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CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1321838/CA



Acknowledgments

First of all I would like to thank my family for their continuous support.

I would never have gotten so far if it wasn’t for them and for the education

they gave me.

I am very grateful to my friends André Maidl and Alexandre Skyrme for
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Abstract

Musa, Pablo Martins; Ierusalimschy, Roberto (Advisor). Profiling
Memory in Lua. Rio de Janeiro, 2015. 89p. MSc. Dissertation —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

Memory bloat is a software problem that happens when the memory

consumption of a program exceeds the programmer’s expectations. In

many cases, memory bloat hurts performance or even crashes applications.

Detecting and fixing memory bloat problems is a difficult task for

programmers and, thus, they usually need tools to identify and fix these

problems. The past two decades produced an extensive research and many

tools to help programmers tackle memory bloat, including memory

profilers. Although memory profilers have been largely studied in the last

years, there is a gap regarding scripting languages. In this thesis, we study

memory profilers in scripting languages. First, we propose a classification

in which we divide memory profilers in manual and automatic, based on

how the programmer uses the memory profiler. Then, after reviewing

memory profilers available in three different scripting languages, we

experiment some of the studied techniques by implementing two automatic

memory profilers to help Lua programmers deal with memory bloat.

Finally, we evaluate our tools regarding how easy it is to incorporate them

to a program, how useful their reports are to understand an unknown

program and track memory bloats, and how much overhead they impose.

Keywords
Lua; Memory Profiler; Memory Bloat; Scripting Languages.
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Resumo

Musa, Pablo Martins; Ierusalimschy, Roberto. Analizando o uso
de Memória em Lua. Rio de Janeiro, 2015. 89p. Dissertação de
Mestrado — Departamento de Informática, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Inchaço de memória é um problema que ocorre quando a memória

consumida por um programa excede a expectativa do programador. Em

muitos casos, o inchaço de memória prejudica o desempenho ou, até

mesmo, interrompe a execução de aplicações. Detectar e consertar inchaços

de memória é uma tarefa dif́ıcil para programadores e, portanto, eles

costumam usar ferramentas para identificar e consertar problemas desta

natureza. Nas últimas duas décadas, muitos trabalhos e ferramentas foram

desenvolvidos com o intuito de ajudar programadores a abordar problemas

de inchaço de memória, entre eles perfiladores de memória. Apesar de

perfiladores de memória terem sido muito estudados nos últimos anos,

existe uma lacuna em relação a linguagens de script. Nessa dissertação,

nós estudamos perfiladores de memória para linguagens de script.

Primeiro, nós propomos uma classificação que divide as ferramentas em

manual e automática baseada em como elas são usadas pelos

programadores. Em seguida, após estudar ferramentas dispońıveis em três

linguagens de script diferentes, nós experimentamos algumas das técnicas

estudadas ao construir dois perfiladores de memória automáticos para

ajudar programadores Lua a resolver inchaços de memória. Finalmente,

nós avaliamos ambas as ferramentas com relação a facilidade de integração

ao programa, a utilidade dos relatórios para o entendimento de programas

desconhecidos e para a localização de inchaços de memória e ao custo de

desempenho que elas geram.

Palavras–chave
Lua; Perfilador de Memória; Inchaço de Memória; Linguages de

Script.
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How much truth does a spirit endure, how
much truth can it dare? This became for me
more and more the actual test of value.

Friedrich Nietzsche
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1
Introduction

Memory bloat is a software problem that happens when the memory con-

sumption of a program exceeds the programmer’s expectations. Memory bloat

can happen due to multiple factors, such as excessive object1 creation, data

structure misuse, and not deleting references that point to objects that will

not be used anymore [32]. In many cases, memory bloat impacts performance

or even crashes applications. To create and garbage-collect excessive objects

increases the program execution time. In long running programs, the growing

number of objects may cause crashes due to out of memory errors. Major issues

regarding memory bloat have been reported in popular applications, such as

Firefox [43], Internet Explorer [24], Tomcat [41], and Gmail [23].

Detecting and fixing memory bloat is a difficult task [16]. For instance,

out of memory errors may happen in parts of a program that have no direct

relation to the cause of the bloat. Searching for the cause of a memory bloat

problem is similar to searching for the cause of a performance bottleneck. In

both cases, it is hard to pinpoint where the problem is located at, and even

experienced programmers usually get it wrong [8]. Often, just by analyzing

the source code, it is very hard to spot memory bloat. Therefore, programmers

need tools to help them identify and fix memory bloat problems.

In the past three decades developers produced many tools to help

programmers tackle memory bloat [33, 11, 20, 17, 3, 18, 30, 4].2 To tackle

memory bloat, programmers can use general or specific tools. General tools give

an overview of the memory behavior of a program and help programmers look

for hot spots. As an example, mprof [33] summarizes the allocated memory by

function. When using general tools, problems are usually solved by a repetitive

process of profiling and testing. Specific tools address particular problems in

a more automated manner and produce detailed information in a fine-grained

level. Cork [14], for example, detects systematic heap growths based on the

1Throughout this thesis we use object loosely, to include any kind of structured data
record, such as Pascal records or C structs, as well as full-fledge objects with encapsulation
and inheritance, in the sense of object-oriented programming.

2Throughout this thesis we use developer to refer to the creator of a tool and programmer
to refer to the user of a tool.
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Chapter 1. Introduction 12

information collected from multiple garbage-collections. On the one hand, Cork

does not show general information, such as the total memory used by the

program or the number of allocated objects. On the other hand, Cork identifies

that the program has a potentially harmful heap growth and shows the objects

that are likely causing it. Unfortunately, specific tools produce many false

positives and usually demand virtual-machine modifications. Looking back over

more than ten years of research shows that the industry has been rejecting

specific tools in favor of general tools [28]. Among general tools, memory

profilers play an important role.

Memory profilers, as the name implies, are profilers that focus on the

memory. Profilers are popular tools that help programmers better understand

the behavior of a program. Profilers are important tools for optimization

and locating bad resource utilization [8]. Accordingly, memory profilers help

programmers understand different memory aspects of a program. Memory

profilers collect memory information and output it in a insightful format. We

once more use mprof as an example: it monitors allocated and deallocated

blocks during a program execution and outputs a list of blocks that were not

deallocated before the end of the program. Another example is Kbdb [26], which

allows the programmer to pause execution and inspect the heap through a

graphical display.

Although memory profilers have been largely studied in the last years,

there is a gap regarding scripting languages. Scripting languages, such as

Python, JavaScript, and Lua, have been largely adopted in the last years [44]

and, along with them, programmers are facing many memory bloat prob-

lems [39, 49, 36]. Although there are many online discussions about identifying

and fixing memory bloats in these languages (e.g. blog posts, mailing lists,

forum questions), we could find few memory profilers for these languages and

only one article [23] that discusses the topic.

In this thesis we study memory profilers in scripting languages. First,

we propose a classification in which we divide memory profilers into manual

and automatic based on how the programmer uses the memory profiler. We

define manual profilers as tools that collect data at manually defined lines of

a program. Manual profilers are usually simple tools used to inspect objects

and to show information in a pretty format. We define automatic profilers as

tools that collect data automatically during a program execution. Automatic

profilers are usually more complex than manual profilers and can be used to

understand the overall memory behavior of a program.

After the proposed classification, we review published work on memory

profilers and analyze memory profilers available in three different scripting
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Chapter 1. Introduction 13

languages: JavaScript, Python, and Lua. We chose these languages because

they are popular, different from each other, and, as we said before, have

many reports about memory bloat. After reviewing memory profilers, we

experiment some of the studied techniques by implementing two automatic

memory profilers to help Lua programmers deal with memory bloat.

The first memory profiler we present is luamemprofiler. It was de-

veloped to explore three techniques: real-time3 visualization, type/class data

categorization, and ongoing interaction. Real-time visualization, also used by

Detlefs and Kalsow [7], gives different views of the program allocation, such

as how much storage of each type is being allocated since the beginning of the

program execution or since the last screen update. Type/class data catego-

rization, also used by Sun and Gehringer [29], helps the programmer identify

structures that are responsible for most of the allocated memory. Finally, on-

going interaction with the program, also used by Serrano and Boehm [26],

provides the opportunity to pause the program to analyze information such as

live objects and the stack trace, among others.

The second memory profiler we present is lmprof. It was created to

explore gprof’s [10] largely used model which summarizes events based on

function calls. lmprof focuses on memory allocation: for each memory block

allocated during the program execution, lmprof records the size, the current

executing function, and the specific function that called the current function

(hereafter called parent-function). At the end of the profiled program, lmprof

saves the recorded information into a file. Then, a separate process analyzes

the file and consolidates a report that, among other informations, lists the total

memory allocated by each function.

The remainder of this thesis is organized as follows. Chapter 2 presents

a profiler classification and examines existing memory profilers. Chapter 3

discusses the guidelines used to develop both luamemprofiler and lmprof and,

then, details each tool separately. Chapter 4 evaluates both tools regarding ease

of use (how easy it is to incorporate a profiler into an existing application),

insights (how valuable the reports are to understand a program and track

memory bloats), and performance. Finally, in Chapter 5, we conclude this

thesis and discuss future work.

3Throughout this thesis we use real-time to refer to software that shows information
almost immediately.
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2
Related Work

In this chapter, we discuss relevant memory profilers to our work. We

begin by presenting a classification for the discussed memory profilers. Then,

we review memory profiler tools in four different sections. First, we examine

published work on memory profiler techniques. Then, we explain JavaScript

memory profilers that are currently used. After that, we present an overview

of existing Python tools. Finally, we analyze memory profilers for Lua.

2.1
Classification

Profilers (not only for memory) have been the subject of extensive

research since the early 70’s [15]. Ever since, researchers have proposed different

profiler types, such as statistical [10], overall [1], and input-sensitive [6].

In this thesis, we classify memory profilers based on the method used

by the programmer to profile memory information of the target program. We

divide memory profilers in two groups, manual and automatic. Our manual

group is similar to the manual type described on Wikipedia [42]. However,

our classification is simpler and focuses on the programmer, instead of on the

developer. In the next sections we detail manual and automatic profilers.

2.1.1
Manual Profilers

Manual profilers are tools that collect data at manually defined lines of

the target program. Manual profilers are usually used in a continuous program

inspection process, similar to the debug process. Manual profilers implement a

small set of functions that help programmers manually inspect memory at any

point during the program execution. For example, the programmer can inspect

how many objects are alive, what is the relationship among them, and how

much memory is being used. Manual profilers are motivated by the perception

that many programmers write their own pretty-printers or data dumpers to

help them understand their programs data, but these code fragments are error-

prone and cannot handle complex situations and types.
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Chapter 2. Related Work 15

Imagine a programmer that wants to understand why a hash map is

using too much memory. At some point, he creates a small chunk of code to

print the hash map keys and values. The code may not print the complete

information of values that are also hash maps. If it does, it will probably not

handle cycles (which may cause an infinite loop) or it might not print the

information in a format that is easy to read. Manual profilers try to avoid

these kinds of problems by offering complete and tested functions that can be

easily used to inspect objects and to show information in a pretty format.

2.1.2
Automatic Profilers

Automatic profilers are tools that collect data automatically during

the target-program execution. Automatic profilers are used to analyze the

overall behavior of a program. In contrast to manual profilers, which are used

to inspect the program at an exact moment, automatic profilers are used

to understand the behavior of a program during an execution interval. As

an example, the programmer can change the allocation function to monitor

how much memory is allocated by each function during the target-program

execution. In automatic profilers, profiling happens in two sequential phases:

track and report. The first phase, done during program execution, tracks

program execution and collects data (hereafter called metadata). The second

phase, done during or after program execution, consolidates the metadata and

generates reports. We next detail track and report phase techniques that are

relevant to our work.

Track Techniques

Tracking is the process of monitoring the execution of a program and

collecting specific data. To track a program, automatic memory profilers

usually instrument (add instructions to) the target program to collect the

required information. Hooking is a very common instrumentation technique

used to intercept specified function calls, messages, and events. Regarding

automatic memory profilers, the main tracking method is to hook functions.

There are two major function hooking techniques.

One technique, here named call-hook, consists in inserting hooks in the

call protocol of the target-program functions. In some cases, another hook

may be executed in the return sequence. The call-hook technique is useful to

collect memory information at the function level, such as count the number of

times that each function was called. These hooks can be inserted by different

methods. For instance, to use Python Memory Profiler [21], the programmer
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annotates the target-program functions that will be hooked, so the compiler

can properly insert the hooks.

The other technique, here named allocation-hook, consists in changing

the default allocation functions of the target program (e.g. malloc, free, and

realloc) into new functions that perform the allocation or deallocation and

gather metadata. The allocation-hook technique is useful to collect memory

information at the memory block level, such as which object-class is being

allocated. There are different methods for changing the allocation function.

We once more use mprof as an example: to use it, the programmer recompiles

the target program with a special library that implements modified versions of

malloc and free.

Report Types

Report is the output generated by the memory profiler after it consoli-

dates the metadata. There are two main report types for an automatic memory

profiler: continuous-report and final-report.

Continuous-report consists in reporting memory information during the

target-program execution. In continuous-report, the output is continuously

updated so the programmer can check memory operations as they happen.

Continuous-report has a high performance and memory usage impact and

provides information during the program execution. The latter allows the

programmer to understand the memory flow of the target program.

Final-report consists in reporting memory information after the target-

program execution. In final-reports, the output can be a summary or a trace

of memory events. Summary is the most common one. It has low impact on

performance and memory usage and provides an overview of memory usage,

which allows the programmer to spot glaring errors. Trace has a high impact on

performance and memory usage and provides all events that happened during

execution. The latter allows the programmer to analyze specific parts of the

target program.

Regardless of the report type, many memory profilers output contains,

among other informations, the shallow and the retained size of the measured

“property”. Consider we are measuring memory allocated by functions. In this

case, the memory profiler tracks the memory usage of all the functions in

the target program. The shallow memory means how much memory a function

allocates alone. The retained memory means how much memory a function and

its descendants allocate. As an example, imagine a function f1 that allocates

10 bytes and calls f2. Then, f2 allocates 70 bytes and calls f3, which allocates

30 bytes. Finally, f1 allocates more 40 bytes. The shallow sizes of f1, f2, and
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f3 are 50, 30, and 70, respectively. The retained sizes of f1, f2, and f3 are

150, 100, and 30 respectively.

2.2
Published Work

In this section, we discuss, in chronological order of publication, memory

profiler tools that are relevant to our work. For each profiler tool, we summarize

its functionalities, discuss how it is connected to the target program, explain

relevant implementation details, and, finally, consider its overhead.

In 1982, Graham et al. [10] presented gprof, a CPU profiler for C,

Fortran77, and Pascal. Although we are interested in memory profilers and

gprof is a CPU profiler, many tools that we will discuss are based on gprof.

Therefore, we first discuss gprof and, then, we discuss the other tools.

gprof is an automatic, call-hook, and final-report profiler. It is connected

to the target program by recompiling the target program with a special

compiler. The especial compiler hooks every function of the target program

to gather metadata. The especial compiler also hooks the exit function to

write the metadata into a file as the program exits.

As an automatic profiler, gprof has both track and report phases. For

each function call during the track phase, the tracker gets the parent-function

reference, forms a current-function/parent-function pair, and increments both

the call counter and the execution time of the pair. The metadata is kept

in a two-level hash table with the call site as the primary key and the

current-function address being the secondary key. Saving the call counts is

straightforward; the developer just needs to add or increment the metadata

when the hook is executed. However, estimating execution time in time-sharing

systems is difficult. gprof adopts a statistical approach, which we do not detail

here because execution-time profilers are not the focus of this thesis. As the

program finishes execution, the exit hook writes the metadata into a file that

will be processed by the report phase.

The report phase is implemented as a separate program that processes

the metadata to combine information on the tracked functions. While process-

ing, gprof builds a dynamic call graph with arcs from callers to callees, and

propagates times from descendants to ancestors by topologically sorting the

graph. However, if the execution contains recursive calls, the call graph has cy-

cles that cannot be topologically sorted. Cycles obscure allocation data among

functions that compose the cycles and, thus, can be a problem to profilers

that track function calls. In Chapter 3.3.1 we discuss cycles in more details.

After processing the metadata and building the graph, gprof can produce two
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different profiles: flat and call-graph.

The flat profile consists of a list of all the functions that were called

during the target-program execution, including the number of times they were

called and for how many seconds they were executed. The latter information

is divided in shallow and retained execution time. The functions are listed in

decreasing order of the shallow execution time. The flat profile gives a quick

overview of the called functions, and shows the functions that are themselves

responsible for large fractions of the execution time.

The call-graph profile has almost the same entries as the flat profile,

but for each function the call-graph profile details its direct parent- and child-

functions. Another difference between the profiles is that the call-graph profile

is sorted by the retained execution time. The call-graph profile can be seen as

a textual graph and, thus, is useful to understand the connections (function

calls) among the program functions.

Finally, the authors state that the tracking phase causes an execution

time slowdown between 0.05x and 0.3x. They do not discuss the memory

overhead.

In 1988, Zorn and Hilfinger [33] presented mprof, a profiler for C and Lisp

that was inspired by gprof and extends its ideas to show the dynamic memory

allocation data instead of execution times. Similarly to gprof, mprof tracks

the memory operations of each function during program execution, writes the

metadata into a file as the program exits, and processes this file in a separate

program to produce different profiles.

mprof is an automatic, allocation-hook, and final-report memory profiler.

mprof is connected to the target program by recompiling the target program

with a special compiler. However, while gprof hooks every function call, mprof

hooks only the allocation functions (malloc and free in C and alloc_object

in Lisp). mprof also hooks the exit function to write the metadata into a file

when the target-program exits.

During the track phase, in contrast to gprof that loads just the parent-

function information and propagates this information to the ancestor functions

in post processing, mprof traverses the entire function call chain to record the

ancestor metadata. Because traversing the entire call chain is an expensive

process, instead of recording the entire chain of callers, mprof amortizes the

cost by breaking the call chain into a set of caller/callee pairs and by associating

the bytes allocated with each pair in the chain. The authors state that there

are a limited number of such pairs, even in very large C programs, so the mprof

metadata is usually not big.

As gprof, mprof’s report phase reads the output file, consolidates the
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metadata to create a dynamic call graph, and prints a profile. There are two

main differences between both tools. One difference is that mprof has four

profile options instead of two. The “memory leak profile” presents a list of

partial call paths that resulted in memory allocated but not subsequently freed.

The“allocation bin profile”provides information about the sizes of objects that

were allocated and which object-types correspond to each of the sizes. The

“direct allocation profile” and the “allocation call-graph” correspond to the

flat and the call-graph profiles generated by gprof with some modifications

to handle memory information. The other difference is that, as mprof records

the entire call chain, there is no need to propagate data from child to parent

functions. However, cycles are also a problem. mprof handles cycles in the same

way as gprof does, which we will detail in Chapter 3.3.1.

Zorn and Hilfinger [33] test mprof in four different programs and present

the following result. The track phase presents a slowdown from 1.5x to 10x, a

memory overhead of 33% maximum, and an output file that is less than 30KB.

The average slowdown is between 2x and 4x, but can be very high in programs

with long call chains.

In 1995, Detlefs and Kalsow [7] presented four tools used in SRCModula-

3 that aid in detecting and isolating storage management problems. They

describe real memory problems they faced and detail all the tools that they

created to deal with these problems, explaining how each tool was used to find

or solve each problem.

The first tool is Shownew, which is an automatic, allocation-hook, and

continuous-report memory profiler. Shownew shows a bar graph indicating how

much storage of each type is being allocated along the program execution. The

display is updated every X seconds, where X is parametrized. The programmer

can also opt to see only the objects that were allocated since the last display

update. Shownew is integrated into the runtime system, so that any SRC

Modula-3 program can receive a special command-line argument that will cause

it to run under the control of a Shownew process. In this case, there is no need

for recompiling the target program as Shownew will dynamically change the

allocation function into a function that counts the objects of each type and

periodically forwards that information to the Shownew process.

The second tool is RTutils.Heap (RTH), which is a manual tool that

reports the composition of the heap by data type. The programmer can use

this tool to check the size of the heap and what kinds of objects are stored (how

many objects and the total size of each type). To track programs with RTH, the

programmer must modify the target program to periodically perform a garbage

collection and then call RTH. RTH enumerates all the objects in the heap and
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classifies them by type, reporting the top 10 types ranked by the number of

bytes they occupy. RTH also allows reports to be ordered by the number of

allocated objects, and to limit reports to the top N types by the requested

ranking method. Besides, the programmer can opt for a fine- or coarse-grained

report. The former allows the programmer to select a type to breakdown by

call site. The latter allows the programmer to select a type hierarchy report to

see different subtypes accounting for different fractions of that total.

The third tool is RTHeapStats.ReportReachable (RTR), a manual tool

that that tells how many bytes of storage are reachable from the root set, break-

ing down the roots in various ways. RTR executes “mini garbage-collections” to

trace all reachable objects. Then, it ranks the modules by bytes reachable from

their global variables and ranks the individual global variables by the amount

of storage they reach. RTR is particularly useful to find out the root variable

that is holding the memory bloat. To track programs with RTR, the programmer

must modify the target program to periodically call RTR.

Finally, the fourth tool is RTHeapDebug (RTD), which is a manual tool

that allows the programmer to verify the path of an object that should be

collected, but is not. After suspecting of an object, the programmer can use

RTD to print all paths from the root to the suspicious object.

Although the authors say that the performance of RTR seems quite

acceptable according to their reports, they do not show these reports. Also,

the authors do not show or comment about the performance of the other tools.

In 1997, Sun and Gehringer [29] developed an automatic, allocation-

hook, and continuous-report memory profiler for IBM Smalltalk (hereafter

called smallmp). smallmp monitors memory allocations and reports them to

the user through a graphical display.

To capture all allocations in the entire Smalltalk image, smallmp extends

the main allocation class and overwrites the four basic allocations methods.

Every memory allocation is an event that is processed through a dynamic

pipeline. The pipeline uses a producer/consumer model to easily compose a

chain of event analyzers. Each event will go through the pipeline, get analyzed

by the consumers and eventually dropped by the last consumer. For instance,

an analyzer handling an allocation can filter the event, update the graphical

display with the new event data, or record the event for further processing. The

ability to filter events allows the programmer to discard events from specific

classes, such as the allocations generated by the smallmp itself.

During program execution, there are two views for the programmer to

understand the application’s memory consumption behavior: the allocation

matrix and the Memory-Allocation Graph Explorer (MAGExplorer). The
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allocation matrix provides a visual indication in the form of a matrix of

how much memory each class used and which classes were responsible for

allocating them. This visualization can be used to get a quick understanding

of which classes consume the most memory in an application, which are

the most frequently allocated objects, and which are the classes directly

responsible for allocating them. The Memory-Allocation Graph Explorer allows

the programmer to walk through the call graph viewing which paths are

responsible for most of the allocated memory. Each class is represented as

a node on the graph and colors indicate small or large memory allocations.

MAGExplorer also allows users to interact with the graph by selecting objects

to be detailed or querying a specific class name.

We would like to highlight three novelties of the work of Sun and

Gehringer. First, instead of just numbers, they use colors to express how much

memory was allocated by each class, which gives a good and fast overview of

the program execution. Second, they allow the user to interact and query the

call graph. Finally, the pipeline model allows different analysis to be performed

with small code changes.

The authors present two simple tests. There is a slowdown of 2x just for

loading the profiler, a slowdown from 3x to 28x for profiling specific classes

and a slowdown from 20x to 180x for profiling all allocations.

In 2000, Serrano and Boehm [26] presented two tools for examining mem-

ory allocation in Scheme programs: Kprof and Kbdb. Kprof is an automatic

memory profiler embedded in the regular Scheme time profiler, and was de-

signed as a layer surrounding the gprof tool. Kbdb is a manual memory profiler

for heap inspection that allows debugging application and real-time call-graph

display.

Kprof is an automatic, call- and allocation-hook, and final-report mem-

ory profiler. One can think of Kprof as a gprof extension, with a nice front-end,

for garbage collected languages. In addition to gprof metadata, each time a

garbage collection is triggered, Kprof records the heap size, the number of live

objects, and the number of allocations since the previous collection. The Kprof

report includes an execution profile with common information, a trace of the

heap size, and the time spent executing scheme functions, the garbage collec-

tion, and other C functions. Just like gprof, the programmer must recompile

the target program to profile it with Kprof. Moreover, Kprof inherits some of

gprof inaccuracies, such as statistical information and the lack of precise data

in case the target program is optimized.

Kbdb is a heap inspection tool. At first, it acts as a debugger, so programs

are run interactively and can be stopped to inspect variables. However, in
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addition to the debugger, the heap can be drawn in a graphical display where

each pixel represents one cell of the heap. Kbdb displays the live objects and the

chains of pointers that link these objects in the heap. Individual cells can be

inspected by simply pointing at their corresponding pixel in the image. When

a cell is inspected, Kbdb displays the Scheme type of its value, its allocation

site, and its approximate age. Besides, based on de Pauw and Sevitsky [20],

Kbdb uses the reference pattern technique, which makes repetitive sequences

more understandable by eliminating redundancy and exposing their inherent

structure. In other words, Kbdb groups similar objects (e.g. objects of the

same class) to simplify the displayed information. Kbdb is embedded into a

Scheme debugger also created by the Serrano and Boehm. The authors also

modified the Boehm-Demers-Weiser garbage collector to provide back-pointer

information, as part of the debug information that could already be associated

with individual objects.

The authors present three tests comparing optimized code, profiled code

(Kprof), and debugged code (Kbdb). While Kprof imposes a slowdown from

1.5x to 4.2x and no memory overhead, Kbdb imposes a slowdown from 2.9x to

9x and uses from 3.6x to 4.9x more memory.

2.3
JavaScript Tools

To detect and fix memory bloat in JavaScript programs, programmers

usually use developer packages offered by web browsers. The majority of web

browsers have built-in tools that use the browser JavaScript virtual-machine

profiler and debug API to collect program information. Each web browser has

its own virtual-machine implementation and its own profiler and debug API.

Chrome DevTools [48] seems to be the most used and complete developer

package. Chrome DevTools is a set of web authoring and debugging tools

built into Google Chrome. In this thesis, we focus on Heap Profiler, a tool

that includes two different memory profilers: Snapshot and Timeline. Heap

Profiler uses the Google Chrome graphical display and has one common

window for both profilers. This common window is used to collect and analyze

memory information. Next, we explain each memory profiler.

Snapshot is a manual memory profiler that allows the user to save

the target-program heap information at any time. During the target-program

execution, the programmer can take a snapshot of the heap. Each snapshot

saves information about all the JavaScript objects that are currently alive and

the relationships between these objects. The programmer can take as many

snapshots as she wants.
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Timeline is an automatic, final-report memory profiler. At any time

during the target-program execution, the programmer can start recording

memory information. When recording is activated, Timeline takes a heap

snapshot and starts recording memory operations until the programmer stops

the recording. During the recording interval, Timeline does not allow the

programmer to interact with the ongoing recordings. After the recording has

stopped, Timeline generates a timeline in which the programmer can analyze

objects over the whole interval or select sub-intervals.

The Heap Profiler common window lists the recorded profiles (both

snapshots and timelines). For each selected profile, Heap Profiler can show

memory information in three different views: statistics, containment, and

summary. There is a fourth view, called comparison, that is available just

for Snapshot. Next, we detail the common views and, then, we discuss the

comparison view along with other differences between Snapshot and Timeline.

The statistics view shows a pie chart of the memory usage. It shows

the total memory usage divided by the following “types”: code, strings, JS

arrays, typed arrays, and system objects. Typed arrays are array-like objects

that provide a mechanism for accessing raw binary data [50], which is used

for websocket manipulation of contents such as video and audio. We could not

find a formal description of the view or the types, we assume that that system

objects are all other objects that are not in the previous categories.

The containment view shows the objects of the target-program in a very

low level. It allows the programmer to look inside function closures, to observe

virtual-machine internal objects that together make up JavaScript objects,

and to understand how much memory the target-program uses at a low level.

This view provides three main entry points: DOMWindow objects, which are

considered global objects for JavaScript code; GC roots, which are the actual

roots used by the virtual-machine garbage collector; and native objects, which

are browser objects that are pushed inside the JavaScript virtual machine to

allow for automation, such as DOM nodes and CSS rules. Starting from these

objects the programmer can inspect the entire object tree.

The summary view shows basic memory usage information about the

target program. The summary view lists all objects grouped by their construc-

tors and, for each object, it shows the shallow size, the retained size, and the

shortest distance to the root. The displayed objects can be filtered through a

text box where the programmer writes a string that must match part of the

constructor’s name. Also, the programmer can inspect each object information,

such as identifier, context, and reference tree.

The summary view differs between Snapshot and Timeline. By inspect-
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ing a snapshot using the summary view, the programmer can list objects that

exist in one snapshot, but do not exist in another. For instance, the program-

mer can list all objects allocated before hs1 (heap snapshot 1) that are still

alive in hs2, or the programmer can list all objects allocated between hs1 and

hs2 that are still alive in hs3. By inspecting a timeline using the summary view,

the programmer can list objects that were created during a selected interval.

Comparison is the last Heap Profiler view. It is available just for Snap-

shot and allows the programmer to compare two snapshots. The comparison

view details memory information of objects that were created or deleted be-

tween the compared snapshots.

The Chrome DevTools documentation has a step-by-step tutorial to

identify memory bloat using Heap Profiler. In this tutorial, the authors

present what they call the “3 Snapshot Technique”. The methodology used

by them was proposed in 1999 by De Pauw and Sevitsky [20]. It is based on

the observation that many memory bloats occur during well-defined operations

that are supposed to release all of their temporary objects upon completion. In

other words, during a program execution, there are different critical sections in

which all objects that are created inside one critical section should be eligible

to reclamation after this section. Therefore, objects created inside a critical

section that cannot be garbage-collected right after it cause memory bloat. As

an example, imagine a game that has multiple levels. Every new level allocates

many objects, and, at the end of the level, all created objects should be eligible

to reclamation. If an object allocated during one level cannot be reclaimed at

the end of the level, this object is likely causing a memory bloat.

De Pauw and Sevitsky suggest that, given a critical section, the pro-

grammer should take a heap snapshot (hs1) at its beginning and another heap

snapshot (hs2) at its end. (Note that both snapshots contain only objects

that are not eligible to reclamation). Then, the programmer can compare both

snapshots to identify memory bloat, which in this case means objects that exist

in hs2 but do not exist in hs1. Once again we will use game development as

an example: the programmer should take a heap snapshot at the beginning of

the level (hs1) and another heap snapshot at the end of level (hs2). Then, the

programmer should compare both snapshots and identify objects that exist in

hs2 but that do not exist in hs1. These objects were allocated during the level

execution but are not eligible to reclamation at the end of the level, and, thus,

denote memory bloat.

In the “3 Snapshot Technique” tutorial, the authors adapt the critical-

section idea to a web browser scenario. In their tutorial, the critical section

is a set of actions executed by the user, such as mouse clicks and scrolls.
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First, the programmer takes a heap snapshot (hs1) and performs the suspicious

actions n times (critical section). Then, the programmer takes another heap

snapshot (hs2) and performs exactly the same actions n times again (another

critical section). Finally, the programmer takes a final heap snapshot (hs3) and

compares the snapshots. Objects allocated between hs1 and hs2 that are alive

in hs3 denote memory bloat. Moreover, if these objects appear in multiples of

n, the likelihood increases significantly.

Note that in the“3 Snapshot Technique”tutorial the authors leverage the

simplicity and predictability of repeating the actions to add a factor n to the

number of times the same actions are repeated. This makes it easier to identify

objects that are causing memory bloat, as they will be held in memory with

a factor of n. Finally, the tutorial uses three snapshots instead of two because

each snapshot allocates objects that can obfuscate results. By taking a third

snapshot and filtering objects allocated between hs1 and hs2, the programmer

eliminates from the report objects created by the snapshot itself.

In 2013, Pienaar and Hundt [23] presented JSWhiz, an extension to the

open-source Closure JavaScript compiler that helps identifying memory bloat

at compile time. The Closure compiler transforms JavaScript code in more

efficient JavaScript code. The Closure library is a JavaScript library based

on a modular architecture that is written specifically to take advantage of

the Closure compiler. The Closure library provides cross-browser functions for

DOM manipulations as well as more high-level objects such as user interface

widgets and controls. JSWhiz focuses on the event system abstraction of the

Closure library to detect objects that should be garbage-collected, but are not

collected due to some forgotten event reference.

Based on experiences analyzing memory problems in Gmail, Pienaar and

Hundt point out common patterns that create useless objects.1 These patterns

are encapsulated within a new concept the authors call eventful class, which

is a class that has events associated with it. All patterns are related to event

handlers or listeners that, due to different reasons, forbid an object to be

garbage-collected. As an example, we can cite one-time event handlers, which

are events that are automatically deleted after they are triggered for the first

time. When JavaScript programs use these handlers and the corresponding

events never occur, listeners are not removed. Accordingly, objects referenced

by them are never reclaimed.

In contrast to the memory profilers we discussed before, JSWhiz is

applied at compile time and, thus, has all the advantages and drawbacks of a

1These patterns are very specific to the Closure context and detailing all of them here is
not relevant. We discuss the main idea of the paper and highlight pros and cons.
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static program analysis. On the one hand, software defects can be discovered

earlier, which is excellent as the cost of finding and fixing software problems

increases the later the problems are found [23]. Besides, the discovery process

is easier as an automated process that executes once is easier than a labor

intensive process, such as the “3 Snapshot Technique”. Finally, there is no

runtime overhead. On the other hand, JSWhiz only helps identifying useless

objects that arise from the specified patterns. Moreover, it only analyzes

variables that have full qualified names (which excludes arrays, lists and other

data structures), are returned by a function, and are not captured in closures.

JSWhiz found a total of 89 memory bloats across Google’s Gmail, Docs,

Spreadsheets, Books, and Closure itself. It contributed significantly to reduce

Gmail memory usage by roughly 50% at the median. JSWhiz compilation time

overhead is between 3% and 14%. Also, it executes only in “compile all test

cases”, which reduces everyday overhead.

2.4
Python Tools

Python has a “batteries included” philosophy [47]. This means that

the Python distribution package comes with many modules to make some

set of tasks within a particular problem domain simpler. Regarding memory

information, Python has two modules to collect data about an executing

program: resource and gc.

The resource module provides basic mechanisms for controlling and

measuring system resources used by a program. To control system resources,

this module offers a function to set the limit of a specified resource and

another function to get this limit. As an example, the programmer can set

and get the maximum heap size of the executing program. To measure system

resources, resource offers one single function that returns an array containing

the resources consumed by the program. Among others resources, the array

contains information about swaps, page faults, shared and unshared memory,

and stack. Programmers can use the resource module to understand the

overall memory consumption of an executing program.

gc provides an interface to configure and use some features of the

garbage-collector. The gc interface allows the programmer to disable the

garbage-collector, tune the collection frequency, and force a full collection.

It also allows the programmer to set log-levels to print garbage-collection

information during collection cycles, such as statistics and objects that will

be collected. Finally, gc exposes two functions to identify parents and children

of given objects: get_referrer and get_referents. The former returns the
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list of objects that directly refer to a given object. The later returns the list of

objects that are directly referred to by a given object. Both resource and gc

are the base for most of the memory profilers in Python.

Objgraph [9], Heapy [19], Pympler [5], and Dowser [25] are manual

profilers that let the programmer visually explore Python objects. One can

think of them as wrappers to both resource and gc with some additional

information and visual enhancements. The purpose of these memory profilers

is to help programmers identify and fix memory bloat in Python programs.

The main idea behind these tools is to pick an object that should not be alive

and, then, inspect which references are keeping it alive.

Programmers can use Objgraph, Heapy, Pympler, and Dowser to count

objects, the number of instances for each type, and the names of types with the

most instances and to print the types of most common instances. In addition

to that, the programmer can check the detailed memory growth by object

type since the last check. Also, the programmer can find a shortest chain of

references leading from an object o to an object x. Finally, the programmer

can print the complete heap graph.

Memory Profiler [21] is a Python module for monitoring the memory con-

sumption of a program in different ways. Memory Profiler offers three memory

profilers in one module: memory_usage, mprofpy2, and memory_profiler.

memory_usage is a manual memory profiler that consists of one function

that returns the memory usage of a process (with a given pid) over a

time defined interval. As an example, the programmer can get the memory

consumption of an executing web browser over a period of 60 seconds with a

time interval of 1 second. memory_usage gets the memory usage by querying

the operating system kernel.

mprofpy is an automatic and final-report memory profiler that is a wrap-

per to memory_usage. mprofpy executes the target-program as a sub-process

and monitors this sub-process during its entire execution using memory_usage.

During execution, mprofpy saves metadata into a file. This file is then read

by another program that plots the memory usage of the target-program over

time.

Finally, memory_profiler is an automatic, call-hook, and continuous-

report memory profiler. The call-hook is done by annotating the functions

that the programmer wants to profile (target-functions) with @profile. This

annotation uses a Python mechanism called decorator, which changes the call

protocol. During the target-program execution, when the target-function is

2Although the memory profiler name is mprof, we decided to use mprofpy to avoid
confusion with the original mprof that we described in Section 2.2.
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Line # Mem usage Increment Line Contents

==========================================================

3 @profile

4 5.97 MB 0.00 MB def my_func():

5 13.61 MB 7.64 MB a = [1] * (10 ** 6)

6 166.20 MB 152.59 MB b = [2] * (2 * 10 ** 7)

7 13.61 MB -152.59 MB del b

8 13.61 MB 0.00 MB return a

Figure 2.1: mprofpy output example.

called, Python executes the decorator-function (the function that has the same

name as the annotation, which is profile in this case) passing as a parameter

the target-function and the parameters of the original call. The profile

function, defined by memory_profiler, executes the target function line-by-

line and collects memory information before and after each line execution.

After the target-function execution, profile prints the target-function report.

Figure 2.1 shows the report of an example function called my_func. The

report is a list of the function lines divided in a four column table. The first

column shows the line number, the second column shows the memory usage of

the Python interpreter after that line is executed, the third column shows the

memory difference of the current line with respect to the previous one, and the

fourth column shows the code of the executed line.

As we could not find information about performance or memory over-

head, we used one of the tests that came with Memory Profiler to measure

overhead. Our simple test showed that mprofpy incurs in 1.02x execution time

slowdown and 2% memory overhead and that memory_profiler incurs in an

execution slowdown of 1.7x and a memory overhead of 2%.

2.5
Lua Tools

Although Lua is largely adopted by industry and has many reports

regarding memory bloat [34, 36, 35], we could only find four tools that help

programmers to understand the memory behavior of a Lua program. In the

next paragraphs we detail each one of them.

Lua Memory Profiler [40] is an automatic memory profiler written in

C++ designed for Lua 5.0. To use it, the programmer needs to modify the

Lua interpreter to use the realloc and the free functions defined by it and

recompile the language. The idea used in Lua Memory Profiler is very similar

to the idea used in both mprof and smallmp, which we previously discussed

in Section 2.2. In summary, one redefines the program allocation function
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to collect information during memory allocations. Since Lua 5.1, which was

released in 2006, the language exposes a function that dynamically sets a given

allocation function. However, Lua Memory Profiler does not use it.

ProFi [22] is small module written in Lua that hooks function calls

and function returns to collect execution time data; it was released in 2012.

Although ProFi focus on execution time, it also has a memory profile option.

The memory profile option is simple and consists of a single function called

CheckMemory that records a pair containing the current memory usage and

the elapsed time since the program started. CheckMemory can be called as

many times as the programmer wants. Each time it is called, a new pair is

added to the list. Finally, ProFi’s memory-report logs the list of the recorded

pairs ordered by time and highlights the maximum and the minimum memory

values of the list. One drawback is that both time and memory metadata incurs

memory overhead, which is included in the final report and can mask the real

memory that was used by the program.

luatraverse [31] is a manual memory profiler written in Lua that

implements one core function that traverses all references to all live objects of

a Lua program and, for each reference, applies a given function; it was released

in 2006 and last updated in 2010. Consider a root object R that references two

objects X and Y. Then, both X and Y references W, which references R. If one calls

luatraverse passing the print function as parameter, it will print R, X, Y, W,

W, and R. W is printed twice because there are two references to it, X and Y. R is

also printed twice because it is a root object and there is one reference from W.

Notice that each reference is traversed only once, which avoids cycles. Besides

the core function, the luatraversemodule implements two example functions:

countreferences and findallpaths. The former prints the number of objects

that reference a given object. The latter prints all paths to a given object. To

execute the core traversal function or any other “enhanced” function such as

countreferences, the programmer loads the library and adds one line for

each“task”. As an example, the programmer can add a line before and another

after a code chunk for logging all references to a specific object. Then, she can

compare the logs to check if there is any unwanted reference after the chunk

execution.

microscope [13] is a manual memory profiler written in Lua that dumps

any Lua value as GraphViz files, which can be later transformed into a nice

image of the graph composed by those dumped objects; it was released in

2013. microscope consists of a function that receives an object and logs the

graph that starts from the given object in the GraphViz format. Different

optional parameters can be passed to fine tune the object dump. One example
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is nometatables, which disables logging metatable values. Another example

is size, which adds size information to logged objects.

2.6
Summary

In this chapter we reviewed multiple papers and tools that explore

different techniques to help programmers identify and fix memory bloat. Next

we summarize the most important topics to our work.

Regarding general rules, there are three important aspects to take into

consideration when developing a memory profiler. One aspect is integration,

which concerns how easy it is to use the memory profiler with an existing

program. Another aspect is performance, which concerns how much time and

memory overhead the memory profiler causes to the main program. Finally, the

last aspect is insights, which concerns how easy it is to read and understand the

memory reports and, more importantly, how much help these reports provide

to identify and fix memory problems.

Regarding techniques, there are seven techniques that we considered

promising. We explored five of them to build our proposed memory profilers.

However, we did not explore the remaining two techniques due to time and

scope constraints.

The first technique we explored consists of collecting memory informa-

tion about the execution of a program at the function level. It can help users

easily understand the flow of the program in terms of function calls. Moreover,

this technique can reveal how much data is being allocated by each function,

which is particularly interesting to narrow down which parts of the code are

potentially causing memory bloat.

The second technique we explored consists of categorizing the allocated

objects by type or class. It can help programmers identify data structures that

could cause memory bloat. Similarly to the previous technique, this technique

also narrows down which parts of the code are potentially causing memory

bloat. Programmers should choose whether to use the previous technique

or this technique based on the the number of different functions and data

structures used by the program. As an example, imagine a program that

only uses integer arrays. Using a memory profiler that applies the type

categorization to identify potential memory bloats will indicate that the cause

of the problem are integer arrays. However, in this case, this information is

obvious and, thus, unhelpful.

Memory profilers that explore either continuous-report or final-report

techniques are helpful to programmers. Memory profilers that implement
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continuous-report can have a high impact in performance and memory use.

However, they provide information during program execution, which allows

the programmer to analyze random parts of the execution and long running

programs. Memory profilers that implement final-report usually have a small

impact on performance and memory usage. However, the programmer must

wait for the entire program execution to analyze the final report. Moreover,

the final report provides an overview of the memory allocated during the entire

execution instead of more fine-grained information.

The last technique we explored is ongoing interaction with the execut-

ing program. It allows programmers to pause program execution to analyze

memory information. This technique works similarly to a debugger, but with a

better set of methods focused on memory information. As an example, a pro-

grammer can pause the execution of a program to investigate why an object is

not being garbage collected (i.e. to investigate current references to an object).

The first technique that we did not explore is pretty printers. Pretty

printers are interesting tools that can help programmers investigate data

structures at specific parts of the code. As an example, the programmer can

print an object before and after a complex computation and, then, compare

both outputs to verify whether the object holds the expected set of values.

However, pretty printers are very limited in identifying which parts of the

program contain problems. Identifying which data structure or code blocks

one should monitor involves a manual process that can take a long time. In

this work, we opted to create automatic tools that can help programmers

understand the overall behavior of a program instead of specific parts.

The second technique that we did not explore is static analysis. It is

an interesting technique that allows software defects to be discovered early

in the software development process, in an automated manner, and with no

runtime overhead. However, due to its static nature, static analysis is very

limited, especially in scripting languages. Most memory profilers that use static

analysis to tackle memory bloat problems rely on predefined patterns. In many

cases, to collect enough code samples to analyze and derive these patterns is

complicated and takes too much time. Although static analysis can be helpful

in dealing with memory bloat and should be used along with dynamic analysis,

we have not used this technique.
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3
Proposed Tools

Scripting languages are largely used in software development and mem-

ory bloat problems have been widely reported in these languages. However, we

could find few tools that help programmers with these problems. We believe

it is important to analyze and explore techniques to tackle memory bloat in

these languages.

To experiment some techniques, we propose two different memory profil-

ers for Lua: luamemprofiler, an automatic, allocation-hook, and continuous-

report tool; and lmprof, an automatic, allocation- and call-hook, and late-

report tool.

In this chapter, we first discuss the guidelines used during the design

and the development of both tools. Then, we present each tool separately. For

each tool, we explain its idea, detail the implementation, and discuss design

decisions and development difficulties.

3.1
Guidelines

Regarding profiler goals, we agree with Zorn and Hilfinger [33]. Accord-

ingly, we have developed our tools based on three criteria: a profiler should

be easy to integrate into existing programs; a profiler should not impose too

much overhead on the target program; and a profiler should provide readable

reports for a regular programmer. In the next paragraphs, we discuss the main

decisions regarding the design of our memory profilers.

One decision was to implement luamemprofiler and lmprof as separate

tools. Although both tools have some chunks of code that are very similar,

and both tools could be easily joined in one big tool, we decided to separate

them. By separating them, it was easier to explore the different techniques

and analyze their pros and cons. Also, most of the studied tools have different

memory profilers for specific purposes.

Another decision was to add only essential features to each tool. In some

cases, although it would be easy to implement a new feature, we opted not

to add it as it did not seem to fit the tool main purpose. Using lmprof as an
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example, while collecting how much memory a function has allocated, it would

be easy to also collect how much time it has executed. However, collecting the

execution time was not the main purpose of the lmprof. Accordingly, we opted

not to add this feature.

Lua is implemented in ANSI C and has a very complete C API to

integrate C code with Lua code. Therefore, when creating a library for

Lua, one can easily opt to write it in Lua or in C. By implementing it in

Lua, one leverages many features, such as automatic memory management,

multiple return values, and high level programming. By implementing it in

C, one can create faster libraries that consume less memory and that have

access to more Lua internal information than if implementing it in Lua. Also,

by implementing a library in C, one can allocate memory directly without

interfering in the memory used by the Lua interpreter. This is particularly

useful to memory profilers as they can track the target-program without

worrying that the metadata might influence the report. These trade-offs must

be carefully analyzed for each library during the design phase. In our case, as

performance is very important, full access to internal information is essential,

and separating the amount of memory used by the profiler from the amount

of memory used by the target-program is good, we decided to implement both

luamemprofiler and lmprof in C.

In Section 2.1.2, we explained the call-hook and the allocation-hook

techniques, which collect memory information during the track phase. Then,

for each automatic memory profiler discussed in Chapter 2, we explained

how these techniques were implemented. For instance, mprof has a special

compiler that changes the allocation functions and memory_profiler uses

the Python decorator mechanism to intercept specific functions. Based on a

“mechanisms instead of policies” philosophy, Lua offers two mechanisms to

dynamically hook Lua programs. One mechanism implements the allocation-

hook technique and the other implements the call-hook technique. Below we

detail both mechanisms.

The Lua core does all its memory allocation and deallocation through one

single allocation function, which the developer must provide when she creates

a Lua state [12]. Besides the single allocation function, since Lua 5.1 (released

in 2006), Lua exposes a function to dynamically change this single allocation

function. The function lua_setallocf, which is available just for the C API,

allows a new allocation function to be registered during the execution of a

Lua program. After setting the new allocation function, all further allocations

will use it. Regarding memory profilers, the new function is usually a wrapper

around the old one to collect metadata. Both luamemprofiler and lmprof use
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this mechanism.

One restriction of dynamically changing the allocation function is that

it cannot be used at the same time by two tools that change the allocation

function. In this case, the first substitute function would be overwritten by the

second and would not record the proper metadata for the first tool. In general,

developers only change the allocation function in very specific applications,

such as debug tools. Unless the programmer is using more than one debug tool

simultaneously, this should not be a problem.

Another restriction of this mechanism is that the new allocation function

will only track memory operations that execute inside the Lua state. In other

words, Lua tools that are written in C and call malloc or free directly do

not use the new allocation function and, consequently, do not have their data

tracked. As all Lua standard libraries do not use C allocation functions directly

and the Lua creators suggests that developers use proper Lua functions to

allocate data, it should not be a problem.

The second mechanism enables hooks to be set and unset dynamically.

The lua_sethook function, which is available for both the Lua and the C

API, allows the programmer to register a function to be called every time

a function is called and every time a function returns. Regarding memory

profilers, the registered function can get the memory usage of the program

at both events (call and return) to calculate the the memory allocated by

each function. The main advantage of the Lua mechanism, compared to the

mechanisms used by the tools discussed in Chapter 2, is that it can be turned

on and off dynamically. For instance, gprof hooks are inserted by recompiling

the target-program, memory_profiler hooks are inserted by annotating every

function that should be profiled, and Lua Memory Profiler hooks are inserted

by modifying and recompiling the Lua interpreter. lmprof hooks, which uses

the Lua mechanism, are inserted by a call to lua_sethook at any time of

the target-program execution and can be set and unset during execution. One

drawback of the Lua mechanism is that, as each new hook overwrites the

previous one, it cannot be used along with other libraries that also create

hooks.

3.2
luamemprofiler

Our first proposal is luamemprofiler, an automatic, allocation-hook,

continuous-report memory profiler. luamemprofiler displays the memory

allocation of a Lua program in real-time, distinguishes each memory block

type by color, and allows the programmer to interact with the program and
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the displayed information along the program execution. luamemprofiler was

developed in the Google Summer of Code program [38] in 2011 to explore

three main techniques — real-visualization, type/class data categorization, and

ongoing interaction.

Real-time visualization can bring a new perspective to memory behav-

ior. For instance, in game creation, one can analyze specific moments where

certain data types are created or collected, such as level transitions. Therefore,

luamemprofiler updates the heap display continuously, so that the program-

mer can follow memory operations as soon as they occur.

As discussed in Chapter 2, using types/classes to categorize and sum-

marize information can be very useful to understand the memory behavior

of a program. Although Lua does not have classes and there are only 8 basic

Lua types (nil, boolean, number, string, function, table, userdata, and thread),

we wanted to experiment the categorization by these types during profiling.

Therefore, each type has a color that is used to draw the memory blocks of the

respective type. Unfortunately, as we will discuss later, there are limitations

regarding table categorization.

Finally, the last technique provides interactive actions during program

analysis. In addition to the real-time display with different types, we wanted

to allow the programmer to pause execution, analyze the program heap, and

customize the display at runtime. As an example, the programmer may want to

analyze just string blocks instead of every block. Accordingly, luamemprofiler

allows the programmer to pause execution, execute the program step by step,

and check the current memory allocation command and its stack trace. Also,

luamemprofiler allows the programmer to dynamically define which types are

going to be drawn and to zoom in and out any heap fragment. Next, we detail

the luamemprofiler interface and how we use it.

3.2.1
Usability and Interface

luamemprofiler is a Lua tool that requires only small changes into the

user script. In short, the programmer just needs to add three lines to the

original code: one line to load the tool, another one to start profiling, and

a last one to stop profiling. If the programmer wants to profile the whole

application, she can call start at the beginning of the script and stop at the

end, as exemplified below.

01 local lmp = require"luamemprofiler"

02 lmp.start(1) -- 1 is the heap-size-display in MB

03 -- original script code ...
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04 lmp.stop()

The start parameter sets the heap size that will be displayed, hereafter called

heap-size-display. In the above example, the display will show one megabyte

of the heap, even though the program may use more. Choosing the right heap-

size-display is not straightforward and we will discuss in the next section. In

addition to profiling the whole program, one can also profile specific parts of

the same program by adding the start and the stop lines around each part.

luamemprofiler will create a new display for each part. However, one cannot

profile two or more parts at the same time.

When the start function is called, it initializes the luamemprofiler

module, starts the display, and waits for the programmer interaction. One

can press ‘space’ to run the program or ‘n’ to execute the program until the

next memory operation (malloc, free, or realloc). When the program is

executing, all interactions are disabled, except for the ‘space’ key which pauses

the execution and re-enables all interactions. Figure 3.1 shows the display in

the paused mode.

At the center of the image is a snapshot of the heap as a two dimensional

picture in which each pixel is associated with a memory location starting at the

top left-hand corner. The “Memory Size” is the heap-size-display and means

how many bytes of the heap we are drawing; in this case 1 megabyte. Unused

memory locations are left blank. Blocks are represented by horizontal stripes.

That is, memory blocks are displayed line-by-line from left to right with the

granularity indicated at the top right-hand corner. The larger a block is, the

longer is the associated stripe. Also, parts of the heap can be magnified.

Blocks are distinguished by their color. There is a list of the Lua types

with their respective colors and the keys used to toggle (select or unselect)

each one of them. For instance, all strings are displayed in red and can be

toggled by the letter ‘s’. Every time a type is selected or unselected, the blocks

of that type are drawn or erased from the display. Instead of 8, there are only

5 basic Lua types indicated. This is a limitation that we will discuss in the

next section.

There are two possible program states: paused and executing. If the

program is in paused state the programmer can do a step by step execution.

In this case, luamemprofiler displays at the bottom the current operation

information followed by its stack trace, as shown below.

Malloc | addr = 0x241b9901 | type = String | size = 96B

C - func‘for iterator’

Main - line:86
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Figure 3.1: luamemprofiler graphical display.

In addition to the real-time display, every time stop is called, luamem-

profiler logs a summary of the heap allocations. Figure 3.2 shows the final

report of the SparseMatMult application used for evaluation in Chapter 4.

We can see that the main program performed 192 malloc operations, 302

realloc operations, and 25 free operations. Also, these operations allocated 17.8

kilobytes, reallocated 400 megabytes, and deallocated 10.5 kilobytes. Below the

free information, we summarize the mallocs by type. Figure 3.2 shows that from

the 192 mallocs, 60 were strings, 11 were functions, and so forth. Then, the

maximum memory used is the memory-usage peak of the program. Although

the example allocated more than 417 megabytes along the program execution

(the malloc size plus the realloc size), the maximum memory occupied by the

program was 400 megabytes. Finally, at the last line luamemprofiler suggests

the minimum heap-display-size that should be used as a parameter to start.

This value is the difference between the biggest and the smallest block-address

of the whole execution in megabytes. Although sometimes this value is very

similar to the maximum memory used, it can be very different depending on

the allocation policy.

From all the values presented in the final report, the total realloc

size is the only one that is not straightforward. It is the sum of the difference

between the new and the original blocks of all the realloc calls. In other words,

every time realloc is called, luamemprofiler adds to the total realloc
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Number of Mallocs = 192 Total Malloc Size = 17.8 Kb

Number of Reallocs = 302 Total Realloc Size = 400.0 Mb

Number of Frees = 25 Total Free Size = 10.5 Kb

Number of Mallocs of Each Type:

String = 60 | Function = 11 | Userdata = 0

Thread = 0 | Table = 20 | Other = 101

Maximum Memory Used = 400.0 Mb

We suggest 410.3 as heap-size-display parameter.

Figure 3.2: luamemprofiler final report of the SparseMatMult test. The
format has been slightly altered to better fit this thesis.

size the difference between the new and the original block, which is a positive

value if the block is expanding and a negative value if the block is shrinking.

In Figure 3.2, it is obvious that realloc is responsible for manipulating a lot

of data. However, sometimes the current definition can mask how much data

was manipulated by realloc calls. Accordingly, in a future release, we should

separate expanding reallocations from shrinking ones.

3.2.2
Trade-Offs

During luamemprofiler design and development, we made some deci-

sions and had a few problems that we consider worth mentioning in this thesis.

Our first design decision was that regardless of the graphical library used

in the original implementation, the graphic part should be independent and

easy to change. Therefore, we designed the graphic part as a separate layer and

defined an interface that can be implemented using different graphical tools.

In addition to the flexibility in the graphical library implementation,

we added a flag to use or not the real-time display. The programmer may

be interested in the final summary, or in the heap-size-display suggestion.

Moreover, the real-time display can cause performance penalty, which may

be a problem in some cases. In order to disable the display, start must be

called without parameters.

One problem we had in the beginning of the tool implementation was a

segmentation fault error at the end of every target-program execution. That

is, every target-program was executed up to the last line without errors and

luamemprofiler returned correct results, but there was a segmentation fault

in the Lua finalization process. This problem occurrs because, at the end of a

program execution, Lua calls the allocation function to free some structures.
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As luamemprofiler is garbage-collected, the allocation function it uses is also

reclaimed, which causes errors in future calls. As other programming languages,

Lua offers a mechanism for object finalization. This mechanism sets a function

to be called after an object is collected. luamemprofiler takes advantage of

this feature and sets a finalizer for the library object that restores the original

allocation function.

During luamemprofiler development, we had two problems regarding

the categorization of blocks by types. luamemprofiler tracks allocated blocks

using the allocation hook explained in Section 3.1, which dynamically changes

the allocation function. Trying to facilitate tools such as memory profilers,

when a new block is allocated, Lua passes the block type to the allocation

function.

The first problem is that luamemprofiler does not have the block type

information for free and realloc operations. The free information would be

important to the programmer in the final report to discover types that are not

being garbage-collected, by comparing to the malloc information. The realloc

information is particularly important to understand the memory behavior of

Lua programs because, differently from many systems that have automatic

memory management, Lua extensively uses realloc to allocate new objects.

This is a way to organize memory without creating garbage. Accordingly,

luamemprofiler does not have the block type information of many new blocks.

The second problem is that the type information does not work well for

tables. Tables are the sole data-structuring mechanism in Lua; they can be used

to represent ordinary arrays, sequences, symbol tables, sets, records, graphs,

trees, etc. Therefore, most of the data of a Lua program is usually inside tables.

Tables are represented as a header that describes the table information and a

body that holds the table content (which is the majority of the data). When

Lua creates a new table, it allocates both the header (which has table type)

and the body (which has undefined type). We use other to reference all blocks

that do not have a specific type. Consider the following code that creates a

new table and then inserts the value 10 at the key 1.

01 local t = {}

02 t[1] = 10

Lua will allocate the table header at line 1 (table type) and the table content

at line 2 (other type). The value and key numbers are incorporated into the

content allocation. In practice, luamemprofiler reports have many blocks

allocated with type other, which is not useful to detect memory bloat.

Finally, the last problem we had during luamemprofiler development

was the graphic part. The major problem is how to display the complete heap
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of a program. A poor solution is to use a very large heap-size-display. In this

solution, programs that use little memory will be badly displayed. Also, there is

no guarantee that a new allocated block fits in the display. Finally, unless there

is a scroll bar, blocks will be very small in the screen and will likely collide with

others (same pixel will represent different blocks). Another solution is to start

with a small heap and redraw the screen when a new block is allocated outside

the display. Redrawing the screen solves all problems above, as the screen will

display almost the same size as the heap. However, it can perform badly as

new blocks are allocated outside the display (even if we consider a display

resize offset). The last option is the perfect scenario, in which the programmer

knows the complete heap size ahead execution. In this case, all blocks will fit

and there will be no redraw. Unfortunately, one usually does not know the heap

size of a program and, moreover, from one execution to another the heap size

can differ. We tried to join simplicity and precision by implementing a heap

size suggestion, previously explained. Our implementation defines the heap size

from start and ignores all blocks that do not fit the heap display. We believe

that these few “missing” blocks are not essential to understand the allocation

behavior of a program. Unfortunately, the programmer usually depends on the

luamemprofiler suggestion which requires a first program execution. This first

execution can be a problem in long running programs.

3.3
lmprof

Our second proposal is lmprof, an automatic, allocation- and call-hook,

final-report memory profiler. Similarly to mprof, lmprof tracks function calls

that allocate data and, after program execution, summarizes the information

to the programmer. lmprof was developed in the Google Summer of Code

program in 2014 to explore two techniques — function profiling and final-

report.

Profiling a program at the function level is very common and helps pro-

grammers understand the work flow of the program and identify bottlenecks.

In languages in which the memory allocation is performed explicitly, program-

mers are often aware of the functions that allocate memory. However, in script-

ing languages such as Lua, memory allocations happen implicitly all the time

and, thus, programmers are not aware of memory consumption, moreover at

the function level. Accordingly, we believe that this approach generates useful

information for programmers.

To track a program with lmprof, the programmer adds the same lines

that are added to use luamemprofiler, except by the start parameter that
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is not needed.

01 local lmprof = require"lmprof"

02 lmprof.start()

03 -- original script code ...

04 lmprof.stop()

During start, a hook is set to intercept all functions. Then, when a function is

called, lmprof records the total allocated memory. When this function returns,

lmprof checks if any data was allocated during the function execution (more

specifically, if the total allocated memory is bigger than the total allocated

memory recorded at the function call). If true, lmprof increments the call

counter, the shallow memory size, and the retained memory size of the current

function. Finally, when stop is called, lmprof saves the metadata into a file in

the form of a Lua table.

The report phase of lmprof is a separate program executed after the

target-program execution. It reads the output file, consolidates allocation

information and prints two profiles: flat and call-graph.

The flat profile consists of a list of all the functions that allocate data

during program execution and how much data they allocated. It gives a quick

overview of the functions that are used, and shows the functions that are

themselves responsible for large fractions of the allocated memory.

Figure 3.3 shows the flat profile of the SparseMatMult application used

for evaluation in Chapter 4. The first line indicates that only three of ten

functions that allocated data are listed. Then, each function is detailed line by

line in decreasing order of shallow memory. From left to right the details are

the percent of total allocation that took place in each function, the number of

bytes allocated by each function alone, the number of bytes allocated by the

function including its descendants, the number of calls made to the function

that resulted in memory allocation, the mean number of bytes allocated by

each function call alone, the mean number of bytes allocated by each function

call including its descendants, and the function name. In this example, newvec

at line 29 of the file SM.lua allocated 97.99% of the memory allocated by the

program, which corresponds to 392 megabytes, in 12 calls. RandomVector was

responsible for 2% and, after that, no other function was responsible for more

than 0.01% of memory allocation. The last function listed is dofile, which is

actually a C code function.

Understanding the memory allocation behavior of a program sometimes

requires more information than just knowing the functions that are directly

responsible for memory allocation. The call-graph can be seen as a call-chain
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======= Showing 3 of 10 functions that allocated memory ======

% shallow retained shallow retained

mem mem mem calls mem/call mem/call name

97.99 392.0 MB 392.0 MB 12 32.67 MB 32.7 MB nv*

2.00 8.0 MB 8.0 MB 1 8.00 MB 8.0 MB RV*

0.01 0.0 MB 0.0 MB 1 0.02 MB 0.0 MB df*

* newvec (SM.lua:29) | RandomVector (SM.lua:80) | dofile [C]

Figure 3.3: lmprof flat profile of the SparseMatMult test. The format has
been slightly altered to better fit this thesis layout. nv* refers to newvec

(SM.lua:29) and so forth.

in text format where the functions with more retained memory are the main

nodes. The call-graph shows all the functions that were indirect callers of

functions that allocated memory.

Figure 3.4 shows an example of the call-graph profile. Below the header,

each row can be divided into three parts: the dashed line for the function

itself, here called entry function; lines above that line, each of which represents

a caller of the entry function (the parents); and lines below that line, each of

which represents a function called by the entry function (the children).

The major entries of the call-graph profile are the entries from the

flat profile, augmented by the memory propagated to each function from its

descendants. Regarding parents and children, the number of calls is relative to

the respective entry function. For instance, the third row shows that f4 was

called 5 times by f2, 2 times by f3 and 5 times by itself (we use parenthesis

to indicate recursive calls). The same applies to shallow and retained. f4

allocated 50 megabytes when called by f2 and 20 megabytes when called by

f3. The index field provides a unique index to help users navigate through the

call-graph. Different from the flat profile, the call-graph profile is ordered by

the retained memory size.

3.3.1
Trade-Offs

In the next paragraphs, we highlight design decisions and discuss major

problems we had during development.

To collect the memory information of a program in a function level, a

memory profiler can use the allocation-hook or the call-hook techniques. By

using the allocation-hook technique, for every allocation, the profiler can get

information about the current and the parent function. By using the call-hook
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call/total parents

index %mem retained shallow call(rec) name index

call/total children

==============================================================

[1]----100.00--160.0-MB----0.0-MB------1---------f1-------[1]

130.0 MB 80.0 MB 2/2 f2 [2]

30.0 MB 10.0 MB 1/1 f3 [4]

==============================================================

130.0 MB 130.0 MB 2/2 f1 [1]

[2]-----81.25--130.0-MB---80.0-MB------2---------f2-------[2]

50.0 MB 50.0 MB 5/12 f4 [3]

==============================================================

50.0 MB 50.0 MB 5/12 f2 [2]

20.0 MB 20.0 MB 2/12 f3 [4]

[3]-----43.75---70.0-MB---70.0-MB-----12(5)------f4-------[3]

==============================================================

30.0 MB 10.0 MB 1/1 f1 [1]

[4]-----18.75---30.0-MB---10.0-MB------1---------f3-------[4]

20.0 MB 20.0 MB 2/12 f4 [3]

==============================================================

Figure 3.4: lmprof call-graph profile of the SparseMatMult test. The format
has been slightly altered to better fit this thesis layout.

technique, on every function call, the profiler can push into a stack the total

allocated memory and, on every function return, the profiler pops the value

that was pushed when the current function was called and compare it to the

new total allocated memory. If the current value is bigger than the pushed one,

it means that an allocation happened and, thus, the profiler needs to collect

information about the current and the parent functions.

lmprof uses both hook techniques. We initially opted to use only the call-

hook technique to explore a Lua mechanism different from the allocation-hook

used in luamemprofiler. However, the first implementation was collecting

the current allocated memory, which does not work. Imagine that the current

allocated memory is 150 bytes when a function is called. Then, this function

allocates 100 bytes and, before it returns, the garbage-collector executes and

deallocates 200 bytes. When the function returns the current allocated memory

is 50 bytes, so lmprof cannot determine if the function allocated any block.

lmprof uses the allocation-hook technique to solve this problem. lmprof

substitues the default allocation function for a very similar function that

increments an allocated-bytes counter every time memory is allocated (both

malloc and realloc). Finally, lmprof can collect the total allocated memory

to check whether there was any memory allocation between a function call and

return.
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Although lmprof hooks all function calls, it only profiles function calls

that generate allocation (shallow or retained). Therefore, the report does not

have the total number of function calls, but the total number of function calls

that allocated memory (directly or indirectly). On the one hand, counting all

function calls can be useful to better understand the program workflow. On

the other hand, counting all function calls seems useless to analyze the memory

behavior of a program. In comparison to other tools, while gprof counts every

function call, mprof counts only function calls that allocate data. Although

from the code perspective it is very easy to include this information, we did

not include it in the first release because it is not directly related to memory

consumption.

During profiling, there are some computations that the developer can

choose to execute during the track phase or the report phase. Developers

usually choose the report phase to diminish the overhead of the track phase.

However, sometimes it is way more complicated to do the computation in the

report phase rather than in the track phase. We believe that these cases should

be carefully analyzed, and that tests must be done to evaluate the overhead

caused. In lmprof, we decided to calculate the retained size information in the

track phase. The computation of the retained size could be done solely in the

report phase. In this case, based on the entry function and its parent, lmprof

could traverse the call-graph and calculate the retained size for each function.

However, this algorithm is not trivial and must handle cycles. We opted for

the track phase because it was easier for us to implement and tests presented

an overhead of less than 1% to the execution time and less than 2% to the

memory consumption.1

An interesting feature of functions in Lua is that Lua does tail-call

elimination [12]. A tail call happens when a function calls another as its last

action, so it has nothing else to do. In such situations, the program does not

need to return to the calling function when the called function ends. Therefore,

after the tail call, the program does not need to keep any information about

the calling function in the stack. The Lua interpreter takes advantage of this

fact and actually does not use any extra stack space when doing a tail call.

In Lua, as tail calls do not return control to the parent function, they

cannot be handled by a profiler in the same way as normal function calls.

Instead of collecting the metadata of a function foo in its return hook, the

profiler should collect foo’s metadata in the tail-call hook of the function that

is tail called by foo. Imagine a function f1 that calls f2, which calls f3 and

1We used the applications from Chapter 4 to compare an implementation that calculates
the retained size at the track phase to an application that calculates the retained size at the
report phase.
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| function | mem-size | shallow-size | retained-size |

ret foo 10b X X

foo 8b 2b (10b - 8b) 2b (10b - 8b)

foo 6b 2b ( 8b - 6b) 4b (10b - 6b)

foo 4b 2b ( 6b - 4b) 6b (10b - 4b)

foo 2b 2b ( 4b - 2b) 8b (10b - 2b)

main 0b 2b ( 2b - 0b) 10b (10b - 0b)

Figure 3.5: Pseudo call-stack of an example program with recursive cycles.

“tail calls” f4. lmprof collects the metadata about f1 → f2 when f4 is “tail

called”. Also, when f4 is “tail called”, lmprof saves f2’s reference in a variable,

so that the metadata about f2 → f4 is correctly collected when f4 returns

control to f1. If there are multiple tail calls in sequence (e.g. f4 tail calls f5,

which tail calls f6), lmprof applies the same process for each tail call.

Cyclic-function calls can be a big problem while profiling, as they intro-

duce spurious allocation relations [33]. Cycles happens due to recursive func-

tions or functions that call one another (directly or indirectly during program

execution). Next, we describe a typical problem with recursive functions.

Consider a program with a main function that calls a foo function, which

calls itself three times. Imagine that each function call allocates 2 bytes, so the

memory allocated by program is 10 bytes. Figure 3.5 illustrates a pseudo call-

stack of the program execution when the last call to foo is returning. From left

to right one can see the function name, the total memory size at the moment

the function was called, the memory allocated by the function itself (memory

size of the next call minus the memory size of the function call), and the

memory allocated by the function including descendants (memory size of the

program minus the memory size of the function call).

Analyzing the allocation size of each caller/callee pair, the result is that

System → main allocated 2 bytes shallow and 10 bytes retained, main → foo

allocated 2 bytes shallow and 8 bytes retained, and foo → foo allocated 6 bytes

shallow and 12 bytes retained. That result is obviously wrong, as the whole

program allocated 10 bytes. The problem is the propagation of the retained

value, which is accounted twice (for both the entry function and the parent

function) in all recursive calls.

To handle this problem, both gprof and mprof adopt, what they call, the

most conservative solution. They discover, during the report phase, strongly-

connected components in the call-graph and treat each such component as a

single node. In that case, the pseudo call-stack would be as in Figure 3.6. As

the cycle is removed, the retained size of main → cycle is 8 (which is correct).

However, the function-calls executed inside the cycle becomes obscure.
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| function | mem-size | shallow-size | retained-size |

ret cycle 10b X X

cycle 2b 8b (10b - 2b) 8b (10b - 2b)

main 0b 2b ( 2b - 0b) 10b (10b - 0b)

Figure 3.6: Pseudo call-stack of an example program with recursive cycles
treated as a single component.

lmprof uses a different method to handle cycles. It checks if both

the caller and the callee are the same function and, if true, it records just

the callee shallow-size (without accounting the retained-size). In that

implementation, the pseudo call-stack would be equal to the original, except

by the retained-size. The retained-size would have zero bytes in the top

three calls of foo because the parent function is also foo. In this method, the

call-graph is clear and no function is omitted. However, this method cannot

handle cycles between different functions. We opted for this method because

we believe that it is easier to implement and that the fine-grained information

is more important than handling different function cycles (which we consider

a rare case).
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4
Evaluation

In this chapter we evaluate both luamemprofiler and lmprof in prac-

tice. We evaluate our tools based on the three criteria discussed in Section 3.1.

First, we discuss how easy it is to incorporate each tool into the target program

and to generate reports. Then, we analyze how each tool can help programmers

understand the memory behavior of a Lua program, Finally, we present the

execution time and the memory overhead of each tool.

In order to evaluate these three aspects, we used six different applications

developed by third party programmers.

Black and Scholes (BAS) — a financial application, ported from the PAR-

SEC [2] benchmark suite, that calculates the prices for a portfolio of

European options analytically with the Black-Scholes partial differential

equation.

CAPTCHA JPEG Filter (JPG) — an application to filter CAPTCHA 1

images in the JPEG format to make it easier to perform automatic optical

character recognition (OCR).

CAPTCHA PPM Filter (PPM) — an application similar to the above

that filters portable pixmap format (PPM) images. While the previous

application uses a C library to manipulate JPEG files, the PPM appli-

cation does all the computation (using strings) inside Lua.

Series (SRS) — a numerical application, ported from the Java Grande [27]

benchmark suite, that calculates the first N Fourier coefficients of a

function.

SparseMatMult (SMM) — a numerical application, also ported from the

Java Grande benchmark suite, that uses an unstructured sparse matrix

stored in compressed row format with a prescribed sparsity structure.

1CAPTCHA stands for “Completely Automated Public Turing test to tell Computers
and Humans Apart”. CAPTCHA images show distorted texts that users must type to prove
they are humans to a computer system.
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Placo (PLC) — an application created at PUC-Rio to transform publication

data of the university from the internal format to the format used by the

Brazilian government.

4.1
Ease of Use

To profile a Lua program with luamemprofiler or lmprof, the program-

mer adds two lines at the beginning of the main file and one line at the end of

the same file. Besides doing it manually, the programmer can create a simple

wrapper to include these lines automatically. As an example, to execute each

test application, we created a simple shell script that, before executing each

test, creates a copy of the application containing these three lines, executes

this copy, and removes it.

Both luamemprofiler and lmprof generate a file at the end the appli-

cation execution. luamemprofiler generates a file containing the final report,

which can be read with any text editor. lmprof generates a file with the meta-

data as a Lua table. To generate lmprof’s final report, the programmer has to

execute a Lua script that comes in the lmprof package. The Lua script expects

two arguments, the report type (flat, call-graph, or both) and the path of the

file that contains the metadata. During execution, the Lua script consolidates

the metadata and prints the respective report.

The current luamemprofiler implementation has a drawback. luamem-

profiler uses SDL [37] as its graphic library and SDL ttf to write text in

the screen. To load the font file we defined a specific path in the source

code, which was set to the current path. Accordingly, to profile the tests with

luamemprofiler, we had to copy the font file to each test folder. Next, we

compare our tools to the automatic tools studied in Chapter 2.

Heap Profiler, discussed in Section 2.3, is the most complete and easy

to use tool. The entire tool is built on top of Chrome and uses advanced

graphical features. Moreover, everything is done via mouse clicks, including

graph navigation. This is a very particular case because, differently from other

scripting languages, JavaScript is mostly used to create web applications that

execute inside browsers and, thus, JavaScript profilers can rely on advanced

graphical frameworks.

When compared to the publisehd work studied in Section 2.2, the effort

to incorporate the memory profiler into the application is different. All the

automatic tools that we discussed recompile the applications, which sometimes

can be a problem. However, these tools do not need to change the application
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source code, which is good for programmers. The reports that our tools

generate are quite similar to the reports studied.

Regarding Python, to use mprofpy the programmer just needs to modify

the command line that executes the script, which is very easy. It is also very

easy to generate the final report from the metadata. Another Python tool is

memory_profiler. To use it, the programmer has to annotate every function,

which requires more work than just loading and starting a tool. Also, mem-

ory_profiler’s report is continuously printed in the standard output, which

can be confusing if the application also prints information.

By doing small changes in both luamemprofiler’s and lmprof’s source

code, our tools would automatically start profiling when loaded and automat-

ically stop profiling at the end of the application execution. In that case, the

programmer would incorporate the memory profiler via command line, without

modifying the application code. One drawback of this implementation, is that

if the programmer wants to profile just specific parts of the target program,

she will have to call stop right after loading the library.

4.2
Report Usefulness

In this section, we analyze how useful the reports generated by lua-

memprofiler and lmprof are. We do that by using both tools to understand

the memory behavior of two of the six explained applications. Besides the

application overview and input, we have deliberately no information about the

application implementation or its source code. Accordingly, we use our tools to

extract as much information as we can with just a basic idea of each program.

After analyzing the reports, we compare our findings to the source code and

try to identify and remove memory bloats.

4.2.1
Black and Scholes

Black and Scholes works with portfolio prices and uses a synthetic input,

provided with PARSEC, that is based on the replication of 1,000 real options.

The input consists of a structured ASCII file about an option, where each line

provides information divided in nine columns. To analyze the application, we

used an input containing 1 million lines with approximately 63 megabytes.

Figure 4.1 shows the luamemprofiler final report. We can see that

malloc was called 8 million times to allocate approximately 1.14 gigabytes

and that only 6 million blocks were deallocated, summing up approximately

600 megabytes. Therefore, at the end of the execution, the application holds
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Number of Mallocs = 8001694 Total Malloc Size = 1.14 GB

Number of Reallocs = 162 Total Realloc Size = 0.13 GB

Number of Frees = 6000821 Total Free Size = 0.61 GB

Maximum Memory Used = 0.68 GB

Number of Allocs of Each Type:

String = 1001662 | Function = 1000004 | Userdata = 2

Thread = 1 | Table = 1000009 | Other = 5000016

Figure 4.1: luamemprofiler final report of the Black and Scholes application.
The format has been slightly altered to better fit this thesis layout.

valid references to almost 2 million blocks that sum 540 megabytes, which is

more than 40% of the allocated memory. Also, the maximum memory used

indicates that the application holds a maximum of 700 megabytes at the same

time. Based on the application overview (price calculation) and the input size

(61 megabytes), we should verify if all this data is needed until the end of the

execution.

By analyzing the block type information, we can see that strings,

functions and tables are allocated 1 million times and that other is allocated 5

million times. As the input is a file with 1 million lines, we suspect that every

line generates an interaction that allocates one function, one table, and five

other. This behavior seems reasonable and indicates that we should look into

each iteration to check if the blocks that are kept should be deallocated.

The graphical display shows that the application can be divided in

three phases. In the first phase, which executes for a short period, the

application allocates and deallocates many blocks. Also, there are frequent

garbage collections that remove a lot of blocks. At the end of this phase,

there are still many blocks in memory. The second phase executes for a very

long time. During this phase, there is a very CPU intensive computation, and

there is no allocation or deallocation of blocks. Finally, in the third phase,

which executes for a very short period, the program does just a few memory

operations. By using the graphical display, we could identify that the first

phase is where the memory is really allocated. Accordingly, we should analyze

just the code of the first phase, which means analyzing 40 lines of code, instead

of 150.

Figure 4.2 shows the lmprof flat report. The first line indicates that

there are 699 functions that allocate data. Then, we can see that most part of

the allocated memory (77.20%) is done inside the main chunk and that three

other functions also stands — insert (8.65%), for iterator (7.01%), and

gmatch (5.89%). Among other calls to insert, 147 calls allocated memory.
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===== Showing 5 of 699 functions that allocated memory =====

% shallow retained

mem mem mem calls name

77.20 999 MB 1295 MB 1 main chunk (main.lua)

8.65 112 MB 112 MB 147 insert [C]

7.01 91 MB 91 MB 1000001 for iterator [C]

5.89 76 MB 76 MB 1000000 gmatch [C]

1.24 16 MB 16 MB 1 ? (main.lua:194)

Figure 4.2: lmprof flat report of the Black and Scholes application. The format
has been slightly altered to better fit this thesis layout.

This is similar to the number of reallocations, which makes sense as inserting a

new pair into a table can force the system to reallocate the table. We can also

see that both the for iterator and the gmatch functions are called by the

main loop of the application and allocate data on every call. This behavior also

makes sense, as the iterator is probably used to read each line and gmatch is

probably used to read each value of the line. Moreover, the memory allocated

by each function is close to the file size. Therefore, we should investigate the

main chunk to understand what is allocating almost 1 gigabyte.

The lmprof call-graph report was not very useful to analyze the Black

and Scholes application. Therefore, we do not detail it here.

After the profile analysis that we described above, we investigated the

application source code A.1. We started by investigating the first phase, which

is composed by two separate iterations. The first iteration reads each line of

the input file, breaks it into 9 different strings, inserts all the strings into a

table t1, and inserts t1 into a table t0. The second iteration copies the entire

data of t0 into six other tables.

We could identify three problems in the original implementation. The

first problem is that t0 is never used again after the first phase. Therefore, the

programmer should assign nil to t0, so that the garbage-collector can reclaim

the table. After we assigned nil to t0, the free values of the luamemprofiler

final report increased to almost the same values as the malloc.

The second problem is that there is no need to use t0. The programmer

can iterate the input file and insert the data directly from t1 into the six tables.

After this modification, we reduced the maximum memory used measured by

luamemprofiler from 700 megabytes to 288 megabytes. Also, the memory-

usage measured by the time command was reduced from 783 megabytes to 320

megabytes.

Finally, the last problem is that, for each line of the input file, the

application creates a new table, assigns it to t1 and inserts 9 values into
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Number of Mallocs = 2006924 Total Malloc Size = 167.40 MB

Number of Reallocs = 142 Total Realloc Size = 112.00 MB

Number of Frees = 2006866 Total Free Size = 167.40 MB

Maximum Memory Used = 192 MB

Number of Allocs of Each Type:

String = 1006888 | Function = 1000004 | Userdata = 2

Thread = 1 | Table = 9 | Other = 20

Figure 4.3: luamemprofiler final report of the “fixed” Black and Scholes
application. The format has been slightly altered to better fit this thesis layout.

the table. Accordingly, every iteration allocates new blocks that will become

garbage in the next iteration. Instead of creating a new table for each line,

the programmer should create the table once and overwrite the values on

each iteration. After this last modification, the number of allocated blocks

dropped from 8 million to 2 million and the memory-usage measured by the

time command dropped from 783 megabytes to 190 megabytes. Figure 4.3

shows the luamemprofiler final report for the modified version of the Black

and Scholes application A.2.

4.2.2
CAPTCHA JPEG Filter

The CAPTCHA JPEG Filter is an application that applies different

filters to a CAPTCHA image to make it easier to process the text contained

in the image with optical character recognition (OCR). It uses a pipeline to

apply filters sequentially to images. The application applies the following filters,

respectively:

1. grayscale, which converts the image colors to a range of shades of gray,

preparing it for the next filters;

2. binary threshold, which converts the image colors to either black or white

according to the brightness of each pixel, to eliminate noise;

3. gaussian blur, which clouds the image and makes it appear as if it is

viewed through a translucent screen, to reduce detail;

4. binary threshold, same as above, applied a second time to eliminate more

noise;

5. invert, which converts black to white and white to black, to change

contrast.
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Original image Grayscale Threshold 1

Invert Threshold 2 Blur

Figure 4.4: Sample results from sequentially applying each of the filters
implemented in the CAPTCHA Filter application.

Number of Mallocs = 76790 Total Malloc Size = 679.07 MB

Number of Reallocs = 294 Total Realloc Size = 0.13 MB

Number of Frees = 71534 Total Free Size = 678.86 MB

Maximum Memory Used = 1.36 MB

Number of Allocs of Each Type:

String = 40970 | Function = 7 | Userdata = 35001

Thread = 0 | Table = 10 | Other = 802

Figure 4.5: luamemprofiler final report of the CAPTCHA JPEG Filter
application. The format has been slightly altered to better fit this thesis layout.

Figure 4.4 shows an example of how an input image looks like after passing

each of the filters in the applications. To analyze the application, we used an

input of 5000 images with approximately 13 kilobytes each and 65 megabytes

total.

Figure 4.5 shows the luamemprofiler final report. We can see that

malloc was called 76000 times to allocate approximately 680 megabytes and

that most allocated blocks were deallocated. Moreover, the maximum memory

used indicates that the application holds a maximum of only 1.36 megabytes.

The above indicates that the application generates many blocks that are

frequently garbage-collected.

The block type information shows that the application has few tables

with few fields (other). Also, the most used types are string and userdata. We

suspect that both string- and userdata-blocks are related to reading the JPEG

files and converting them from userdata to string and the other way around.

The flat-report supports our suspicion. As shown in Figure 4.6, there are

two C functions that are responsible for more than 99% of the allocations. The

read function is part of the Lua API and is used to read files in text mode. It

is probably responsible by part of the string allocations. The jpegStr function

is probably responsible for converting userdata objects that represent JPEG
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===== Showing 2 of 24 functions that allocated memory =====

% shallow retained

mem mem mem calls name

78.93 536.6 MB 536.6 MB 25000 jpegStr [C]

20.64 140.4 MB 140.4 MB 5000 read [C]

0.17 1.1 MB 1.1 MB 25000 createFromJpegStr [C]

Figure 4.6: lmprof flat report of the CAPTCHA JPEG Filter application.
The format has been slightly altered to better fit this thesis layout.

images into strings. Accordingly, the createFromJpegStr function is probably

responsible for converting strings that represent JPEG images into userdata

objects. As jpegStr allocates almost 80% of the memory, we should investigate

if it is necessary to convert userdata images into string images and back again.

Finally, the call-graph report in Figure 4.7 confirms that we should

investigate both jpegStr and createFromJpegStr. The first and the third

rows show that there are 5000 calls that allocate data to each filter-function

(threshold is applied twice). Every call to a filter-function calls jpegStr and

createFromJpegStr once, which means that every filter-function converts the

image into a format and then convert the image back to the original format.

Accordingly, we should investigate if we can optmize this conversion. Finally,

the second row shows that load is responsible by opening and reading each

image.

By analyzing the application code B.1, we confirmed that every filter-

function receives an image as a string, converts the image into a userdata by

calling createFromJpegStr, modifies the userdata image, and then converts

the userdata image back into a string image by calling jpegStr. We modified

the original application and removed all conversions that the filter functions

do. In the modified implementation B.2, instead of creating a new userdata

and a new string on every call, each filter-function modifies the image in

place. The modified implementation reduced the memory-usage measured by

the time command from 2.14 gigabytes to 441 megabytes. It also reduced the

number of mallocs by more than half and the malloc size by almost 5 times.

Figure 4.8 shows the luamemprofiler final report for the modified version of

the CAPTCHA JPEG Filter application.

4.3
Performance Analysis

In this section, we present the execution time and the memory overhead

for profiling the six applications with luamemprofiler and lmprof. We exe-
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call/tot parents

index %mem ret self call name

call/tot children

===============================================================

220.6 MB 220.6 MB 10K/25K threshold (...)

152.9 MB 152.9 MB 5K/25K grayscale (...)

117.9 MB 117.9 MB 5K/25K blur (...)

45.2 MB 45.2 MB 5K/25K invert (...)

[2]---78.93--536.6-MB--536.6-MB--25K-------jpegStr-[C]

===============================================================

140.6 MB 0.0 MB 5K/5K main chunk (...)

[5]---20.68--140.6-MB----0.0-MB---5K-------load-(...)

140.4 MB 140.4 MB 5K/5K read [C]

0.3 MB 0.3 MB 5K/5K open [C]

===============================================================

0.5 MB 0.5 MB 10K/25K threshold (...)

0.2 MB 0.2 MB 5K/25K grayscale (...)

0.2 MB 0.2 MB 5K/25K blur (...)

0.2 MB 0.2 MB 5K/25K invert (...)

[9]----0.17----1.1-MB----1.1-MB--25K------createFromJpegStr-[C]

Figure 4.7: lmprof call-graph report of the CAPTCHA JPEG Filter applica-
tion. The format has been slightly altered to better fit this thesis layout.

cuted all tests in a notebook with two IntelR⃝ Core R⃝ Processors i7-2640M (4M

Cache, 2.80GHz), for a total of 4 cores, 8GB RAM and 500GB SA-SCSI 7200

RPM hard drive. The notebook had Linux Mint 17 LTS Qiana (64 bit) in-

stalled with essential services running and the desktop interface loaded, which

is needed for testing luamemprofiler display. The measures were done using

the time Linux command. The execution time is the “elapsed real (wall clock)

time used by the process” (%E option) and the memory usage is“the maximum

resident set size of the process during its lifetime” (%M option).

We execute each application as pure Lua (no modifications to the appli-

cation), lmprof (application profiled with lmprof), lmp (application profiled

with luamemprofiler with the display turned off), and lmpD (application

profiled with luamemprofiler with the display turned on). Also, for each ap-

plication, we used inputs that generate light (L), medium (M), and heavy (H)

loads. Except for SMM and PLC, light means an input load that executes in

approximately 10 seconds. The medium input is 10 times larger and the heavy

input is 100 times larger. We executed each test five times. To consolidate

results, we removed one outlier from each test and calculated the means with

the standard deviations.

Figure 4.9 shows the execution times. Regarding lmprof, the slowdown

varies from 0x to 2.4x, which is much bigger than the luamemprofiler
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Number of Mallocs = 30673 Total Malloc Size = 141.47 MB

Number of Reallocs = 170 Total Realloc Size = 0.13 MB

Number of Frees = 25417 Total Free Size = 141.25 MB

Maximum Memory Used = 1.29 MB

Number of Allocs of Each Type:

String = 15412 | Function = 7 | Userdata = 15001

Thread = 0 | Table = 10 | Other = 243

Figure 4.8: luamemprofiler final report of the “fixed” CAPTCHA JPEG
Filter application. The format has been slightly altered to better fit this thesis
layout.

slowdown. To understand the overhead imposed by lmprof, we compiled a

new version of lmprof that counts the total number of functions calls during

the program execution. Then, as Figure 4.10 shows, we executed each test with

the heavy input and compared the number of function calls executed by the

test to the application slowdown while being profiled with lmprof. As we can

see, the number of function calls executed by a program has direct relation

to lmprof’s overhead. While applications that do not have many function

calls (e.g. BAS and SMM) suffer small slowdowns, applications that do many

function calls (e.g. JPG and PLC) suffer big slowdowns. This happens because

lmprof, in contrast to luamemprofiler, hooks every function call, instead of just

the function calls that allocate data.

Regarding luamemprofiler, the overhead varies from 0% to 2% with-

out display and from 0% to 13% with display, except by the PLC application.

When the display is turned on, luamemprofiler slows down the PLC exe-

cution by 2.8x. PLC has a very large number of allocated and deleted blocks

when compared to the other applications. It allocates approximately 24 million

blocks, while other applications allocate 100 thousand. Also, differently from

applications such as the BAS that allocates data at specific parts of the execu-

tion, PLC allocates and deallocates these blocks during the entire execution.

Accordingly, drawing and erasing these blocks become expensive.

Figure 4.11 shows the memory overhead for each test. lmprof overhead

is very low; it varies from 0% to 2% in most tests. Although PLC has many

different function calls, which increases the lmprof overhead, we consider 8%

a low overhead for a profiling tool. luamemprofiler also has low overhead

in most profiled applications. However, as it records every allocated object,

it is more expensive than lmprof, especially in programs that allocate many

objects (e.g PLC and BAS). Comparing the real values of lmp and lmpD, the

digital library has approximately 4 megabytes, which causes huge impact in
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Figure 4.9: Execution time for each test in pure Lua, using lmprof, using
luamemprofiler with the display turned off, and using luamemprofiler with
the display turned on.

programs with a small memory footprint, such as PPM and SRS tests.
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Figure 4.11: Memory consumption for each test in pure Lua, using lmprof,
using luamemprofiler with the display turned off, and using luamemprofiler
with the display turned on.
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5
Conclusion

In this thesis, we presented a study on memory profilers and how they can

help programmers identify and fix memory bloats. We analyzed published work

and currently used tools in three scripting languages (JavaScript, Python, and

Lua) and, based on how the programmer uses each tool, we divided memory

profilers in two groups, manual and automatic.

Heap Profiler is the most advanced tool for scripting languages. It

is a JavaScript tool built over Google Chrome that offers a manual and

an automatic memory profiler with many visual features. Python has many

manual tools that help programmers analyze specific objects. It also has a good

automatic tool to analyze the overall behavior of a program. Lua has only three

manual tools that analyze specific parts of the program. In summary, memory

profilers in these languages explore few profiling techniques and research in

this area should be encouraged.

Lua was really important to our research due to its simplicity and

flexibility. The main goal of Lua is to be an embedded language, and for

this reason it prefers to provide mechanisms instead of fixed policies to

programmers. These mechanisms help developers easily instrument a program

execution.

Lua’s complete and fully reentrant API together with its easy integration

with C are very handful to implement memory profilers. Developers can easily

monitor and collect information about Lua programs from C, which allows

memory-profiler developers to allocate all the auxiliary data apart from the

memory used by the main program. As memory-profiler allocations do not

interfere in the monitored memory, reports are easier to calculate and more

precise.

The function lua_sethook exposes a powerful mechanism that allows

developers to set up different hooks, such as a return event hook that collects

the total amount of memory used by the program after each function returns. It

is important to highlight that its implementation offers multiple hook events

so that a developer can choose the events that best fit its use case. As an

example, a tail-call event is different from a call event, so we used the flag that
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distinguishes them to handle tail calls correctly.

Another powerful mechanism is the ability to dynamically change the

allocation function. The function lua_setallocf, available since 2006, allows

developers to substitute the allocation function by a custom allocation func-

tion that, for example, collects metrics. Python has a similar mechanism im-

plemented in version 3.4, which was released in 2014 [51, 46]. As a result of

this implementation, in the same 3.4 release there was also a tracemalloc

module to trace memory blocks allocated by Python [45]. We believe that one

of the reasons for most Python’s memory profilers being pretty printers is due

to the lack of this mechanism in earlier versions. JavaScript does not expose

such mechanism.

After studying different techniques, we implemented two automatic

memory profilers: luamemprofiler and lmprof. We created luamemprofiler

to explore real-time visualization, data categorization by type, and ongoing

interaction. lmprof was created to explore function profiling.

Real-time visualization was useful to quickly understand the amount of

memory that a program uses throughout execution (i.e. if blocks are allocated

and garbage-collected shortly or if blocks are allocated and remain in the heap

for a long time). The ongoing interaction and the block categorization by type

were not as useful as we expected. Ongoing interaction was not useful because

we implemented only simple interaction features, which proved to be hard to

use in practice. For instance, the step-by-step execution is very hard to use in

real programs if the programmer cannot set a breakpoint, which is the case.

Accordingly, we believe that by adding more advanced features, the ongoing

interaction will be helpful. Type categorization is very useful in many profilers

and was somehow useful to analyze applications. However, due to the problems

that we explained in Section 3.2.2, the categorization does not contain as much

information as we wanted.

Finally, function profiling was very useful to understand unfamiliar

programs. Usually, just by reading the top five functions the programmer

knows the main execution flow that allocates data. It is important to highlight

that we opted to monitor just function-calls that allocate data. Therefore,

as many function calls do not allocate data, lmprof reports cannot be used

to understand the complete execution flow. We do not have a final opinion

about monitoring or not all the function calls. On the one hand, we would

be able to understand the complete execution flow. On the other hand,

too much information could obscure the memory information, which is the

focus. Function profiling was also very useful to identify memory bloats. As

the reports highlight the functions that allocated most of the memory, the
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programmer can easily narrow down the functions that should be analyzed

regarding memory bloats.

We evaluated luamemprofiler and lmprof considering three important

aspects. They should be easy to integrate into existing programs. Also, They

should not impose too much overhead on the target program. And finally, they

should provide readable reports for a regular programmer. We used six different

applications developed by third party programmers to evaluate both tools.

Both luamemprofiler and lmprof are integrated into the target pro-

gram by adding three lines to the target-program code. This is a very simple

process that can be easily done manually. Also, the programmer can create

a simple script to automatically add these lines, as we did to evaluate our

tools. We could change the integration method to a simple parameter in the

command line that executes the target program. However, by using this mech-

anism, our tools would always start profiling after being loaded, which can be

a problem if a programmer wants to profile specific parts instead of the entire

program. We need further investigation to decide which mechanism is better.

We evaluated overhead regarding both memory and execution time. The

memory overhead imposed by our tools is usually low (less than 8%). In appli-

cations that allocate many objects, the overhead imposed by luamemprofiler

increases (e.g. an application that allocated 24 million objects suffered 50%

memory overhead). The execution time overhead imposed by luamemprofiler

is usually low (less than 8%). However, in one of the tests the slowdown is 2.8x.

The execution time overhead imposed by lmprof is on average 60%. The slow-

down is relative to the number of function calls. In an application that did

approximately 336 million function calls, the slowdown was 2.4x.

Finally, to evaluate the quality of the reports, we used our tools to

analyze two applications that we were not familiar with. Just from the

reports we were able to understand the overall behavior of the target program

and pinpoint possible memory bloats. After analyzing and modifying the

source code, we were able to reduce the memory usage of one application by

approximately 4 times and of the other application by approximately 5 times.

Although our implementation focus on automatic memory profilers,

we believe that manual memory profilers are also important. Moreover, we

believe that integrating both types is very promising. We hope this thesis

raises awareness regarding memory bloat, specially in scripting languages.

Accordingly, we would like to highlight one future work for each tool. To

luamemprofiler, we suggest the implementation of a debugger feature. By

using that feature, the programmer will be able to set break points and execute

commands inside the display. To lmprof, we suggest the implementation of a
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visual graph generator. Based on the metadata file, this script would create a

visual graph of the function calls.
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A
Black and Scholes Source Code

A.1
Original Application

1 --

2 -- Black-Scholes

3 -- Analytical method for calculating European Options

4 --

5 -- Ported from blackscholes.c included in the PARSEC benchmark suite.

6 --

7

8 if ( #arg < 2 ) then

9 print( "usage: " .. arg[0] .. " <input_file> <output_file>" )

10 return

11 end

12

13 -- number of runs (hard-coded in original implementation)

14 numruns = 100

15

16 -- assign command line parameters

17 nthreads = 1

18 infile = arg[1]

19 outfile = arg[2]

20

21 -- open input file

22 infh = io.open( infile )

23 if ( infh == nil ) then

24 print( "cannot open input file " .. infile )

25 return

26 end

27

28 -- read number of options in first line of input file
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29 numoptions = tonumber(infh:read( "n" ))

30 if ( numoptions == nil ) then

31 print( "cannot read number of options from input file " .. infile )

32 return

33 end

34

35 -- adjust number of threads, if necessary, to suit number of options

36 if ( nthreads > numoptions ) then

37 print( "not enough work to keep all threads busy; " ..

38 "reducing number of threads." )

39 nthreads = numoptions

40 end

41

42 -- advance file pointer to second line

43 infh:read( "l" )

44

45 -- read options data from input file, starting at line 2

46 datatb = {}

47 fnametb = { "s", "strike", "r", "divq", "v", "t", "optiontype", "divs",

48 "dgrefval" }

49 for line in infh:lines() do

50 optiontb = {}

51 fnum = 1

52 for field in string.gmatch( line, "[^%s]+" ) do

53 --table.insert( optiontb, field )

54 optiontb[fnametb[fnum]] = field

55 fnum = fnum + 1

56 end

57 table.insert( datatb, optiontb )

58 end

59

60 -- close input file

61 infh:close()

62

63 -- print initial information

64 print("Num of Options: " .. numoptions )

65 print("Num of Runs: " .. numruns )

66

67 -- divide option fields into records
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68 otype = {}

69 sptprice = {}

70 strike = {}

71 rate = {}

72 volatility = {}

73 otime = {}

74 for i = 1, numoptions, 1 do

75 if ( datatb[i].optiontype == ’P’ ) then

76 table.insert( otype, 1 )

77 else

78 table.insert( otype, 0 )

79 end

80 table.insert( sptprice, datatb[i].s )

81 table.insert( strike, datatb[i].strike )

82 table.insert( rate, datatb[i].r )

83 table.insert( volatility, datatb[i].v )

84 table.insert( otime, datatb[i].t )

85 end

86

87 -- Cumulative Normal Distribution Function

88 function CNDF( InputX )

89

90 inv_sqrt_2xPI = 0.39894228040143270286

91

92 if ( InputX < 0 ) then

93 InputX = -InputX

94 sign = 1

95 else

96 sign = 0

97 end

98

99 xInput = InputX

100

101 -- Compute NPrimeX term common to both four & six decimal accuracy calcs

102 expValues = math.exp( -0.5 * InputX * InputX )

103 xNPrimeofX = expValues

104 xNPrimeofX = xNPrimeofX * inv_sqrt_2xPI

105

106 xK2 = 0.2316419 * xInput
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107 xK2 = 1.0 + xK2

108 xK2 = 1.0 / xK2

109 xK2_2 = xK2 * xK2

110 xK2_3 = xK2_2 * xK2

111 xK2_4 = xK2_3 * xK2

112 xK2_5 = xK2_4 * xK2

113

114 xLocal_1 = xK2 * 0.319381530

115 xLocal_2 = xK2_2 * (-0.356563782)

116 xLocal_3 = xK2_3 * 1.781477937

117 xLocal_2 = xLocal_2 + xLocal_3

118 xLocal_3 = xK2_4 * (-1.821255978)

119 xLocal_2 = xLocal_2 + xLocal_3

120 xLocal_3 = xK2_5 * 1.330274429

121 xLocal_2 = xLocal_2 + xLocal_3

122

123 xLocal_1 = xLocal_2 + xLocal_1

124 xLocal = xLocal_1 * xNPrimeofX

125 xLocal = 1.0 - xLocal

126

127 OutputX = xLocal

128

129 if ( sign ~= 0 ) then

130 OutputX = 1.0 - OutputX;

131 end

132

133 return OutputX

134

135 end

136

137 -- main Black & Schole’s equation function

138 function BlkSchlsEqEuroNoDiv( sptprice, strike, rate, volatility, time,

139 otype, timet )

140

141 xStockPrice = sptprice

142 xStrikePrice = strike

143 xRiskFreeRate = rate

144 xVolatility = volatility

145
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146 xTime = time;

147 xSqrtTime = math.sqrt( xTime )

148

149 logValues = math.log( sptprice / strike )

150

151 xLogTerm = logValues

152

153 xPowerTerm = xVolatility * xVolatility

154 xPowerTerm = xPowerTerm * 0.5

155

156 xD1 = xRiskFreeRate + xPowerTerm

157 xD1 = xD1 * xTime

158 xD1 = xD1 + xLogTerm

159

160 xDen = xVolatility * xSqrtTime

161 xD1 = xD1 / xDen

162 xD2 = xD1 - xDen

163

164 d1 = xD1

165 d2 = xD2

166

167 NofXd1 = CNDF( d1 )

168 NofXd2 = CNDF( d2 )

169

170 FutureValueX = strike * (math.exp( -( rate )*( time )))

171 if ( otype == 0 ) then

172 OptionPrice = (sptprice * NofXd1) - (FutureValueX * NofXd2)

173 else

174 NegNofXd1 = (1.0 - NofXd1)

175 NegNofXd2 = (1.0 - NofXd2)

176 OptionPrice = (FutureValueX * NegNofXd2) - (sptprice * NegNofXd1)

177 end

178

179 return OptionPrice

180

181 end

182

183 -- worker thread

184 function bs_thread( tid )
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185 from = (tid - 1) * (numoptions / nthreads ) + 1

186 to = from + (numoptions / nthreads ) - 1

187 for j = 1, numruns, 1 do

188 for i = from, to, 1 do

189 -- call main function to calculate option value based on

190 -- Black & Schole’s equation

191 p = BlkSchlsEqEuroNoDiv( sptprice[i], strike[i], rate[i],

192 volatility[i], otime[i], otype[i], 0 )

193 pricestb[i] = p

194 end

195 end

196 end

197

198 -- create results table

199 pricestb = {}

200

201 -- create threads

202 for i = 1, nthreads, 1 do

203 co = coroutine.create( bs_thread )

204 coroutine.resume( co, i )

205 end

206

207 -- write results to outfile

208 outfh = io.open( outfile, "w" )

209 if ( outfh == nil ) then

210 print( "cannot open output file " .. outfile )

211 return

212 end

213

214 outfh:write( numoptions, "\n" )

215 for i = 1, numoptions, 1 do

216 outfh:write( string.format( "%.18f", pricestb[i] ), "\n" )

217 end

218

219 outfh:close()

A.2
Modified Application

1 --
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2 -- Black-Scholes

3 -- Analytical method for calculating European Options

4 --

5 -- Ported from blackscholes.c included in the PARSEC benchmark suite.

6 --

7

8 if ( #arg < 2 ) then

9 print( "usage: " .. arg[0] .. " <input_file> <output_file>" )

10 return

11 end

12

13 -- number of runs (hard-coded in original implementation)

14 numruns = 100

15

16 -- assign command line parameters

17 nthreads = 1

18 infile = arg[1]

19 outfile = arg[2]

20

21 -- open input file

22 infh = io.open( infile )

23 if ( infh == nil ) then

24 print( "cannot open input file " .. infile )

25 return

26 end

27

28 -- read number of options in first line of input file

29 numoptions = tonumber(infh:read( "n" ))

30 if ( numoptions == nil ) then

31 print( "cannot read number of options from input file " .. infile )

32 return

33 end

34

35 -- adjust number of threads, if necessary, to suit number of options

36 if ( nthreads > numoptions ) then

37 print( "not enough work to keep all threads busy; " ..

38 "reducing number of threads." )

39 nthreads = numoptions

40 end

DBD
PUC-Rio - Certificação Digital Nº 1321838/CA



Appendix A. Black and Scholes Source Code 75

41

42 -- advance file pointer to second line

43 infh:read( "l" )

44

45 -- read options data from input file, starting at line 2

46 --datatb = {}

47 fnametb = { "s", "strike", "r", "divq", "v", "t", "optiontype", "divs",

48 "dgrefval" }

49

50 -- divide option fields into records

51 otype = {}

52 sptprice = {}

53 strike = {}

54 rate = {}

55 volatility = {}

56 otime = {}

57

58 for line in infh:lines() do

59 optiontb = {}

60 fnum = 1

61 for field in string.gmatch( line, "[^%s]+" ) do

62 --table.insert( optiontb, field )

63 optiontb[fnametb[fnum]] = field

64 fnum = fnum + 1

65 end

66

67 if ( optiontb.optiontype == ’P’ ) then

68 table.insert( otype, 1 )

69 else

70 table.insert( otype, 0 )

71 end

72 table.insert( sptprice, optiontb.s )

73 table.insert( strike, optiontb.strike )

74 table.insert( rate, optiontb.r )

75 table.insert( volatility, optiontb.v )

76 table.insert( otime, optiontb.t )

77 end

78

79 -- close input file
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80 infh:close()

81

82 -- print initial information

83 print("Num of Options: " .. numoptions )

84 print("Num of Runs: " .. numruns )

85

86 -- Cumulative Normal Distribution Function

87 function CNDF( InputX )

88

89 inv_sqrt_2xPI = 0.39894228040143270286

90

91 if ( InputX < 0 ) then

92 InputX = -InputX

93 sign = 1

94 else

95 sign = 0

96 end

97

98 xInput = InputX

99

100 -- Compute NPrimeX term common to both four & six decimal accuracy calcs

101 expValues = math.exp( -0.5 * InputX * InputX )

102 xNPrimeofX = expValues

103 xNPrimeofX = xNPrimeofX * inv_sqrt_2xPI

104

105 xK2 = 0.2316419 * xInput

106 xK2 = 1.0 + xK2

107 xK2 = 1.0 / xK2

108 xK2_2 = xK2 * xK2

109 xK2_3 = xK2_2 * xK2

110 xK2_4 = xK2_3 * xK2

111 xK2_5 = xK2_4 * xK2

112

113 xLocal_1 = xK2 * 0.319381530

114 xLocal_2 = xK2_2 * (-0.356563782)

115 xLocal_3 = xK2_3 * 1.781477937

116 xLocal_2 = xLocal_2 + xLocal_3

117 xLocal_3 = xK2_4 * (-1.821255978)

118 xLocal_2 = xLocal_2 + xLocal_3

DBD
PUC-Rio - Certificação Digital Nº 1321838/CA



Appendix A. Black and Scholes Source Code 77

119 xLocal_3 = xK2_5 * 1.330274429

120 xLocal_2 = xLocal_2 + xLocal_3

121

122 xLocal_1 = xLocal_2 + xLocal_1

123 xLocal = xLocal_1 * xNPrimeofX

124 xLocal = 1.0 - xLocal

125

126 OutputX = xLocal

127

128 if ( sign ~= 0 ) then

129 OutputX = 1.0 - OutputX;

130 end

131

132 return OutputX

133

134 end

135

136 -- main Black & Schole’s equation function

137 function BlkSchlsEqEuroNoDiv( sptprice, strike, rate, volatility, time,

138 otype, timet )

139

140 xStockPrice = sptprice

141 xStrikePrice = strike

142 xRiskFreeRate = rate

143 xVolatility = volatility

144

145 xTime = time;

146 xSqrtTime = math.sqrt( xTime )

147

148 logValues = math.log( sptprice / strike )

149

150 xLogTerm = logValues

151

152 xPowerTerm = xVolatility * xVolatility

153 xPowerTerm = xPowerTerm * 0.5

154

155 xD1 = xRiskFreeRate + xPowerTerm

156 xD1 = xD1 * xTime

157 xD1 = xD1 + xLogTerm
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158

159 xDen = xVolatility * xSqrtTime

160 xD1 = xD1 / xDen

161 xD2 = xD1 - xDen

162

163 d1 = xD1

164 d2 = xD2

165

166 NofXd1 = CNDF( d1 )

167 NofXd2 = CNDF( d2 )

168

169 FutureValueX = strike * (math.exp( -( rate )*( time )))

170 if ( otype == 0 ) then

171 OptionPrice = (sptprice * NofXd1) - (FutureValueX * NofXd2)

172 else

173 NegNofXd1 = (1.0 - NofXd1)

174 NegNofXd2 = (1.0 - NofXd2)

175 OptionPrice = (FutureValueX * NegNofXd2) - (sptprice * NegNofXd1)

176 end

177

178 return OptionPrice

179

180 end

181

182 -- worker thread

183 function bs_thread( tid )

184 from = (tid - 1) * (numoptions / nthreads ) + 1

185 to = from + (numoptions / nthreads ) - 1

186 for j = 1, numruns, 1 do

187 for i = from, to, 1 do

188 -- call main function to calculate option value based on

189 -- Black & Schole’s equation

190 p = BlkSchlsEqEuroNoDiv( sptprice[i], strike[i], rate[i],

191 volatility[i], otime[i], otype[i], 0 )

192 pricestb[i] = p

193 end

194 end

195 end

196
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197 -- create results table

198 pricestb = {}

199

200 -- create threads

201 for i = 1, nthreads, 1 do

202 co = coroutine.create( bs_thread )

203 coroutine.resume( co, i )

204 end

205

206 -- write results to outfile

207 outfh = io.open( outfile, "w" )

208 if ( outfh == nil ) then

209 print( "cannot open output file " .. outfile )

210 return

211 end

212

213 outfh:write( numoptions, "\n" )

214 for i = 1, numoptions, 1 do

215 outfh:write( string.format( "%.18f", pricestb[i] ), "\n" )

216 end

217

218 outfh:close()
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B
CAPTCHA JPEG Filter Source Code

B.1
Original Application

B.1.1
main.lua

1 --

2 -- CAPTCHA JPEG Filter

3 -- an application to filter CAPTCHA images in the JPEG format to make it

4 -- easier to perform automatic optical character recognition (OCR).

5 --

6

7 local image = require"image"

8 local lfs = require"lfs"

9

10 if ( #arg < 2 ) then

11 print( "usage: " .. arg[0] .. " <input_image_dir> <output_image_dir>" )

12 return

13 end

14

15 indir = arg[1]

16 outdir = arg[2]

17 startdir = lfs.currentdir()

18

19 if ( not lfs.chdir( indir )) then

20 io.stderr:write( "cannot change to input dir \"" .. indir .. "\"\n" )

21 return

22 end

23

24 local imgfiles = {}

25 for f in lfs.dir( lfs.currentdir( )) do

26 if ( lfs.attributes( f, "mode" ) == "file" ) then
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27 if ( string.match( f, "%.jpg$" ) or

28 string.match( f, "%.JPG$" )) then

29 table.insert( imgfiles, f )

30 end

31 end

32 end

33

34 lfs.chdir( startdir )

35

36 for _,f in pairs( imgfiles ) do

37 local img, err = image.load( indir .. "/" .. f )

38 if ( not img ) then

39 io.stderr:write( err .. "\n" )

40 return

41 end

42 img = image.grayscale( img )

43 img = image.threshold( img, 220 )

44 img = image.blur( img, 1 )

45 img = image.threshold( img, 70 )

46 img = image.invert( img )

47 image.save( img, outdir .. "/" .. f )

48 end

B.1.2
image.lua

1 local math = require"math"

2 local gd = require"gd"

3 local io = require"io"

4

5 -- fix for "FILE* expected, got FILE*" bug in io library

6 if ( io ) then

7 getmetatable(io.input()).__gc = nil

8 end

9

10 image = {}

11

12 image.load =

13 function( infile )

14 -- open input file
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15 local infh = io.open( infile, "rb" )

16 if ( infh == nil ) then

17 return false, "cannot open input file " .. infile

18 end

19 -- read the whole file

20 local data = infh:read( "a" )

21 -- close file

22 infh:close()

23 -- return data read from file

24 return data

25 end

26

27 image.grayscale =

28 function( img )

29 local gdimg = gd.createFromJpegStr( img )

30 getmetatable(gdimg).__gc = nil

31 for i = 0, gdimg:sizeX()-1, 1 do

32 for j = 0, gdimg:sizeY()-1, 1 do

33 local r = gdimg:red(gdimg:getPixel(i,j))

34 local g = gdimg:green(gdimg:getPixel(i,j))

35 local b = gdimg:blue(gdimg:getPixel(i,j))

36 local avg = math.modf((r * 0.3) + (g * 0.59) + (b * 0.11))

37 gdimg:setPixel(i,j,gdimg:colorExact(avg,avg,avg))

38 end

39 end

40 return gdimg:jpegStr(100)

41 end

42

43 image.threshold =

44 function( img, thresh )

45 local gdimg = gd.createFromJpegStr( img )

46 getmetatable(gdimg).__gc = nil

47 for i = 0, gdimg:sizeX()-1, 1 do

48 for j = 0, gdimg:sizeY()-1, 1 do

49 -- since img is grayscale, we can get r,g,b (they’re all equal)

50 local gray = gdimg:red(gdimg:getPixel(i,j))

51 if ( gray < thresh ) then

52 -- gdimg:setPixel(i,j,gdimg:colorExact(max,max,max))

53 gdimg:setPixel(i,j,gdimg:colorExact(0,0,0))
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54 else

55 -- gdimg:setPixel(i,j,gdimg:colorExact(0,0,0))

56 gdimg:setPixel(i,j,gdimg:colorExact(255,255,255))

57 end

58 end

59 end

60 return gdimg:jpegStr(100)

61 end

62

63 image.blur =

64 function( img, blursize )

65 local gdimg = gd.createFromJpegStr( img )

66 getmetatable(gdimg).__gc = nil

67 local w = gdimg:sizeX()

68 local h = gdimg:sizeY()

69 for i = 0, w-1, 1 do

70 for j = 0, h-1, 1 do

71 local avgr = 0

72 local avgg = 0

73 local avgb = 0

74 local blurpxcount = 0

75 for x = i, i + blursize, 1 do

76 if x >= w then break end

77 for y = j, j + blursize, 1 do

78 if y >= h then break end

79 avgr = avgr + gdimg:red(gdimg:getPixel(x,y))

80 avgg = avgg + gdimg:green(gdimg:getPixel(x,y))

81 avgb = avgb + gdimg:blue(gdimg:getPixel(x,y))

82 blurpxcount = blurpxcount + 1

83 end

84 end

85 avgr = math.floor( avgr / blurpxcount )

86 avgg = math.floor( avgg / blurpxcount )

87 avgb = math.floor( avgb / blurpxcount )

88 for x = i, i + blursize, 1 do

89 if x >= w then break end

90 for y = j, j + blursize, 1 do

91 if y >= h then break end

92 -- gd max for alpha channel is 127
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93 gdimg:setPixel(x,y,gdimg:colorExact(avgr,avgg,avgb))

94 end

95 end

96 end

97 end

98 return gdimg:jpegStr(100)

99 end

100

101 image.invert =

102 function( img )

103 local gdimg = gd.createFromJpegStr( img )

104 getmetatable(gdimg).__gc = nil

105 for i = 0, gdimg:sizeX()-1, 1 do

106 for j = 0, gdimg:sizeY()-1, 1 do

107 -- since img is grayscale, we can get r,g,b (they’re all equal)

108 local gray = gdimg:red(gdimg:getPixel(i,j))

109 local inv = 255 - gray

110 gdimg:setPixel(i,j,gdimg:colorExact(inv,inv,inv))

111 end

112 end

113 return gdimg:jpegStr(100)

114 end

115

116 image.save =

117 function( img, outfile )

118 -- open output file

119 local outfh = io.open( outfile, "wb" )

120 if ( outfh == nil ) then

121 return false, "cannot open output file " .. outfile

122 end

123 local f, err = outfh:write( img )

124 outfh:flush()

125 -- close file

126 outfh:close()

127 -- return

128 if ( not f ) then

129 return false, "error writing to outputfile: " .. err

130 end

131 return true
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132 end

133

134 return image

B.2
Modified Application

B.2.1
main.lua

1 --

2 -- CAPTCHA JPEG Filter

3 -- an application to filter CAPTCHA images in the JPEG format to make it

4 -- easier to perform automatic optical character recognition (OCR).

5 --

6

7 local image = require"image"

8 local lfs = require"lfs"

9

10 if ( #arg < 2 ) then

11 print( "usage: " .. arg[0] .. " <input_image_dir> <output_image_dir>" )

12 return

13 end

14

15 indir = arg[1]

16 outdir = arg[2]

17 startdir = lfs.currentdir()

18

19 if ( not lfs.chdir( indir )) then

20 io.stderr:write( "cannot change to input dir \"" .. indir .. "\"\n" )

21 return

22 end

23

24 local imgfiles = {}

25 for f in lfs.dir( lfs.currentdir( )) do

26 if ( lfs.attributes( f, "mode" ) == "file" ) then

27 if ( string.match( f, "%.jpg$" ) or

28 string.match( f, "%.JPG$" )) then

29 table.insert( imgfiles, f )

30 end
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31 end

32 end

33

34 lfs.chdir( startdir )

35

36 for _,f in pairs( imgfiles ) do

37 local img, err = image.load( indir .. "/" .. f )

38 if ( not img ) then

39 io.stderr:write( err .. "\n" )

40 return

41 end

42 image.modify(img)

43 image.grayscale( img )

44 image.threshold( img, 220 )

45 image.blur( img, 1 )

46 image.threshold( img, 70 )

47 image.invert( img )

48 image.save( img, outdir .. "/" .. f )

49 end

B.2.2
image.lua

1 local math = require"math"

2 local gd = require"gd"

3 local io = require"io"

4

5 -- fix for "FILE* expected, got FILE*" bug in io library

6 if ( io ) then

7 getmetatable(io.input()).__gc = nil

8 end

9

10 image = {}

11

12 image.load =

13 function( infile )

14 -- open input file

15 local infh = io.open( infile, "rb" )

16 if ( infh == nil ) then

17 return false, "cannot open input file " .. infile
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18 end

19 -- read the whole file

20 local data = infh:read( "a" )

21 -- close file

22 infh:close()

23 local gdimg = gd.createFromJpegStr(data)

24 -- return data read from file

25 return gdimg

26 end

27

28 image.grayscale =

29 function( gdimg )

30 getmetatable(gdimg).__gc = nil

31 for i = 0, gdimg:sizeX()-1, 1 do

32 for j = 0, gdimg:sizeY()-1, 1 do

33 local r = gdimg:red(gdimg:getPixel(i,j))

34 local g = gdimg:green(gdimg:getPixel(i,j))

35 local b = gdimg:blue(gdimg:getPixel(i,j))

36 local avg = math.modf((r * 0.3) + (g * 0.59) + (b * 0.11))

37 gdimg:setPixel(i,j,gdimg:colorExact(avg,avg,avg))

38 end

39 end

40 end

41

42 image.threshold =

43 function( gdimg, thresh )

44 getmetatable(gdimg).__gc = nil

45 for i = 0, gdimg:sizeX()-1, 1 do

46 for j = 0, gdimg:sizeY()-1, 1 do

47 -- since img is grayscale, we can get r,g,b (they’re all equal)

48 local gray = gdimg:red(gdimg:getPixel(i,j))

49 if ( gray < thresh ) then

50 -- gdimg:setPixel(i,j,gdimg:colorExact(max,max,max))

51 gdimg:setPixel(i,j,gdimg:colorExact(0,0,0))

52 else

53 -- gdimg:setPixel(i,j,gdimg:colorExact(0,0,0))

54 gdimg:setPixel(i,j,gdimg:colorExact(255,255,255))

55 end

56 end
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57 end

58 end

59

60 image.blur =

61 function( gdimg, blursize )

62 getmetatable(gdimg).__gc = nil

63 local w = gdimg:sizeX()

64 local h = gdimg:sizeY()

65 for i = 0, w-1, 1 do

66 for j = 0, h-1, 1 do

67 local avgr = 0

68 local avgg = 0

69 local avgb = 0

70 local blurpxcount = 0

71 for x = i, i + blursize, 1 do

72 if x >= w then break end

73 for y = j, j + blursize, 1 do

74 if y >= h then break end

75 avgr = avgr + gdimg:red(gdimg:getPixel(x,y))

76 avgg = avgg + gdimg:green(gdimg:getPixel(x,y))

77 avgb = avgb + gdimg:blue(gdimg:getPixel(x,y))

78 blurpxcount = blurpxcount + 1

79 end

80 end

81 avgr = math.floor( avgr / blurpxcount )

82 avgg = math.floor( avgg / blurpxcount )

83 avgb = math.floor( avgb / blurpxcount )

84 for x = i, i + blursize, 1 do

85 if x >= w then break end

86 for y = j, j + blursize, 1 do

87 if y >= h then break end

88 -- gd max for alpha channel is 127

89 gdimg:setPixel(x,y,gdimg:colorExact(avgr,avgg,avgb))

90 end

91 end

92 end

93 end

94 end

95
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96 image.invert =

97 function( gdimg )

98 getmetatable(gdimg).__gc = nil

99 for i = 0, gdimg:sizeX()-1, 1 do

100 for j = 0, gdimg:sizeY()-1, 1 do

101 -- since img is grayscale, we can get r,g,b (they’re all equal)

102 local gray = gdimg:red(gdimg:getPixel(i,j))

103 local inv = 255 - gray

104 gdimg:setPixel(i,j,gdimg:colorExact(inv,inv,inv))

105 end

106 end

107 end

108

109 image.save =

110 function( gdimg, outfile )

111 local img = gd.jpegStr(gdimg, 100)

112 -- open output file

113 local outfh = io.open( outfile, "wb" )

114 if ( outfh == nil ) then

115 return false, "cannot open output file " .. outfile

116 end

117 local f, err = outfh:write( img )

118 outfh:flush()

119 -- close file

120 outfh:close()

121 -- return

122 if ( not f ) then

123 return false, "error writing to outputfile: " .. err

124 end

125 return true

126 end

127

128 return image
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