
10.1007/978-3-662-03811-6.

[41] Matthew Might. Environment Analysis of Higher-Order Languages. PhD the-
sis, Georgia Institute of Technology, 2007. URL http://matt.might.
net/papers/might2007diss.pdf.

http://doi.acm.org/10.1145/113445.113469
http://doi.acm.org/10.1145/113445.113469
http://www.ccs.neu.edu/scheme/pubs/thesis-fagan.ps.gz
http://www.ccs.neu.edu/scheme/pubs/thesis-fagan.ps.gz
http://www.cs.ucla.edu/~palsberg/paper/toplas95-po.pdf
http://www.cs.ucla.edu/~palsberg/paper/toplas95-po.pdf
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/thesis-wright.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/thesis-wright.ps.gz
http://www.ccs.neu.edu/home/wand/Bibliography.html
http://www.ccs.neu.edu/home/wand/Bibliography.html
http://gallium.inria.fr/~remy/ftp/type-inf-records.pdf
http://gallium.inria.fr/~remy/ftp/type-inf-records.pdf
http://www.cs.ucla.edu/~palsberg/paper/ic95-ps.pdf
http://www.cs.ucla.edu/~palsberg/paper/ic95-ps.pdf
http://ccs.neu.edu/home/shivers/papers/diss.pdf
http://ccs.neu.edu/home/shivers/papers/diss.pdf
http://www.brics.dk/RS/07/18/index.html
http://www.brics.dk/RS/07/18/index.html
http://matt.might.net/papers/might2007diss.pdf
http://matt.might.net/papers/might2007diss.pdf

Chapter 9. Bibliography 87

[42] Roberto M. Amadio and Luca Cardelli. Subtyping recursive
types. Transactions On Programing Languages And Systems, 15(4):
575–631, September 1993. ISSN 0164-0925. doi: 10.1145/155183.
155231. URL http://lucacardelli.name/indexPapers.html#
Subtyping%20recursive%20types.

[43] Jim Trevor and Jens Palsberg. Type inference in systems of
recursive types with subtyping. Unpublished manuscript, Jan-
uary 1999. URL http://www.cs.ucla.edu/~palsberg/draft/
jim-palsberg99.pdf.

[44] Cormac Flanagan. Effective Static Debugging via Componential Set-Based
Analysis. PhD thesis, Rice University, May 1997. URL https://users.
soe.ucsc.edu/~cormac/papers/thesis.pdf.

[45] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium,
for learning haskell. In Proceedings of the 2003 ACM SIGPLAN Work-
shop on Haskell, HASKELL ’03, pages 62 – 71. ACM, 2003. ISBN
http://id.crossref.org/isbn/1581137583. doi: 10.1145/871895.871902.
URL http://www.open.ou.nl/bhr/HeliumCompiler.html.

[46] Bastiaan Heeren. Top Quality Type Error Messages. PhD thesis, University
of Utrecht, 2005. URL http://dspace.library.uu.nl/handle/
1874/7297.

[47] Tobias Lindahl and Konstantinos Sagonas. Practical type inference
based on success typings. In Proceedings of the 8th ACM SIGPLAN In-
ternational Conference on Principles and Practice of Declarative Program-
ming, PPDP ’06, pages 167–178. Association for Computing Machin-
ery (ACM), July 2006. ISBN http://id.crossref.org/isbn/1595933883.
doi: 10.1145/1140335.1140356. URL http://it.uu.se/research/
group/hipe/papers/succ_types.pdf.

[48] Tamás Nagy and Anikó Nagyné Víg. Erlang testing and tools survey. In
Proceedings of the 7th ACM SIGPLAN Workshop on ERLANG, ERLANG ’08,
pages 21–28, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-065-4.
doi: 10.1145/1411273.1411277.

[49] Dialyzer release notes. Erlang/OTP official documentation. Available at
http://www.erlang.org/doc/apps/dialyzer/notes.html. URL http:
//www.erlang.org/doc/apps/dialyzer/notes.html.

[50] Fred Hébert. Learn You Some Erlang for Great Good! No Starch Press, 2013.
ISBN 978-1-59327-435-1. URL http://learnyousomeerlang.com/.

[51] Tobias Lindahl and Konstantinos Sagonas. Detecting software defects
in telecom applications through lightweight static analysis: A war story.
In Proceedings of the Second ASIAN Symposium on Programming Languages
and Systems, APLAS ’04, pages 86–101, 2004. ISBN http://id.cross-
ref.org/isbn/978-3-540-30477-7. doi: 10.1007/978-3-540-30477-7_7. URL
http://user.it.uu.se/~kostis/Papers/war_story.pdf.

http://lucacardelli.name/indexPapers.html#Subtyping%20recursive%20types
http://lucacardelli.name/indexPapers.html#Subtyping%20recursive%20types
http://www.cs.ucla.edu/~palsberg/draft/jim-palsberg99.pdf
http://www.cs.ucla.edu/~palsberg/draft/jim-palsberg99.pdf
https://users.soe.ucsc.edu/~cormac/papers/thesis.pdf
https://users.soe.ucsc.edu/~cormac/papers/thesis.pdf
http://www.open.ou.nl/bhr/HeliumCompiler.html
http://dspace.library.uu.nl/handle/1874/7297
http://dspace.library.uu.nl/handle/1874/7297
http://it.uu.se/research/group/hipe/papers/succ_types.pdf
http://it.uu.se/research/group/hipe/papers/succ_types.pdf
http://www.erlang.org/doc/apps/dialyzer/notes.html
http://www.erlang.org/doc/apps/dialyzer/notes.html
http://learnyousomeerlang.com/
http://user.it.uu.se/~kostis/Papers/war_story.pdf

Chapter 9. Bibliography 88

[52] Guy L. Steele, Jr. An overview of common lisp. In Proceedings of the 1982
ACM Symposium on LISP and Functional Programming, LFP ’82, pages
98–107, New York, NY, USA, 1982. ACM. ISBN 0-89791-082-6. doi:
10.1145/800068.802140.

[53] David A Moon. MACLISP reference manual. Massachusetts
Institute of Technology, April 1974. URL http://www.
softwarepreservation.org/projects/LISP/MIT/. The
“Moonual”.

[54] Paul Graham. ANSI Common LISP. Apt, Alan R., 1996. ISBN 0-
13-370875-6. URL http://www.paulgraham.com/acl.html.

[55] Steel bank common lisp. URL http://www.sbcl.org/.

[56] J. S. Foster. Safe programming in dynamic languages. NSF Workshop
on Programming with Big Data, Jan 2013. URL http://janvitek.
github.io/events/PBD13/slides/JeffFoster.pdf. Talk.

[57] Jeremy G Siek and Walid Taha. Gradual typing for functional lan-
guages. Scheme and Functional Programming Workshop, 6:81–92, 2006.
URL http://www.cs.colorado.edu/~siek/pubs/pubs/2006/
siek06:_gradual.pdf.

[58] Jeremy Siek and Walid Taha. Gradual typing for objects. In Proceed-
ings of the 21st European Conference on ECOOP 2007: Object-Oriented Pro-
gramming, ECOOP ’07, pages 2–27, Berlin, Heidelberg, 2007. Springer-
Verlag. ISBN 978-3-540-73588-5. doi: 10.1007/978-3-540-73589-2_2. URL
http://ece.colorado.edu/~siek/gradual-obj.pdf.

[59] Jeremy G. Siek and Ronald Garcia. Interpretations of the gradually-typed
lambda calculus. In Proceedings of the 2012 Annual Workshop on Scheme and
Functional Programming, SCHEME ’12, pages 68–80, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1895-2. doi: 10.1145/2661103.2661112.

[60] Esteban Allende, Johan Fabry, and Éric Tanter. Cast insertion strate-
gies for gradually-typed objects. In Proceedings of the 9th Sympo-
sium on Dynamic Languages, DLS ’13, pages 27–36, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2433-5. doi: 10.1145/2508168.
2508171. URL http://pleiad.dcc.uchile.cl/papers/2013/
allendeAl-dls2013.pdf.

[61] Jeremy G Siek, Michael M Vitousek, and Shashank Bharadwaj. Gradual
typing for mutable objects. Unpublished manuscript, 2013. URL http:
//ece-www.colorado.edu/~siek/gtmo.pdf.

[62] Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding
typescript. In Richard Jones, editor, 28th European Conference on Object-
Oriented Programming, ECOOP ’14, pages 257–281. Springer Berlin Hei-
delberg, 2014. doi: 10.1007/978-3-662-44202-9_11. URL https://
users.soe.ucsc.edu/~abadi/Papers/FTS-submitted.pdf.

http://www.softwarepreservation.org/projects/LISP/MIT/
http://www.softwarepreservation.org/projects/LISP/MIT/
http://www.paulgraham.com/acl.html
http://www.sbcl.org/
http://janvitek.github.io/events/PBD13/slides/JeffFoster.pdf
http://janvitek.github.io/events/PBD13/slides/JeffFoster.pdf
http://www.cs.colorado.edu/~siek/pubs/pubs/2006/siek06:_gradual.pdf
http://www.cs.colorado.edu/~siek/pubs/pubs/2006/siek06:_gradual.pdf
http://ece.colorado.edu/~siek/gradual-obj.pdf
http://pleiad.dcc.uchile.cl/papers/2013/allendeAl-dls2013.pdf
http://pleiad.dcc.uchile.cl/papers/2013/allendeAl-dls2013.pdf
http://ece-www.colorado.edu/~siek/gtmo.pdf
http://ece-www.colorado.edu/~siek/gtmo.pdf
https://users.soe.ucsc.edu/~abadi/Papers/FTS-submitted.pdf
https://users.soe.ucsc.edu/~abadi/Papers/FTS-submitted.pdf

Chapter 9. Bibliography 89

[63] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker.
Design and evaluation of gradual typing for python. In Proceedings
of the 10th ACM Symposium on Dynamic Languages, DLS ’14, pages
45–56, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3211-8. doi:
10.1145/2661088.2661101. URL http://wphomes.soic.indiana.
edu/jsiek/.

[64] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be
blamed. In Proceedings of the 18th European Symposium on Programming
Languages and Systems: Held As Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009, ESOP ’09, pages 1–16,
Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-00589-3. doi:
10.1007/978-3-642-00590-9_1. URL http://homepages.inf.ed.ac.
uk/wadler/topics/blame.html#blame-esop.

[65] Sam Tobin-Hochstadt. Typed Scheme: From Scripts to Programs. PhD thesis,
Northeastern University, January 2010. URL http://www.ccs.neu.
edu/racket/pubs/dissertation-tobin-hochstadt.pdf.

[66] Philip Wadler. A complement to blame. In Thomas Ball, Rastislav
Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett,
editors, 1st Summit on Advances in Programming Languages (SNAPL 2015),
volume 32 of Leibniz International Proceedings in Informatics (LIPIcs), pages
309–320, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-939897-80-4. doi: 10.4230/LIPIcs.SNAPL.
2015.309. URL http://drops.dagstuhl.de/opus/volltexte/
2015/5033.

[67] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang
Boyland. Refined criteria for gradual typing. In 1st Summit on Ad-
vances in Programming Languages, SNAPL ’2015, pages 274–293, Asilo-
mar, California, USA, May 2015. doi: 10.4230/LIPIcs.SNAPL.2015.
274. URL http://drops.dagstuhl.de/opus/volltexte/2015/
5031/pdf/21.pdf.

[68] RobertBruce Findler, Matthew Flatt, and Matthias Felleisen. Seman-
tic casts: Contracts and structural subtyping in a nominal world.
In Proceedings of the 18th European Conference on Object-Oriented Pro-
gramming, ECOOP ’04, 2004. doi: 10.1007/978-3-540-24851-4_
17. URL http://www.ccs.neu.edu/home/matthias/papers.
html#ecoop2004-fff.

[69] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler.
Blame for all. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’11, pages
201–214, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0490-0.
doi: 10.1145/1926385.1926409. URL http://homepages.inf.ed.
ac.uk/wadler/topics/blame.html#blame-for-all.

[70] Sam Tobin-Hochstadt and Matthias Felleisen. The design and imple-
mentation of typed scheme. In Proceedings of the 35th Annual ACM

http://wphomes.soic.indiana.edu/jsiek/
http://wphomes.soic.indiana.edu/jsiek/
http://homepages.inf.ed.ac.uk/wadler/topics/blame.html#blame-esop
http://homepages.inf.ed.ac.uk/wadler/topics/blame.html#blame-esop
http://www.ccs.neu.edu/racket/pubs/dissertation-tobin-hochstadt.pdf
http://www.ccs.neu.edu/racket/pubs/dissertation-tobin-hochstadt.pdf
http://drops.dagstuhl.de/opus/volltexte/2015/5033
http://drops.dagstuhl.de/opus/volltexte/2015/5033
http://drops.dagstuhl.de/opus/volltexte/2015/5031/pdf/21.pdf
http://drops.dagstuhl.de/opus/volltexte/2015/5031/pdf/21.pdf
http://www.ccs.neu.edu/home/matthias/papers.html#ecoop2004-fff
http://www.ccs.neu.edu/home/matthias/papers.html#ecoop2004-fff
http://homepages.inf.ed.ac.uk/wadler/topics/blame.html#blame-for-all
http://homepages.inf.ed.ac.uk/wadler/topics/blame.html#blame-for-all

Chapter 9. Bibliography 90

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’08, pages 395–406, New York, NY, USA, 2008. ACM. ISBN 978-
1-59593-689-9. doi: 10.1145/1328438.1328486. URL http://arxiv.
org/abs/1106.2575.

[71] Gilad Bracha. Pluggable type systems. OOPSLA04 Workshop on
Revival of Dynamic Languages, 2004. URL http://bracha.org/
pluggableTypesPosition.pdf.

[72] Gilad Bracha and David Griswold. Strongtalk: Typechecking smalltalk
in a production environment. In Proceedings of the Eighth Annual Confer-
ence on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’93, pages 215–230, New York, NY, USA, 1993. ACM. ISBN 0-
89791-587-9. doi: 10.1145/165854.165893. URL http://www.bracha.
org/oopsla93.ps.

[73] André Murbach Maidl. Typed Lua: An Optional Type System for Lua. PhD
thesis, Pontifícia Universidade Católica do Rio de Janeiro, April 2015.
URL https://github.com/andremm/typedlua.

[74] Google. Dart programming language. https://www.dartlang.org/,
2011. URL https://www.dartlang.org/. Official Website.

[75] Source code repository for the angular framework. Available at
https://github.com/angular/angular. URL https://github.com/
angular/angular.

[76] Jonathan Turner. Using typescript in visual studio code.
Blog post available at http://blogs.msdn.com/b/type-
script/archive/2015/04/30/using-typescript-in-visual-
studio-code.aspx, 2015 April. URL http://blogs.
msdn.com/b/typescript/archive/2015/04/30/
using-typescript-in-visual-studio-code.aspx.

[77] Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce
Findler, Sam Tobin-Hochstadt, and Matthias Felleisen. Towards prac-
tical gradual typing. In John Tang Boyland, editor, 29th European
Conference on Object-Oriented Programming (ECOOP’15), ECOOP ’15,
pages 999–1023, 2015. URL http://ccs.neu.edu/racket/pubs/
ecoop2015-takikawa-et-al.pdf.

[78] Nevin Heintze. Set-based analysis of ML programs. In Proceedings of
the 1994 ACM Conference on LISP and Functional Programming, LFP ’94,
pages 306–317, New York, NY, USA, 1994. ACM. ISBN 0-89791-643-3.
doi: 10.1145/182409.182495. URL http://www.cs.cmu.edu/afs/
cs/user/nch/www/sba.html.

http://arxiv.org/abs/1106.2575
http://arxiv.org/abs/1106.2575
http://bracha.org/pluggableTypesPosition.pdf
http://bracha.org/pluggableTypesPosition.pdf
http://www.bracha.org/oopsla93.ps
http://www.bracha.org/oopsla93.ps
https://github.com/andremm/typedlua
https://www.dartlang.org/
https://github.com/angular/angular
https://github.com/angular/angular
http://blogs.msdn.com/b/typescript/archive/2015/04/30/using-typescript-in-visual-studio-code.aspx
http://blogs.msdn.com/b/typescript/archive/2015/04/30/using-typescript-in-visual-studio-code.aspx
http://blogs.msdn.com/b/typescript/archive/2015/04/30/using-typescript-in-visual-studio-code.aspx
http://ccs.neu.edu/racket/pubs/ecoop2015-takikawa-et-al.pdf
http://ccs.neu.edu/racket/pubs/ecoop2015-takikawa-et-al.pdf
http://www.cs.cmu.edu/afs/cs/user/nch/www/sba.html
http://www.cs.cmu.edu/afs/cs/user/nch/www/sba.html

	Title page
	Approval
	Bibliographic Data
	Acknowledgements
	Abstract
	Resumo
	Contents
	Epigraph
	Introduction
	The Advantages of Static Typing
	The Advantages of Dynamic Typing

	Lambda Calculus and Type Systems
	The Pure Lambda Calculus
	Additional Datatypes and Soundness
	A Dynamically-Typed Lambda Calculus
	Simple Types
	Type System Conservativeness and “Acceptable Losses”
	Recursion
	Products and Records
	Sums and Variants

	Advanced Type Systems
	Recursive Types
	Universal Types
	Subtyping
	Union Types
	Intersection Types

	Soft Typing
	An Unification-based Soft Type System
	A Flow-based Analysis Soft Type System
	Unification-based vs Flow-based Soft Typing
	Success Types

	Type Specifiers in Common LISP
	Specialized operations in Common LISP
	The effect of type annotations in Common LISP

	Gradual Typing
	The Blame Calculus
	A Surface Syntax for the Blame Calculus
	Properties of Gradually-Typed Systems
	Challenges for Gradual-Typing

	Optional Typing
	Optional Typing in Strongtalk
	Optional Typing inspired by Gradual Typing

	Conclusion
	Programmer-oriented comparison of type systems
	Designer-oriented comparison of type systems
	Miscellaneous Opinions and Recommendations

	Bibliography

