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Abstract

Santana Rios, Luiz Romário; Ierusalimschy, Roberto (Advisor).
A survey of function values in imperative programming
languages. Rio de Janeiro, 2019. 79p. Dissertação de mestrado –
Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

A programming language is said to have first-class functions when it
provides the capability of manipulating functions in the same way as other
values, i.e., storing in variables, passing as parameters, etc.. Programming
with first-class functions opens the programmer to new forms of abstractions
and it’s the default in functional programming languages. However, in
the realm of imperative languages (including object-oriented languages),
each language has different semantics, properties, and terminology for
functions—in great part, thanks to their focus on mutability, which isn’t
present in functional languages.
To help shed light on these differences, we made a survey of the specifi-
cation of function values in imperative programming languages from many
different disciplines. For each language, we illustrate, based on examples,
the properties of function values in it, highlighting where it differs from
other languages—all this with a consistent terminology in all languages.
We provide a reference that compares and contrasts different renditions of
functions in one single place and conclude that the design of functions in a
language depends on the interaction of its features and constraints with its
functions.

Keywords
First-class functions; Functional programming; Imperative pro-

gramming; Object-oriented programming; Programming language design;
Survey.
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Resumo

Santana Rios, Luiz Romário; Ierusalimschy, Roberto. Um levan-
tamento sobre o suporte a funções como valores em lin-
guagens imperativas. Rio de Janeiro, 2019. 79p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Se diz que uma linguagem de programação tem funções de primeira
classe quando ela fornece a capacidade de manipular funções da mesma
maneira que outros valores, isto é, guardar em variáveis, passar como parâ-
metros, etc.. Programar com funções de primeira classe abre o programador
a novas formas de abstração e é o padrão em linguagens de programação
funcionais. Porém, se tratando de linguagens imperativas (incluindo lingua-
gens orientadas a objeto), cada linguagem tem semântica, propriedades e
terminologia diferentes para funções—em grande parte graças a seu foco em
mutabilidade, que as linguagens funcionais não têm.
Para esclarecer essas diferenças, nós fizemos um levantamento sobre a es-
pecificação de funções como valores em linguagens de programação impera-
tivas de várias disciplinas diferentes. Para cada linguagem, nós ilustramos,
nos baseando em exemplos, as propriedades dos valores de funções nela,
destacando onde ela difere de outras linguagens—tudo isso usando uma ter-
minologia consistente em todas as linguagens. Nós esperamos oferecer uma
referência para desenvolvedores compararem e contrastarem as diferentes
versões de funções num só lugar.

Palavras-chave
Funções de primeira classe; Programação funcional; Programação

imperativa; Programação orientada a objetos; Design de linguagens de
programação; Levantamento.
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The programs we use to conjure processes
are like a sorcerer’s spells. They are carefully
composed from symbolic expressions in arcane
and esoteric programming languages that pre-
scribe the tasks we want our processes to per-
form.

H. Abelson, G. J. Sussman, Structure and Interpretation of Computer
Programs.
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1
Introduction

In programming languages, having functions as values—or just function
values—means the language provides one or more ways for the programmer
to access functions for purposes other than to directly apply them, such
as: passing functions as parameters, storing functions in arrays, etc.. In the
imperative programming style, it’s not usual to employ functions as values;
whenever that’s done, it tends to be an advanced technique.

In contrast, functional programming puts a lot of emphasis on functions
as values. Functional languages have the following properties:

First-class function values The function values in functional programming
languages can be manipulated in all of the same ways any other value can.

Anonymous functions Functions are not necessarily tied to a name and can
be declared as an expression that directly denotes a function value. Having
function expressions also means that functions can be nested, since function
expressions, like any expression, can be present inside functions.

Lexical scoping Functions can access variables created in their outer creation
environment. Given that functions, as first-class values, can be moved away
from their creation environment, this means that the external variables they
access will be available to them even after the end of the scope in which they
were created. Functional languages use closures to implement that

These properties enable the programmer to implement various forms of
high-level abstracion by use of functions alone. Some of the applications are
the following:

– Creating new functions using runtime values and available functions as
parameters (e.g. derivative);

– Storing code to call it later (callbacks, observers, etc.);

– Defining part of a function’s behavior as a parameter;

– Change the behavior of the program in runtime.
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Chapter 1. Introduction 13

This emphasis on functions as values has later been incorporated in some
imperative programming languages, but this later incorporation means that
each of these languages took its liberties to approach first-class functions in
a way that was most convenient to their language design — unlike functional
languages, which more or less agree on which are the properties of function
values. But, since designing and implementing functions with the same prop-
erties as those in functional languages has many challenges and, many times,
the language has to fit function values in their design, these designs can vary
wildly—as well as the terminologies accompanying them.

To shed light on these differences, we surveyed the design of function val-
ues in several different imperative programming languages—including object-
oriented ones. We looked mostly at their standard references and manuals to
learn the terminology and properties of their functions, but we also wrote some
experimental programs to assess what’s possible to do with function values in
each of the languages and how.

In this dissertation, we talk in detail about the properties of functions
in each of the languages we surveyed, using consistent terminology across all
languages. For each of the languages, we explore a set of examples as a device
to talk about the properties of functions in it, the shortcomings of their design,
why they’re designed in the way they are, and, possibly, some workarounds to
their shortcomings.

In Chapter 2, we showcase the power of function values using examples
written in the Scheme programming language. Chapter 3 discusses how the
approach to functions evolved in imperative languages by chronologically
looking at a few languages and taking some examples of textbooks from
the literature related to the study of programming languages. Chapter 4 will
present and justify the languages we chose for the survey and the terminology
that’s going to be used throughout the whole text. Chapter 5 is where we
present each language and talk about the properties of their function values in
detail. Chapter 6 presents the conclusions we drew from the survey and talks
about future work.
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2
The Power of Function Values

Having functions as values enables the programmer to employ new
forms of abstraction other than just creating new functions. To showcase
the advantage of having first-class, anonymous and lexically-scoped function
values, we wrote some examples in the Scheme programming language (1).
Our choice is due to Scheme being a very minimalistic language with function
values that have all of the aforementioned properties. These properties allow
us to focus entirely on examples that illustrate the properties of functions.

2.1
A Brief Scheme Introduction

We made the examples in this chapter as clear as we could, so the reader
doesn’t need to know Scheme to understand them, but we’re going to briefly
present the language in this section, since the syntax of languages from the
LISP family might be confusing to people who are not used to them. People
who have some level of familiarity with Scheme or other LISPs can skip this
section.

S-Expressions The syntax of Scheme is entirely based on s-expressions,
which are parethesis-delimited, space-separated lists. Every Scheme program,
including all its function calls, control structures, data, etc., is a set of s-
expressions. This makes Scheme’s syntax unusual, but it is actually a very
simple syntax once one gets used to it.

( display "Hello !\n")
(foo 10 20 "bar")
(define numbers ’(10 20 30))

Listing 2.1: Examples of s-expressions

Declaration and Assignment Variables are declared with the define state-
ment by passing it the variable name followed by its initial value; the set!
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Chapter 2. The Power of Function Values 15

statement assigns a new value to a variable in a similar way. All variables
must be declared before assignment.

(define greeting "Hi")
( display greeting ) ; Hi

(set! greeting "Hello")
( display greeting ) ; Hello

Listing 2.2: Declaring and assigning a variable

Another form of variable declaration is the let expression, which takes
a set of variables with their values and a body, which is a set of expressions.
The syntax is: let, then a list containing a set of variable-value pairs, then the
body. The difference between let and define is that let explicitly determines
the scope of the variables it declares, i.e. the variable declarations in a let
expression only hold for its body. The value of a let expression is the value of
the last expression in its body.

(let (( greeting "Hi\n"))
( display greeting ) ; Hi

(let (( greeting "Hello\n"))
( display greeting )) ; Hello

( display greeting )) ; Hi

; greeting is unavailable here

Listing 2.3: Nested lets, illustrating that the value of a value defined by let
only holds for its body

Since the use of let expressions can make code harder to read than using
defines, we will favor the latter.

Functions A function call is denoted by an s-expression with the function
name as the first element and the arguments as the remainder of the expression.
In Listing 2.2, we are using the display function to print the greeting variable
to the standard out.

The define statement is also used to define functions, albeit with a
different syntax: define, then an s-expression containing the function name
as the first element and the parameters as the remainder of the list, and, finally,
the body of the function.
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Chapter 2. The Power of Function Values 16

(define ( say-hello name)
( display "Hello , ")
( display name)
( display "\n"))

( say-hello "Romário") ; Hello , Romário

Listing 2.4: Function definition in Scheme

The body of a function can have multiple statements, but the last
expression is the return expression of the function.

(define (cube n)
( display "Cube of ") ( display n) ( display "\n")
(define sqr (* n n))
(* sqr n)) ; Return expression

; Displays "Cube of 10", then 1000

( display (cube 10))

Listing 2.5: cube has multiple statements in its body, but only the last one is
the return expresssion

Arithmetic Arithmetic operations in Scheme are ordinary functions, and,
because of that, are in prefix notation. In other words: +, -, *, and /, are all
just regular function names.

(define ( average a b)
(/ (+ a b)

2))

Control Structures Structures like if in Scheme are expressions and, as
such, have a resulting value. An if expression contains, in the following order,
a conditional expression, the expression that holds if the condition is true, and,
optionally, the expression that holds otherwise.

(define ( factorial n)
(if (> n 0)

(* n ( factorial (- n 1)))
1))

DBD
PUC-Rio - Certificação Digital Nº 1621861/CA



Chapter 2. The Power of Function Values 17

Anonymous Functions Anonymous functions (called lambdas in Scheme)
are declared with the lambda keyword and have a very similar format to
named function definitions: the lambda keyword, followed by the parameter
list, followed by the body of the function.

(define ( call-twice f a)
(f a) (f a))

; Displays "Hello reader" twice

( call-twice
(lambda (n)

( display ( string-append "Hello " n "\n")))
"reader")

Lists Lists are one of the most pervasive data structures in Scheme. One way
of creating a list is to put a single quote character before an s-expression. This
transforms the expression in a list we can access.

( display ’(10 20 30)) ; Prints (10 20 30)

However, this form transforms the elements of the s-expression literally,
so variable names are not resolved and function calls just become lists inside
the list.

(define (sqr n) (* n n))
(define x 10)

; Displays literally (x (sqr x)), not (10 100)

( display ’(x (sqr x)))

The solution is to use list. It allows the programmer to construct lists
out of values instead of literal expressions.

(define (sqr n) (* n n))
(define x 10)

; Displays (10 100)

( display (list x (sqr x)))

Accessing the elements of a list is done with the car and cdr functions:
car returns the first element of the list, while cdr returns the remainder of the
list; when the list is unitary, cdr returns ’(), which is the empty list (or null).
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Chapter 2. The Power of Function Values 18

(define numbers ’(10 20 30))

( display (car numbers ))
( display (cdr numbers ))
( display (car (cdr numbers )))

This set of features is enough to understand most of what’s going on in
a Scheme code. Other features will be presented as needed in the text.

2.2
Defining by Specifying: Regions

Our first example is based on a prototyping experiment supported by the
ARPA that took place between 1993 and 1994. The goal of the experiment was
to implement a simplified version of a tool called geo-server, which deals with
regions in a 2D geometric space. The experiment compared many different
languages at this task and the problem was given to an expert programmer
in each of these languages. Each programmer had the freedom to model the
regions however they wanted (2).

While the original article was focused in the Haskell implementation, we
can easily translate the approach used by the Haskell programmer to Scheme,
since it is based on the employment of functions as values.

2.2.1
Regions as Predicates

There are several possible approaches that can be used to define an
arbitrary geometric region, but the most direct approach is to define it as
a predicate that holds true for a given point if the shape contains that point.
For example, given a point p, p is inside a circle with radius r and center in c

if the following inequality holds true: (px − cx)2 + (py − cy)2 < r2.
There are also several possible approaches to implement this definition in

software. In most cases, when faced with such a problem, programmers start
thinking about what data structures to use in order to represent each of all
the possible geometric regions (circles, rectangles, etc.), what algorithms will
be used to check if a point is in a given region, etc.. However, by employing
functions as values, we can represent any arbitrary region by just directly using
a predicate in the way we described above.
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Chapter 2. The Power of Function Values 19

Suppose we use the following definitions for points:

(define (point x y) (cons x y))
(define ( x-coord p) (car p))
(define ( y-coord p) (cdr p))

Our circle definition can then be coded as:

(define (circle r c)
(lambda (p)

(< (+ (sqr (- ( x-coord p) ( x-coord c)))
(sqr (- ( y-coord p) ( y-coord c))))

(sqr r))))

Aside from the syntax, this definition is exactly the same as the mathe-
matical definition of a circle we saw above: the circle function takes a radius
r and a point c and returns a predicate that holds true if a given point p
is inside such a circle. This function creates, at run-time, a predicate for one
specific circle.

As another example, a rectangle would be very simple to define with
this scheme. To check if a given point is inside the boundaries of a rectangle,
it’s only necessary to check if the coordinates of the points are between all
four sides of the rectangle—which, in turn, can be defined by its top-left and
bottom-right points. This rectangle definition can then be coded as follows
(where tl is the top-left point of the rectangle and br the bottom-right one):

(define ( rectangle tl br)
(lambda (p)

(and (and (> ( x-coord p) ( x-coord tl))
(< ( x-coord p) ( x-coord br )))

(and (> ( y-coord p) ( y-coord tl))
(< ( y-coord p) ( y-coord br ))))))

2.2.2
Using Regions

Now, since any region is a predicate, to check whether a point is inside
a region or not, all we need to do is to pass the point as an argument. For
example, in a REPL1 prompt, checking whether the point (30, 40) is inside a
circle c of radius 60 at the center of the plane (i.e. at point (0, 0)) looks like
this:

1Read-eval-print loop.
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> (define c (circle 60 (point 0 0)))
> (c (point 30 40))
#t

Similarly, to check whether point (20, 30) is inside a rectangle with its
top-left edge at (−30, 10) and its bottom-right edge at (0, 20), we do the same
as before:

> (define r ( rectangle (point -30 10)
(point 0 20)))

> (r (point 20 30))
#f

Note that, since any region is just a predicate, checking whether a point
is in a region is exactly the same for any possible region, however arbitrary it
might be. It is also the simplest operation possible: a single function call. This
is the highest possible abstraction of such an operation and it is only possible
because we are able to create arbitrary predicates, at runtime, for each of the
possible shapes we can have.

Plotting the region is very simple with this representation. All we need
to do is to paint all the points contained inside the region, i.e., for each pixel
in the plotting area, we use the region predicate to check whether the point
represented by that pixel is contained in the region; if so, we paint it black.

To illustrate the simplicity of this approach, we implemented a plot-pgm
function that takes a region and plots it to a 256x256 Plain PGM2 image
file, which required just two nested loops and an if expression inside those
loops—file handling and image headers aside (Listing 2.6). Figure 2.1 shows
the generated images for the circle c and the small rectangle r, defined above.

2.2.3
Combining Regions

An annulus is a ring-like region that can be represented by two radiuses
(an internal one and an external one) and a single center. It can be constructed
as the intersection between the outside of a smaller circle and the inside of a
larger circle. Given that a region is just a predicate, the intersection between
two regions is the region where both of their predicates hold true, i.e. a boolean
and operation; similarly, the outside of a region is a predicate that holds true
for any point not in the region—in other words, it is a boolean negation of the
original predicate.

2http://netpbm.sourceforge.net/doc/pgm.html, accessed in July 9th, 2019.

http://netpbm.sourceforge.net/doc/pgm.html
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(define ( plot-pgm region)
(define image ( open-output-file "image.pgm"))
( display "P2 256 256 1" image)
( newline image)
( for-range -128 127 (lambda (y)

( for-range -128 127 (lambda (x)
(if (region (point x y))

( display "0 " image)
( display "1 " image ))))))

( close-output-port image ))

Listing 2.6: The plot-pgm function takes a region and plots it in a PGM image.
In order to have the center of the image approximately located at the (0, 0)
coordinate, the coordinates go from -128 to 127.

Figure 2.1: The circle c and the rectangle r.

Having regions as predicates not only allows the definition of brand new
regions to be as direct and abstract as possible, but the combination and
modification of existing regions becomes trivial, which is reflected in the code:

(define ( outside region)
(lambda (p) (not (region p))))

(define ( intersect region1 region2 )
(lambda (p) (and ( region1 p) ( region2 p))))

With that, we can define the annulus (Figure 2.2, shows how an annulus
looks like when plotted):

(define ( annulus r1 r2 c)
( intersect ( outside (circle r1 c)) (circle r2 c)))
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Chapter 2. The Power of Function Values 22

> (plot-pgm (annulus 60 120 (point 0 0)))

Figure 2.2: Centered annulus with inner radius of 60 and outer radius of 120

Merging two regions is also trivial: it is exactly the union operation:

(define (merge region1 region2 )
(lambda (p)

(or ( region1 p) ( region2 p))))

As an example, Figure 2.3 shows a picture created with merge.

All of this is only possible because of the features of functions in
Scheme. In particular, having lexical scoping and first-class function values
is fundamental to arbitratily create and combine predicates. This level of
abstraction simplified a moderately complex task to its very definition. A
testament to that is the reaction of the other participants and reviewers. In
particular, we quote:

It is significant that Mr. Domanski, Mr. Banowetz and Dr. Brosgol
were all surprised and suspicious when we told them that Haskell
prototype P1 (...) is a complete tested executable program. We
provided them with a copy of P1 without explaining that it was a
program, and based on preconceptions from their past experience,
they had studied P1 under the assumption that it was a mixture
of requirements specification and top level design. They were
convinced it was incomplete because it did not address issues such
as data structure design and execution order. (Carlson, Hudak, and
Jones (3))
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> ( plot-pgm (merge (circle 20 (point 65 -65))
(circle 60 (point 0 0))))

Figure 2.3: A very simplified version of the Lua programming language logo

2.3
Dynamically Composing Functions: Iterators

Suppose we have the following data structures:

(define l ’(57 674 2 78))
(define v #(78 258 3 57))

A list prefixed with # denotes a vector. Vectors are more compact than
lists because they’re allocated in a contiguous region in memory and their
elements don’t need references to the next element.

These structures are sequences of numbers. So, if we want to, say, print
each of the numbers in these sequences, the task would be the same for both l
and v: get each number, print it. But, even though the task is the same for these
sequences, l is a list and v is a vector, and, thus, their elements are accessed
in completely different ways: car and cdr in the case of l; vector-length
and vector-ref in the case of v. This means that the same task might
have to be implemented twice just because of incompatible data types. In
Listing 2.7, we implement two functions for that purpose: one to print the
elements of a list (print-list-els) and another for the elements of a vector
(print-vector-els).

One solution for this specific example could be keeping the simplest func-
tion (i.e. print-list-els) and converting v to a list using the vector->list
function each time we want to print the elements of a vector. While it works,
there are some problems with this solution: it has a conversion overhead when
compared to print-vector-els, making printing a vector strictly worse than
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(define ( print-list-els l)
(if (null? l) ’()

(begin ( display (car l))
( display " ")
( print-list-els (cdr l)))))

(define ( print-vector-els v)
(let ((i 0))

(define (loop)
(if (>= i ( vector-length v)) ’()

(begin ( display ( vector-ref v i))
( display " ")
(set! i (+ i 1))
(loop ))))

(loop )))

Listing 2.7: Two different functions that perform the same task on two different
datatypes (the begin expression allows us to put multiple expressions where
a single expression is expected)

printing a list; another more general problem is that a conversion function is
not always available between any two types.

A better solution for this kind of problem are iterators. An iterator is
an object that enables the program to sequentially visit (or iterate through)
elements of a container. The advantage of an iterator over regular loops is
that they abstract away implementation details about how to get to the next
element, allowing the programmer to implement algorithms on top of this
abstraction, untying these algorithms from the concrete data structures they’re
working on.

We define an iterator as a function that takes no arguments and returns
the next element of the sequence when called; when the iteration ends, the
iterator returns null (i.e. ’()) for all subsequent calls.

Following that definition, an iterator for a list has to be a function that
returns the head of that list, taking it with car, and keeps its remainder, with
cdr. In Listing 2.8, we create an it-list function that takes a list and returns
a function that keeps a reference to the list it takes, doing what we described
at each call—the remainder of the list is kept in that reference.

For the vector, we can make the iterator keep the index of the next
element. At each call, we return the element at that index (with vector-ref),
then increment the index; if the index is equal to the length of the vector (which
we check with vector-length), we return null. The function that creates such
an iterator from a vector is called it-vector3 (Listing 2.9).

3As a convention, we prefix every function that constructs an iterator with it-.
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(define ( it-list l)
(lambda ()

(if (null? l) ’()
(let (( cur (car l)))

(set! l (cdr l))
cur ))))

Listing 2.8: it-list takes a list l and returns an iterator that, at each call,
returns the first element of l, keeping only the remainder

(define ( it-vector v)
(define i 0)
(lambda ()

(if (>= i ( vector-length v)) ’()
(let (( cur ( vector-ref v i)))

(set! i (+ i 1))
cur ))))

Listing 2.9: The vector iterator stores a reference to the index of the element
to be returned in the next call

Having defined these iterator constructors, we now create the print-els
function, which prints the elements of an iterator (Listing 2.10). It repeatedly
calls the iterator it gets, printing each element it gets from each call, then stops
when the iterator returns null.

(define ( print-els it)
(define it-result (it))
(if (not (null? it-result ))

(begin ( display it-result )
( display " ")
( print-els it ))))

( print-els ( it-list l)) ; 57 674 2 78
( print-els ( it-vector v)) ; 78 258 3 57

Listing 2.10: print-els takes an iterator and recursively takes each of its
elements, printing each of them

We have successfully separated a task to be done over a sequence of
elements from the underlying data structure of this sequence. The print-els
function works for both lists and vectors because it leaves the concern of
accessing the elements of the data structures to the iterators.

But print-els still does more than one thing: it prints the elements of
the iterator it gets but also has to deal with the the process of iteration. At the
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current point, writing any function that consumes an iterator would require
including the boilerplate to deal with the iteration process.

To generalize the process of iteration, we wrote a foreach-it function
for our iterators, that does the same thing print-els does, but, instead of
printing each element of the iterator, it passes the element to an arbitrary
function (Listing 2.11). This allows anyone who wants to consume the iterator
to pass any function they want to deal with each element of the iterator. With
foreach-it, the definition of print-els becomes trivial.

(define ( foreach-it it function )
(define it-result (it))
(if (not (null? it-result ))

(begin ( function it-result )
( foreach-it it function ))))

Listing 2.11: The foreach-it function is almost the same as print-els except
that, instead of displaying the result of the iterator, it passes that to another
function

(define ( print-els it)
( foreach-it it (lambda (el) ( display el)

( display " ")))
( newline ))

Listing 2.12: After the definition of foreach-it, print-els becomes a one-
liner

Note that all the abstractions that were done so far are based on functions
being employed as values: even though an iterator is a function, we almost never
call it directly and we don’t directly define an iterator as a function either—
instead, we use functions that return an iterator (it-list and it-vector).
Also note that having functions that can refer to outer functions after their
scope ends is fundamental for our iterators to work, since that’s how they
keep their state: an iterator created by it-list uses the l variable (taken by
it-list as an argument) to keep the remainder of the list; one created by
it-vector keeps the index of the next element in the i variable, declared in
the body of it-vector with a value of 0.

2.3.1
Composing Iterators

What we have defined so far allows us to create all sorts of iterator-based
algorithms without ever needing to call the iterators directly, but we still are

DBD
PUC-Rio - Certificação Digital Nº 1621861/CA



Chapter 2. The Power of Function Values 27

only able to perform some task per iterator element with that.
Suppose we want to get an iterator of a sequence of numbers and return

a sequence of their squares. We could create a function that takes an iterator
and, for each element, squares that element and stores it into either a list or a
vector, then returns that container. This would work fairly well and, thanks to
iterators, this function is ready to work with lists, vectors, and anything else
that implements an iterator.

But the problem with this solution is that we’re returning a specific data
type and, again, we have to deal with its specificities if we want to get its
elements. This becomes clear when we consider that, no matter the type of
underlying data structure, the type of the sequence returned by our function
would be fixed to what we chose in our implementation. We are taking a value
that abstracts away the specificities of the underlying data type and returning
a value that doesn’t.

To avoid these problems, instead of storing our results into some data
structure, we make our function return an iterator that, at each call, calls the
original iterator and returns the square of its result. This is the it-sqr-all
function in Listing 2.13. Instead of worrying about how we will square all
numbers of the given iterator, we worry solely about what to do with each
specific element. Since the result of it-sqr-all is an iterator, we can pass it
directly to print-els if we want to print the elements right away.

(define ( it-sqr-all numbers )
(lambda () (define n ( numbers ))

(if (null? n) ’()
(* n n))))

; Prints 1 4 9

( print-els ( it-sqr-all ( it-list ’(1 2 3))))

Listing 2.13: Instead of storing the squares of each element, it-sqr-all returns
an iterator that calls the iterator whenever it is itself called, then returns the
square of the result

With this approach, instead of consuming the iterator to produce a con-
crete list of the results we want, we produce another iterator that encapsulates
the original one, adding an operation on top of it—in this case, squaring. The
resulting iterator defines how the result of each call to the underlying iterator
is going to be modified at each iteration.

This composition of operations on top of existing iterators can be
generalized. When we want to transform each element of an iterator into
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another given a function that performs such a transformation, we want a map
operation. We define it as the it-map function, which takes an iterator and a
function; it returns an iterator that, in each call, applies the function to the
result of the underlying iterator.

(define (it-map it f)
(lambda () (define res (it))

(if (null? res) ’()
(f res ))))

; Prints 1 4 9

( print-els (it-map ( it-list ’(1 2 3))
(lambda (n) (* n n))))

Listing 2.14: An iterator created by it-map applies the result of each call to
it to the function f

Another general operation that can be performed on top of iterators is
filtering, which selects a set of elements from a sequence given a predicate. Our
filter function is called it-filter and, given an iterator and a predicate, it
returns an iterator that filters out values that fail on the predicate. To do this,
at each call, the filter iterator calls the underlying iterator and checks if the
predicate succeeds; if it does, then the iterator returns the value; if it does not,
then the iterator calls itself recursively until the predicate succeeds—or until
it reaches the end.

(define ( it-filter it c)
(define (new-it) (define res (it))

(cond (( null? res) ’())
((c res) res)
(else (new-it ))))

new-it)

; Prints 3 4
( print-els ( it-filter ( it-list ’(3 1 4 2))

(lambda (n) (> n 2))))

Listing 2.15: The iterator created by it-filter calls itself recursively until
the predicate c succeeds on the value of it (cond takes a list of conditions
and, for each condition, the result if it holds true)

It is now possible to create and combine iterators and manipulate the
data coming from them without having to deal with any data structures. As
an example, if we want to get the cubes of the integers from 1 to 10, but
only the ones larger than 100, we can do it by creating an iterator from a list
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containing the numbers from 1 to 10 (with it-list), then mapping it to get
the cubes of each element (using it-map), then, finally, filtering it to remove
the resulting elements that are larger than 100 (using it-filter).

; Prints 125 216 343 512 729 1000
( print-els ( it-filter

(it-map
( it-list ’(1 2 3 4 5 6 7 8 9 10))
(lambda (n) (* n n n)))

(lambda (n) (> n 100))))

Listing 2.16: Printing the cubes of the numbers from 1 to 10 which are larger
than 100

2.3.2
More Abstract Iterators

So far, we’ve been mostly operating on lists in our examples. Sometimes,
to illustrate the uniformity iterators bring when dealing with different data
structures, we show some vector examples. But our iterators do not need
an underlying data structure. As we’ve said, iterators are, ultimately, just
functions that iterate through a sequence, one element at a time; such a
sequence does not need to be a concrete list of elements.

In Listing 2.16, we don’t need the explicit list of elements from 1 to 10:
we just need an iterator that gives us the numbers from 1 to 10. While taking
an iterator to a list that contains an explicit sequence of those numbers might
work, the problem with this redundancy becomes clear if we start requesting
larger sequences—say, all numbers from 1 to 20, or to 50.

In Listing 2.17, we define an it-range function, which creates an
inclusive range of numbers without the need for a underlying data structure:
the only data the iterator carries are the current number and the last number in
the range. At each call, the variable holding the current number is incremented
and the current number is returned.

As a last example, we show that we don’t need to be limited to iterators
with a predetermined number of elements. In the case of it-range, we can
separate the task of counting numbers from the task of getting a determined
amount of elements from an iterator; we create one iterator that just counts
endlessly, starting from 1 (it-count), and another iterator that takes an
existing iterator and only gets a determined amount of its first elements
(it-get-n). In Listing 2.18, we show that this can produce the same results
as it-range, even though one of the iterators being composed does not end.
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(define ( it-range start end)
(lambda () (if (> start end) ’()

(let (( current start ))
(set! start (+ start 1))
current ))))

; Prints 125 216 343 512 729 1000
( print-els ( it-filter

(it-map
( it-range 1 10)
(lambda (n) (* n n n)))

(lambda (n) (> n 100))))

Listing 2.17: Defining a range iterator with no underlying data structures

The implementation of this iterator architecture is only possible due
to the properties of function values in Scheme: if our iterators weren’t fist
class values, we would not be able to return them from their constructors, or
pass them to the functions we defined to manipulate them; with no nesteable
anonymous functions (or some other form of function nesting), we wouldn’t be
able to abstract away the implementation of the iterators from their callers;
with no lexical scoping, the iterators wouldn’t be able to access the outer
variables they use to carry their state. Implementing similar iterators in
languages without these properties (like C, for instance) is possible, but is
much more foreign, because all these features that are granted by Scheme
would have to be taken care of manually by the programmer.
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(define ( it-count )
(define count 0)
(lambda ()

(set! count (+ count 1))
count ))

(define ( it-get-n it n)
(define c 0)
(lambda ()

(if (>= c n) ’()
(begin (set! c (+ c 1))

(it )))))

; Prints 125 216 343 512 729 1000
( print-els ( it-filter

(it-map
( it-get-n ( it-count ) 10)
(lambda (n) (* n n n)))

(lambda (n) (> n 100))))

Listing 2.18: it-count counts numbers from 1 to infinity. Together with
it-get-n, it allows us to iterate through a range of numbers
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3
Brief History

The employment of functions as values was not always emphasized in
programming languages. This is especially true for imperative languages, that
only more recently are turning their attention to functional programming. In
this section, we intend to present a little bit of the history of the evolution
of functions as values in imperative programming languages. First, we select
a few languages to illustrate how functions evolved over time as a feature
in imperative languages; then, we look into some programming-language
textbooks to illustrate how functions were seen by the community in the past
and how that view changed.

3.1
Functions in Imperative Languages

Here, we present some examples to illustrate how the employment of
functions in imperative programming languages evolved over time.

3.1.1
Algol 60

Using functions as values already had some support early on in impera-
tive programming languages. Algol 60 was one of the earliest imperative pro-
gramming languages and it already had some of the features mentioned in
the introduction that we considered fundamental to fully take advantage of
functions as values:

Nested procedures with proper lexical scoping Algol’s original specifica-
tion says: “Identifiers in the procedure body (...) which are non-local to the
body may well be local to the block in the head of which the procedure decla-
ration appears” (4, 5.4.3). In other words, identifiers that are local to the block
where a procedure is declared are visible from inside the procedure as if they
were local—and, by extension, the same applies to identifiers in outer blocks.
Since the body of a procedure is a block and it is possible have a procedure
declaration inside a block, nested procedures are supported by Algol.
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Passing procedures as parameters Algol’s syntax for procedure declara-
tions says that each of the formal parameters of a procedure can have a
<specifier>, which determines what kind of parameters they are. One of
the possible <specifier>s is procedure, meaning that any parameter can be
a procedure (4, 5.4.1).

However, procedures can neither be returned by other procedures nor
stored in variables: in the first case, to return a value, a procedure needs to
specify its return type, but there are no procedure types, since procedure is a
specifier, not a type; in the second case, the right-hand side of an assignment
has to be either arithmetic (i.e. numeric) or boolean (4, 4.2.4)—these were the
only first-class values available, since Algol 60 didn’t have composite values
yet. The only purpose of passing a procedure as an argument to a function
is to either call the passed procedure immediately or to pass it further to an
inner procedure call.

The specification provides two examples to illustrate the declaration
of high-order procedures in Algol (4, 5.4.6). The first example, for instance,
(Listing 3.1) computes the sum of a given function from zero up to infinity using
the Euler method. This is a very common application of higher-order functions
and Algol is fully capable of expressing it. However, these properties do not
provide enough abstraction capabilities to, for example, allow the indefinite
integral to be directly computed and provided as a value. None of what was
done in Chapter 2 would be possible either.

procedure euler(fct , sum , eps , tim);
value eps , tim;
real procedure fct;
real sum , eps;
integer tim;

Listing 3.1: The euler procedure, as expressed by the original comment of
the example, “computes the sum of fct(i) from i from zero up to infinity by
means of a suitably refined euler transformation” (here, we show the function
without its body, for brevity).

All of this is evidence that, while high-order functions were already
present early on, procedures were seen as their own kind of entity, entirely
separate from the values in the language.
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3.1.2
Pascal

According to Sebesta (5, p. 97), Pascal was the second language design
by Niklaus Wirth which was directly based on Algol 60—preceded by Algol-
W. Among other features, Pascal retained Algol’s high-order procedures. But
even though this feature was kept, Wirth didn’t think it was relevant enough
to warrant a discussion: passing procedures as arguments is not mentioned
anywhere in Pascal’s first specification document (6)—it can only be implied
from the grammar rules; also, in the user’s manual, passing procedures and
functions as parameters is only briefly mentioned, together with a single
example in the same page (7, p. 79).

3.1.3
C

The C programming language was created with simplicity, portability,
and efficiency in mind—according to Chapter 0 of The C Programming
Language (8). This made C a relatively low-level language when compared
to contemporaries like Algol and PL/I. C’s design of functions reflects those
goals: one of C’s main ideas is that any program is a collection of functions
and that each function is separately compiled and the only form of automatic
memory management was the stack (in contrast with Algol 68, which already
had garbage collection).

C didn’t allow nested functions. While the reasoning for this decision isn’t
explicitly explained by the language authors, one of the possible reasons could
be to make memory management simpĺer to implement. After all, unlike Algol
or Pascal, function pointers are first-class values in C; the management of outer
variables accessed by a nested function could be difficult to implement in such
a scenario. The authors even recommended using external (global) variables
to share state between functions:

Because external variables are globally accessible, they provide an
alternative to function arguments and returned values for commu-
nicating data between functions. (...)

The third reason for using external variables is their scope and life-
time. Automatic [stack] variables are internal to a function; they
come into existence when the routine is entered, and disappear
when it is left. External variables, on the other hand, are perma-
nent. They do not come and go, so they retain values from one
function invocation to the next. (...) (p. 72 (8))
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As the authors themselves point out, this approach was error-prone,
but restricting functions to access only their own local variables and global
variables makes the implementation of functions much simpler than having
nested functions with static scoping.

Another reason was to make it possible to keep each function separate
from all other functions, favoring the creation of several simple functions rather
than few, large functions, with functions embedded in them. This also makes
it possible for functions to be compiled independently of others:

C has been designed to make functions efficient to use; C programs
generally consist of numerous small functions rather than a few
big ones. A program may reside on one or more source files in
any convenient way; the source files may be compiled separately
and loaded together, along with previously compiled functions from
libraries. (p. 65 (8))

Despite not allowing nested function, higher-order functions were already
in the mind of the creators of C, which is why they provided function pointers.
For example, Section 5.12 of the book is about pointers to functions. In that
section, the book use sorting to illustrate the use of functions pointers, which
is a classic example of high-order functions.

3.1.4
C++

C++ appeared in the early-to-mid-1980’s and two main sources of
inspiration to it were C and Simula67 (9, p. 3-4).

One form of function value in C++ is the function pointer, which was
inherited from C. But, since the first published book, the C++ programming
language already supported the overloading of the function call operation (9,
p. 183-184), which can turn any class into a callable object and, as we see in
Section 5.7.2.4, was the basis for anonymous functions in C++11.

Although brief, the motivation provided for this feature seems to be
providing function-like objects that carry data, something that is not possible
with function pointers. After defining an iterator type as a class that acts as
a function that gets the next element from a container (somewhat similar to
what we did in Section 2.3), the author affirms the following:

An iterator type like this has the advantage over a set of functions
doing the same job: it has its own private data for keeping track of
the iteration. It is typically also important that many iterators of
such a type can be active simultaneously. (p. 184 (9))
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Both of these points—keeping the data of a computation private and
keeping multiple instances of the same computation active simultaneously—
are clearly also motivations for first-class functions with closures.

Since, at the time, C++ still did not have templates, the fact that each
class that overloaded the operator call was from a different type prevented
any meaningful application of these types as function objects. However, the
introduction of templates made it possible to implement high-order template
functions that can take any callable object, whether it is a function pointer or
a class with the operator call overloaded.

3.1.5
Python

Python was strongly influenced by the ABC programming language,
where Guido, the creator and main designer of Python, previously worked on in
the late 80s (10). ABC’s main focus was to be easy to use by non-programmers
who had to work with computers. Python, in its inception, was directly
based on Guido’s experience on working with ABC, but he also implemented
an extensibility model in C, something which ABC never considered to be
important. The initial goal of Python was to be an auxiliary language for C
programmers if they needed to peform some task where the use of C would
be overkill—to “bridge the gap between the shell and C”, in Guido’s own
words (11).

Perhaps because of the connection to C and the focus in non-expert
programmers, functions as values were not much of a concern for Python
initially and it was only when more experienced programmers started feeling
the lack of functional properties in the language that these features started
being incorporated. A strong evidence to this idea lies in the creation of the
lambda construct in Python. While explaining the history of lambda in Python
in a blogpost from 2009, Guido makes it clear that he wasn’t interested in
functions as values by the time he created Python:

I was much more familiar with imperative languages such as C and
Algol 68 and although I had made functions first-class objects, I
didn’t view Python as a functional programming language. How-
ever, earlier on, it was clear that users wanted to do much more
with lists and functions. (Guido van Rossum (12))

He then explains that, even though Python had no way to construct
anonymous functions, users found ways to work around that. The code in
Listing 3.2, given by Guido in the blogpost, was a common approach at the
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time (around late 1993). This made it clear that there was a demand for
anonymous functions:

It was clear that there was a demand for such functionality. How-
ever, at the same time, it seemed pretty “hacky” to be specifying
anonymous functions as code strings that you had to manually pro-
cess through exec. Thus, in January, 1994, the map(), filter(), and
reduce() functions were added to the standard library. In addition,
the lambda operator was introduced for creating anonymous func-
tions (as expressions) in a more straightforward syntax. (Guido van
Rossum (12))

def genfunc (args , expr ):
exec("def f(" + args + "): return " + expr)
return eval("f")

# Sample usage

vals = [1, 2, 3, 4]
newvals = map( genfunc ("x", "x*x"), vals)

Listing 3.2: Without lambda, users resorted to metaprogramming in order to
emulate anonymous functions

This pattern of ignoring a functional feature then adding it due to user
demand was common during the evolution of Python. Like its contemporaries,
Python’s design wasn’t open to the use of functions as values because its main
designer came from a more traditional school of imperative programming,
where procedures and values were different entities, and could not see the
value in that. However, the users, used to the growing acceptance of functional
programming, did see it and demanded more focus to those features.

3.2
Evolution in the Literature

Most of the mainstream literature on programming languages (most
notably textbooks) used to make a clear distinction between functions and
other values in the language, and the employment of functions as values was
reserved to functional programming and mentioned in imperative programming
languages as either a nuisance to be aware of or as an advanced or modern
application of functions. Around the late-2000s and early-2010, however, that
seemed to change and more emphasis was put into the applications of functions
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as values in imperative languages. In this section, we take a few examples from
the literature to illustrate the discussion about how the approach to functions
in imperative programming languages changed over the years.

Structure and Interpretation of Computer Programs (13) was a book
first released in 1985 that saw a second edition in 1996 (which is the one
we use as reference here). This book is a prime example of putting functions
front and center in the modelling of problems. From the very first chapter,
“Building Abstractions with Procedures”, it is made clear that functions are
not only powerful, but are actually capable of being the backbone of a program,
providing a foundation for anything else. A clear example of that is the
“Streams” example, presented in Section 3.5 of the book, which is very similar
to our iterators example from Section 2.3.

Given that the Scheme programming language was created in 1975 (and
that it had first-class functions with closures since the beginning) (14), it
might seem that, in 1996, employing functions as values to build powerful
abstractions wouldn’t be something new. However, much later than that,
having functions as values was treated almost as a corner case in much of
the imperative programming camp. For example, in the second edition of
Programming Language Pragmatics (15), released ten years later, in 2006,
Scott does talk about first-class subroutines, but presents them as a subtopic of
scoping and environments, treating them more as an implementation concern
rather than as a tool that programmers can use:

(...) First-class subroutines in a language with nested scopes intro-
duce an additional level of complexity: they raise the possibility
that a reference to a subroutine may outlive the execution of the
scope in which that routine was declared.

(...) imperative languages with first-class subroutines must gener-
ally adopt alternative mechanisms to avoid the dangling reference
problem for closures. C, C++, and Fortran, of course, do not have
nested subroutines. Modula-2 allows references to be created only
to outermost subroutines (...) (Michael L. Scott (15), p. 140-141)

He focuses on the problems first-class function values introduce and how
to solve them, not about their applications. The only other mention of first-
class functions is in the end of the book, where he talks about functional
programming, presenting it as an alternative programming model. The em-
ployment of functions as values has no place in imperative programming. In
its third edition (2009), the emphasis remains the same, but now the book
talks about object closures, which was something known to C++ since at least
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1986—and it still remains buried as a subtopic of scopes and environments.
Only in its fourth edition (2016) the book starts talking about lambda expres-
sions.

Other books first released before the late 2000s show the same approach
to functions. For instance, Sebesta’s Concepts of Programming Languages was
first released in the late 1980s and released many editions throughout the
decades of 1990 and 2000. In its eleventh edition (5), released in 2016, the book
dedicates an entire chapter of his book (Chapter 2) to discuss the evolution of
major programming languages over time. However, aside from the functional
programming section of the chapter, where he uses Lisp to talk about the
evolution of functional programming (Section 2.4), and a few brief mentions
of terms related to functions as values1, at no point, in any of the languages,
is the evolution of functions specifically discussed. Again, the discussion of the
employment of functions as values is confined almost exclusively to functional
programming. Even the discussion of functional programming in this chapter
seems to lack focus on functions as values: first-class functions are only
mentioned in the paragraph where the text talks about Scheme.

The sharp distinction between functions and values becomes very clear
in Watt’s Programming Language Design Concepts (16), released in 2004. In
Chapter 2, “Values and types”, function values are tangentially mentioned
once (p. 46, function types are not mentioned), while in Chapter 3, “Variables
and storage”, nothing is mentioned about assigning functions to values. Even
Chapter 5, “Procedural abstractions”, dedicates only one paragraph and one
example to anonymous functions (p. 118).

As a last example, we mention the third edition of Programming Language
Concepts, by Ghezzi and Jazayeri, released in 1996 (30). As the other books,
it does not emphasize the use of functions as values in imperative languages
throughout the book: routine parameters are discussed relatively well in the
syntax and semantics chapter, but they are treated as a corner case and are
not discussed anywhere else; there is one chapter dedicated to functional
programming and any discussion about functional features is reserved to
this chapter. However, in Section 7.5, inside the chapter about functional
programming, the book discusses how C++ can support high-order functions
by the use of templates and function objects. This shows that there was already
some interest to have functional features in imperative languages at the time.

The late 2000s and early 2010s seemed like a turning point in the
1At the very end of Section 2.17 (p. 114), it is very briefly mentioned that Java SE 8 has

lambda expressions; Subsection 2.18.6 mentions that functions are first-class values with
closures in Lua; Section 2.19 mentions delegates (p. 123), contrasting them with C++’s
function pointers.
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treatment of functions by the imperative language community. In the case of
Sebesta and Scott, the editions released after this point in time included many
additions and improvements to the treatment of function values in imperative
languages. However the structure of those books is still strongly impacted by
the view that functions (or subroutines in general) and other values were not
of the same nature, which was dominant at the time these books were first
published.

On the other hand, books that were first published after that time period
had their attention much more clearly turned to functions as values. For
example, Sestoft’s Programming Language Concepts (17), released in 2012,
presents itself as a general introductory book about the study of programming
languages, but it uses F# (a language in the ML family) as its main language
and, in Section 3.5, has a very brief survey of “Higher-Order Functions in the
Mainstream”, where it brings up the use of functions as values in Java and
C#.

This trend of growing acceptance of first-class functions with closures
is confirmed in Chapter 5, where we explore the properties of functions in
some imperative programming languages. There we see how many of those
programming languages recently adopted features which contribute to that
goal, such as: anonymous functions, better static scoping, etc..
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4
Survey Presentation

In this section, we present our choice of languages for the survey and the
terminology we will use throughout the presentation of function values in the
next chapter.

4.1
Chosen Languages

To conduct out survey, we chose a set of languages to illustrate how
the design of functions varies depending on many aspects of the language—its
paradigms, its implementation, etc. In this section, we present each of these
languages and justify why we believe they’re relevant to the survey.

The goal of this survey is to, ultimately, contrast many different designs
of functions from many different programming disciplines. We chose a set of
sufficiently known programming languages that are distinct enough, so that we
can showcase how function values fit in each of the different paradigms shown
here. This set of languages is by no means comprehensive, but we believe it is
broad enough to make this contrast.

The languages we chose are: Scheme, Lua, Go, Python, Ruby, Java, C#,
C++, and Rust.

4.1.1
Choice Criteria

Scheme is our lingua franca. Its minimalism allows us to focus on
the properties of function values without too much interference from other
language features.

Lua (18) is also a minimalistic dynamic programming language with
functions that share all of the same properties of functions in Scheme; in fact,
the semantics of functions in Lua closely resemble Scheme.

The Go (19) programming language is a statically-typed, compiled
programming language. We chose Go because, even though it is not as dynamic
as Scheme, it still has first-class functions with closures. It serves as an
illustration of how a more static language can still choose to have the same
properties of Scheme regarding functions.
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Python (20), on the other hand, illustrates that a language can be
dynamic and still not emphasize function values in the same way Scheme does.
While Python does have first-class functions with closures, some shortcomings
regarding scope and anonymous functions arise from such a lack of emphasis.

Ruby (21) is a dynamic, object-oriented programming language. It has
first-class functions and closures, but, since Ruby is inspired by Smalltalk’s
object-oriented model, the forms of functions it has (blocks, methods, procs)
are very particular in design.

Java (22) and C# (23) are two similar object-oriented programming
languages, where all function definitions are tied to classes. Because of this
similarity, these languages had similar solutions to fit anonymous functions as
objects in them.

Finally, we chose C++ (24) and Rust (25)(26) because they are two
lower-level programming languages that do not have garbage collection, but
managed to implement closures. The design of anonymous functions in these
languages is directly impacted by the lack of garbage collection.

4.2
Terminology

To uniformize the comparison of the properties of different languages, we
decided to refer to language features in our own terms instead of using the
language’s official terminology. The translation from language terminology to
our terminology will be made in the introduction of each of the languages.

Function Anything that is callable and can take arguments in a programming
language will be called “function”. This, of course, includes regular functions,
but it also includes other “function-like” entities that can go by the names of
“method”, “block”, “closure”, etc..

Function Value Any value in the language that gives access to a function. If
such value can be used and passed around in any context a value can be used,
without any restrictions—i.e. if it can be returned from functions, passed as
an argument, stored in variables, etc.—we call it a first-class function value.

Function Type The type of a function value.

Function Definition A syntactic construct in the language dedicated to the
creation of a function tied to a name. Ex.: define in Scheme as described in
Listing 2.4.

DBD
PUC-Rio - Certificação Digital Nº 1621861/CA



Chapter 4. Survey Presentation 43

Anonymous Function A function without a name. These are usually function
values as well, but not always. They are often also called lambdas—as seen in
Chapter 2.

Closure The data structure that holds a function and the outer variables
referenced by it.
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5
Properties of Function Values

Unilke functional programming languages, imperative languages have
great variety of function designs due to their different paradigms, goals, and
constraints. In this chapter, we will analyze function values in the languages
we chose, using examples to illustrate their properties.

In each section, we explain the design of function values in the languages
being presented and the reasoning behind that design, showing some examples
that highlight the properties we’re talking about.

Section 5.1 presents the examples we will use across all languages in
Scheme, our lingua franca. Then, section 5.2 presents Lua; Section 5.3 presents
Go; Section 5.4 presents Python; Section 5.5 presents Ruby; Section 5.6
presents Java and C#; and, finally, Section 5.7 present C++ and Rust.

5.1
Starting Examples for Surveyed Languages

The following are the examples we are going to introduce each of the
languages with. We are using Scheme as our lingua franca.

5.1.1
Example: Counter

Based on our motivational example at Section 2.3, our first example is
the counter iterator defined in Listing 2.18:

(define ( it-count )
(define count 0)
(lambda ()

(set! count (+ count 1))
count ))

As simple as it looks, in this example, the programmer does not have
to worry about how the function returned by it-count will store the count
variable; also, the caller doesn’t have to worry about implementation or
interface details. This demands, from the language:

– First-class function values;
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– Anonymous functions or some form of function nesting, and;

– Lexical scoping, with some way to refer to outer variables after the end
of their scope.

After defining the counter constructor, we will create a counter and call
it repeatedly.

(define c ( it-count ))
( display (c)) ; 1
( display (c)) ; 2
( display (c)) ; 3

Listing 5.1: Calling a counter created by it-count

5.1.2
Example: Split Counter

A variation of the counter example (Listing 5.2) returns two different
functions from the constructor: an incrementer and an accessor function. This
unties the access of the current value from the increment of the iterator.

(define ( it-counter-split )
(define count 0)
; Incrementer and accessor of count
(( lambda () (set! count (+ count 1))) . ; car

(lambda () count )) ; cdr
)

(define counter ( it-counter-split ))
(define increment (car counter ))
(define get (cdr counter ))

( increment )
( increment )
( display (get) "\n") ; 2

Listing 5.2: Split counter.

The first counter example does not necessarily enforce the sharing of the
counter variable in multiple places. This variation is then useful as a stronger
demonstration that the lexical scoping in the language makes it possible for
two separate functions to share a reference to the same variable even after
the scope of this variable ends. In the original counter example, we could, for
example, move the variable inside the counter without sharing references to it
with anyone else.
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5.2
Lua

Lua is an imperative dynamic language. Even though it is a procedural
language with a greater focus on control structures than Scheme, the functions
have the same properties: all function values are first-class, every function is
anonymous and nesteable, and it has proper closures.

5.2.1
Example: Counter

Despite the more imperative syntax, functions in Lua are sematically
very close to Scheme’s. The counter example makes this clear because it is a
word by word translation of the Scheme version:

local function mk_counter ()
local count = 0
return function ()

count = count + 1
return count

end
end

local c = mk_counter ()
print(c()) -- 1

print(c()) -- 2

print(c()) -- 3

The mk_counter function creates a count variable, a number, and returns
an anonymous function that increments count and then returns it. The local
keyword defines a new lexically scoped variable, like Scheme’s define. It’s also
worth mentioning that the declaration of mk_counter is pure syntactic sugar:
declaring a “named” function like that is equivalent to assigning an anonymous
function to a variable. More specifically, that declaration would be equivalent
to the following1:

local mk_counter
mk_counter = function ()

-- ...

end

1Declaring the variable and then assigning the function to it (instead of declaring and
assigning at the same time, like we’re doing with count) ensures that mk_counter is lexically
available inside the function body, which allows recursion.
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The split counter example is almost a direct translation of the Scheme
version as well. The only relevant difference is that while the Scheme version
returns a pair, in Lua, we can return the incrementer and the accessor directly,
since Lua functions support multiple returns:

local function mk_counter ()
local count = 0
return function () count = count + 1 end ,

function () return count end
end

local increment , get = mk_counter ()
increment ()
increment ()
print(get ()) -- 2

Now mk_counter returns two functions referring to the same counter: one
increments the value and the other returns it. Lexical scoping makes it clear
that both functions are referring to the same count and garbage collection
ensures that count remains accessible for as long as both functions are alive.

Lua is an example of a programming language that saw the power
of functions as values—which is why it is very similar to Scheme in that
regard, despite having a syntax that emphasizes procedural programming. In
Listing 5.3 we show that Lua iterators are functions, just like our iterators
from Section 2.3, and that built-in structures take advantage of that. With a
slight modification to mk_counter, so that it has a stopping point, we turn it
into count_to, which can actually be used in the built-in for statement to
print all the numbers the iterator returns. All the other iterators in Lua, like
pairs and ipairs, are iterators that work in the same way as this example.
This shows that even non-functional programming styles can take advantage
of functions as values.
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local function count_to (n)
local count = 0
return function ()

if count < n then
count = count + 1
return count

end
end

end

for i in count_to (10) do
print(i) -- prints 1 to 10

end

Listing 5.3: Lua iterators are functions.
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5.3
Go

Go is a statically-typed, compiled programming language. Despite not
being as dynamic as Scheme, functions in Go have the same properties Scheme
functions do, illustrating that more static languages can still have first-class
functions with closures.

Terms The only relevant difference between Go’s terminology and ours is
that the Go language uses function literal to refer to an anonymous function.

5.3.1
Example: Counter

The counter example in Go looks very similar to the original example.
The differences are the type annotations and the fact that, like C, any Go
program has to have a main function and define a main package.

package main
import "fmt"

func mkCounter () func () int {
count := 0
return func () int {

count ++
return count

}
}

func main () {
c := mkCounter ()
fmt.Println (c()) // 1
fmt.Println (c()) // 2
fmt.Println (c()) // 3

}

Listing 5.4: Counter example in Go.

In Go, the type of a variable (and the return type of a function) goes
after it. The mkCounter function returns a func() int, which is a function
that takes no parameters and returns an integer. We declare count using the
:= operator, which is a shorthand for a variable declaration followed by an
assignment, with automatic inference of the variable type:

var count int;
count = 0;
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The split counter example is also straightforward (Listing 5.5).

func mkCounter () (func (), func () int) {
count := 0
return func () { count ++; },

func () int { return count; }
}

func main () {
increment , get := mkCounter ()
increment ()
increment ()
fmt.Println (get ()) // 2

}

Listing 5.5: Split counter.

Go supports multiple returns. To denote that a function returns multiple
values, a pair type can be set as the return type—in this case, (func(),
func() int), meaning “a pair where the first element is a function that takes
and returns nothing and the second, a function that returns an int, taking no
arguments”.

5.3.2
Function Definitions versus Anonymous Functions

In the previous examples, we saw function definitions and anonymous
functions. Both of these generate function values and have a very similar
syntax—they both use the func keyword, for example. But, unlike in Lua,
top-level function declarations are not merely syntax sugar for declaring a
variable and then assigning a function to it.

It’s not possible to use the function declaration syntax inside another
function. Were it syntax sugar, the example in Listing 5.6 would be valid.
But, at the moment of writing, the use of nested function declarations raises a
compiler error, even though there is no explicit mention of that in the manual.
It’s also not possible to have a variable assignment at the top level because
the only statements that are valid in the top level are constants, types and
function declarations—anonymous functions are none of these.

Aside from this syntatic nuisance, functions in Go are still first-class
values because the function values generated by both function definitions and
anonymous functions don’t have any difference from the point of view of
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func mkCounter () func () int {
count := 0
func counter () int {

count ++
return count

}
return counter

}

Listing 5.6: Invalid nested function code in Go

the programmer. In Listing 5.7, the compose function takes two functions as
arguments. From the point of view of compose, there is no distinction between
taking a named function an taking an anonymous one.

func compose (
f func( float64 ) float64 ,
g func( float64 ) float64 ) func( float64 ) float64 {

return func(x float64 ) float64 { return f(g(x)) }
}

func main () {
fmt.Println (

compose (
math.Sqrt ,
func(x float64 ) float64 {return x * x })(10))

}

Listing 5.7: compose doesn’t care if the functions it gets are anonymous or
named
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5.4
Python

Python is a dynamic, imperative programming language with first-class
function values and closures. Despite being a dynamic programming language,
Python does not emphasize the employment of functions as values like Scheme
does, which leads to some shortcomings regarding scope and anonymous
functions.

5.4.1
Limited Anonymous Functions

Anonymous functions in Python (called lambdas) are denoted with the
lambda keyword and have only a single expression in their body:

f = lambda x: x * x
print(f(10)) # 100

While they are first-class function values, their use is very limited due to
their body being only one expression. This limitation means that we cannot
use an anonymous function to implement the counter example: the counter
function needs to increment an external variable, but the increment operation
is a statement, not an expression, so it’s invalid syntax to increment a variable
inside an anonymous function.

Due to those limitations, even the Python developers recommend avoid-
ing anonymous functions for anything other than very simple expressions:

(...) my usual course is to avoid using lambda.

One reason for my preference is that lambda is quite limited in the
functions it can define. The result has to be computable as a single
expression, which means you can’t have multiway if... elif...
else comparisons or try... except statements. If you try to do
too much in a lambda statement, you’ll end up with an overly
complicated expression that’s hard to read. (Guido van Rossum
and Python development team (27), p. 19)

5.4.2
Scoping Problems

While anonymous functions are very limited in Python, regular function
definitions can still be nested and have closures, so the counter example would
still be quite similar to the original version in Scheme, only with a named
function rather than an anonymous one.
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def mk_counter ():
count = 0
def counter ():

count += 1
return count

return counter

Listing 5.8: Naïve attempt to implement counter

In Listing 5.8, the program has valid syntax, but Python will complain
that the local variable count is referenced before assignment.

To understand where this problem is coming from, let us look again at
the Scheme version of the counter factory example (Listing 5.1.1). In it, count
is declared with define then assigned inside the counter function with set!.
In Scheme, declaration and assignment have separate syntaxes. But Python
chose to make the assignment operator take the role of both assignment and
declaration, so only one syntax for these two operations is available. Python
chose to make undeclared variables (i.e. previously unassigned variables) local
by default2, so the first assignment you make to a variable in a scope is
syntactically equivalent to a variable declaration.

The increment of the count variable is equivalent to:

count = count + 1

This means that, in Listing 5.8, when we increment count inside of
counter, we’re actually telling Python to declare a new variable called count,
local to counter with the value of count plus one—i.e. we’re creating a new
variable and initializing it with a variable that does not exist yet.

To solve that problem, Python 3 introduced the nonlocal keyword. It
tells Python that one or more variables in the body of a function are actually
references to outer variables. Using nonlocal, we can tell Python that the
count variable inside counter is a reference to the an outer variable, not a
new variable declaration (Listing 5.9).

Before Python 3, nonlocal was absent, so there were other ways to
accomplish the ability to access (and modify) outer variables, but those were
either some workaround to allow the modification of the external value without
the assignment operation or the use of classes instead(28)—even the creator of

2This is not the only approach when there’s no distinction between assignment and
declaration: Ruby, for example, chose to declare a new variable by default, except if there’s
an outer variable of the same name
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def mk_counter ():
count = 0
def counter ():

nonlocal count
count += 1
return count

return counter

c = mk_counter ()
print(c()) # 1
print(c()) # 2
print(c()) # 3

Listing 5.9: nonlocal tells that count refers to the outer count

the language originally didn’t see much reason to care about functions referring
to nested scopes. Despite the adoption of a feature that makes the use of
function variable more natural, the fact that it only appeared in Python 3
shows that the language does not emphasize the use of function values.

Still, even though the use of nonlocal might be unintuitive at first, the
code at Listing 5.9 is pretty similar to the original example and functions in
Python are still as capable as functions in Scheme. Implementing the split
counter example in Python (Listing 5.10) confirms this: it is very close to the
Scheme implementation of the same example.

def mk_counter ():
count = 0
def increment ():

nonlocal count
count += 1

return increment , lambda: count

increment , get = mk_counter ()
increment ()
increment ()
print(get ()) # 2

Listing 5.10: We still need to implement the increment function as a nested
function, but the getter can be an anonymous function

While Python does have shortcomings in regard to employing functions
as values that demonstrate this is not a primary concern for Python developers,
these shortcomings have been mitigated in more recent versions.
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5.5
Ruby

Ruby is a dynamic object-oriented programming language that is inspired
by Smalltalk’s model of object orientation, i.e. everything is an object, every
operation is a message send to an object. Given its Smalltalk roots, Ruby
has a very particular approach to functions when compared to the other
programming languages in this survey.

To be able to create a Ruby version of the counter example, we need
to, first, understand Ruby’s function-like primitives. So we decided to explain
them first, then leave the examples for last.

5.5.1
Functions in Ruby: Methods, Blocks, Procs

Ruby has three kinds of function-like primitives: methods, blocks, and
procs. A method is a kind of function that is associated to an object; a block
is a kind of anonymous function that can be passed to method calls.

Methods are defined with the def keyword followed by the function name
and the parameters in a parens-delimited, comma-separated list; blocks are
defined with the do keyword, followed by the parameters in a comma-separated
list delimited by vertical bars; for both of these, the body of the function is a
sequence of statements where the last expression is the return value.

# method
def cube(n)

n * n * n
end

puts cube (10) # 100

# using block
[1, 2, 3]. each do |n|

puts cube(n) # 1, 8, 27
end

Listing 5.11: Methods and blocks in Ruby

Neither methods nor blocks are first-class values: the programmer cannot
access their values, only call them. If, for example, we want to pass the cube
method from Listing 5.11 as an argument to another method, passing just
cube would be a syntax error: any direct mention to a method has to be a call.
Similarly, trying to directly return a block from a method is not valid syntax,
because blocks are part of the method call syntax and cannot be denoted
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independently—the only way to call a method directly is to use the yield
keyword inside the receiving method (Listing 5.13).

def mk_counter
count = 0
do

count += 1
count

end
end

Listing 5.12: This code is invalid because blocks are tied to a method call

def use_block
puts ’Hello ’
yield
puts ’Goodbye ’

end

use_block do
puts "It’s me!"

end

Listing 5.13: Immediately using a block inside a method (prints "Hello", then
"It’s me", and finally, "Goodbye")

To pass methods and blocks around as values, they have to be converted
into procs. A proc is an instance of the Proc class, and is a value that can hold
any function in Ruby. So, even though methods and blocks are not first-class
function values, they can be converted into procs, which are first-class.

To convert a method to a proc, there is the method method: it takes the
name of the method as a symbol and retuns a proc holding that method.

def foo(a)
puts a

end

m = method (: foo)
m.call(’bar ’) # bar

Listing 5.14: method turns a method in a proc

As for blocks, there are several ways to convert them to procs: there are
methods that, given a block, create a proc (lambda, Proc.new, etc.) and there
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are also named block parameters, which are method parameters that take a
block passed in a method call and transform it into a value.

l = lambda do |x|
x + 1

end

p1 = Proc.new do |x|
x + 2

end

p2 = proc do |x|
x + 3

end

def bla (& foo)
foo

end

p3 = bla do |x|
x + 4

end

Listing 5.15: Several different ways to turn blocks into values in Ruby (l, p1,
p2, and p3 are all instances of Proc)

Summary In the remainder of the text, we are going to call methods
as functions, blocks as anonymous functions and procs as function values.
Summarizing functions in Ruby: the language has named and anonymouns
functions. None of the two are first-class function values, but they can be
converted into function values in many different ways.

5.5.2
Example: Counter

Now that we discussed Ruby’s functional primitives, we can create the
Ruby version of the counter example. To do that, we have to create a function
that declares the count value of the counter, creates an anonymous function
that refers to that value and returns the function. In Listing 5.16, we use the
lambda function.

Let us remember that lambda is not primitive: it is just a function that,
given an anonymous function, constructs a function value. Also notice that
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def mk_counter
count = 0
lambda do

count += 1
count

end
end

c = mk_counter
puts c.call # 1
puts c.call # 2
puts c.call # 3

Listing 5.16: Counter factory using a lambda

lexical scoping works just as expected: we can seamlessly refer to count in the
body of the anonymous function.

To further illustrate the capabilities of Ruby’s functions, let us create the
split counter example in Ruby. We need to return two anonymous functions,
both referring to the count variable. All we need to do is, again, convert the
anonymous functions to function values using lambda (Listing 5.17). Despite
this detail, this example is very similar to the original one in Scheme.

def mk_counter
count = 0
[lambda do

count += 1
nil

end ,
lambda do

count
end]

end

increment , get = mk_counter
increment .call
increment .call
puts get.call # 2

Listing 5.17: Split counter

This confirms that even though Ruby has an unusual design of functions,
it has the same capabilities and properties as Scheme, only split in more
primitive elements.
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5.6
Java and C#

Java and C# are two object-oriented programming languages. All func-
tions are necessarily defined inside a class and are either tied to the objects
which are instances of that class or to the class itself. These functions are called
methods; while Java and C# are not the only languages that have methods,
methods are the only kind of function they have—besides anonymous func-
tions.

In Java, before version 8, methods were the only kind of functions present.
In C#, anonymous functions appeared in their current form in version 3.03.
The introduction of anonymous functions by both of these languages directly
contrasts with the notion of function definitions being tied to a class, so their
designers had to find a way to fit them into the language design.

Since Java and C# are very similar, we are using Java as the main
language in this section. The presentation of C# will focus only on the
differences between these languages.

5.6.1
Java

Java is a class-based object-oriented programming language. Any func-
tion definition has to be directly associated with a class. Functions defined in
a class are called methods and are associated with the instances of that class—
except when they’re are marked static, in which case they’re tied to the class
and are called static methods. Java’s anonymous functions are called lambda
expressions.

Since version 8, Java has anonymous functions. Their syntax has two
forms: one containing a full function body and an abbreviated form with a
single statement (Listing 5.18).

In our counter example (Subsection 5.1.1), we create a function that
returns an anonymous function. We cannot do that in Java for two main
reasons. First, Java does not have a proper function type. Anonymous functions
have to be converted to an object before they can be used in any way. Second,
Java does not have closures and relies on copying outer values when referencing
them inside an anonymous function. Before we implement a Java version of

3Anonymous Functions (C# Programming Guide): https://docs.microsoft.com/
en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
anonymous-functions

https://docs.microsoft.com/en-us /dotnet/csharp/programming-guide/ statements-expressions-operators/anonymous-functions
https://docs.microsoft.com/en-us /dotnet/csharp/programming-guide/ statements-expressions-operators/anonymous-functions
https://docs.microsoft.com/en-us /dotnet/csharp/programming-guide/ statements-expressions-operators/anonymous-functions
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// anonymous function
n -> {

if (n == 0) {
return 0;

}
return 1/n;

}

// abbreviated anonymous function
x -> x * x * x

Listing 5.18: The two forms of anonymous functions in Java

the counter, we need to understand the reasons behind these limitations and
how to work around them.

5.6.1.1
Fitting Function Values in a Strictly Object-Oriented Language

Anonymous functions in Java are not first-class values. They cannot be
called directly and can only appear in an assignment, as the argument of a
function call or in a conversion context—like a type cast or the return state-
ment. To be able to use an anonymous function in any way, the programmer
needs to convert it to a functional interface, which is an interface with a single
function in it. An interface is a type that defines a blueprint containing a set
of functions; a class is said to implement the interface when it implements all
the functions present in it.

class HelloAnon {
interface Greeter {

public void greet(String name );
}

public static void main(String args []) {
Greeter g =

name ->
System.out. println ("Hello , " + name );

g.greet("Romário"); // Hello , Romário

}
}

Listing 5.19: The anonymous function being attributed to g can only be called
if we convert it to a functional interface—in this case, Greeter

DBD
PUC-Rio - Certificação Digital Nº 1621861/CA



Chapter 5. Properties of Function Values 61

The necessity of this conversion has to do with the fact that Java is
object-oriented. Aside from primitive values, all Java values are an instance of
some class. So, to create something that resembles a function value without
violating this principle, instead of making a new, distinct function type, Java
chose to convert the anonymous function to a functional interface by creating
a class that implements the interface, using the body of the lambda as the
body of the single method in that class.

Anonymous Classes Before having anonymous functions, Java already had
anonymous classes, which are analogous, but define classes instead of functions.
Like anonymous functions, they can only be created if a compatible interface
type is specified. For example, in Listing 5.19, we attribute an anonymous
function to an instance of Greeter, an interface with a single function called
greet. Using an anonymous class with this same single function (Listing 5.20)
has the exact same effect.

Greeter g =
new Greeter () {

public void greet(String name) {
System.out. println (

"Hello , " + name );
}

};
g.greet("Romário"); // Hello , Romário

Listing 5.20: Using an anonymous class has the same effect of using an
anonymous function

This illustrates how the implementation of anonymous functions took ad-
vantage of the already existing anonymous classes and shows that anonymous
functions are just syntatic sugar for anonymous classes with a single method.

5.6.1.2
Emulating Closures in Java

In Java, anonymous functions are only able to refer to outer variables
that are final—that is, constant. This is because anonymous functions in Java
capture outer variables by value, not by reference. Allowing the modification
of a copied value inside an anonymous function would be misleading in this
case, because, in most of the languages presented thus far (including Scheme),
anonymous functions capture a reference to the outer variables they use;
modifying a variable inside an anonymous function should also change it
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outside of the function. In Java, if it was possible to reference non-final
variables, the modifications done inside an anonymous function wouldn’t be
replicated outside of it; an user expecting that behavior would have their
program behave in an unexpected way without any warnings from the compiler.

However, aside from variables of primitive types, any variable in Java is
a reference to an instance of some class. When an anonymous function refers
to a reference variable, what needs to be constant is the reference itself, not
the referred object. If the object functions that change it or public variables,
an anonymous function can change this object by accessing these functions or
public variables. Therefore, not having proper closures is a bigger problem for
primitive values; since most variables in Java are not of a primitive type, this
limitation is not as impactful as it seems.

5.6.1.3
Example: Counter

In the counter example, we need the anonymous function to modify
a primitive value. While Java cannot modify a variable of a primitive type
directly, we can “box” inside a class, so that the anonymous function actually
captures a reference to an object of that class, allowing us to modify the
primitive value the referred object contains.

In Listing 5.21, we create a mkCounter function that returns an instance
of the Counter interface. Inside mkCounter we create the CountData class to
box the count variable, then create a new instance of CountData called data.
We return an anonymous functions that can, each time it is called, increment
the count variable by referring to the data variable; since we are not modifying
the data reference itself, we are not violating any language rules. Thus, the
example works as expected.

Another possible approach for this problem is to use an anonymous class
instead of an anonymous function. We already have the Counter interface
defined, so all we need to do is to return an anonymous class that implements
Counter. On top of that, since an anonymous class is a fully fledged class,
we can merge the CountData class from Listing 5.21 and return just the
anonymous class. In Listing 5.22 we can see that this approach leads to much
less boilerplate in comparison to using an anonymous function. It is clear
that the limitations of anonymous functions made them inadequate for this
problem.
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class CounterProgram {
interface Counter {

public int count ();
}

static Counter mkCounter () {
class CountData {

int count = 0;
}

CountData data = new CountData ();
return () -> data.count ++;

}

public static void main(String args []) {
Counter c = mkCounter ();
System.out. println (c.count ()); // 0
System.out. println (c.count ()); // 1
System.out. println (c.count ()); // 2

}
}

Listing 5.21: To be able to modify the count variable, we put it inside the
nested CountData class, so that the function captures a reference instead of
the primitive count variable

5.6.2
C#

C# is also a class-based object-oriented programming language. It is very
similar to Java, so we are not going to get into a lot of detail about it. Instead,
we are just going to highlight what C# does differently from Java.

5.6.2.1
Example: Counter

C# solves the two problems that make the counter example cumbersome
in Java: it introduces proper closures and dedicated function-like types called
delegates.

In Listing 5.23, our MakeCounter function returns an anonymous function
that refers to the count variable. We don’t need to box it like in Java:
anonymous functions in C# are able to modify any external variable. Another
improvement is that Counter here looks more like a function type than the
equivalent interface in Java, since the declaration of a delegate only defines its
return type and the parameters it takes.
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static Counter mkCounter () {
return new Counter () {

int c = 0;

public int count () {
return c++;

}
};

}

Listing 5.22: In comparison to Listing 5.21, much less boilerplate is necessary
if we use an anonymous class

But despite delegates making this less obvious, anonymous functions
in C# are not function values. To use an anonymous function in any way,
the programmer still needs to convert it to a delegate (Listing 5.24). This is
very similar to Java, where the programmer needs to convert the anonymous
function into an instance of a functional interface.

Even though C# tried to make a better design of anonymous functions
than Java, due to the nature of the languages, they feel into the same design
decisions to make anonymous functions compatible with object-orientation.
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using System;

delegate int Counter ();

class Hello {
static Counter MakeCounter () {

int count = 0;
return () => count ++;

}

public static void Main () {
var c = MakeCounter ();
Console . WriteLine (c()); // 0
Console . WriteLine (c()); // 1
Console . WriteLine (c()); // 2

}
}

Listing 5.23: In C#, we can modify outer variables from inside an anonymous
function and we now define a delegate (Counter) instead of an interface

using System;

class TryToCallAnon {
public static void Main(string [] args) {

Console . WriteLine ((x => x * x * x )(10));
var cubederiv = x => 3 * x * x;
Console . WriteLine ( cubederiv (10));

}
}

Listing 5.24: This code is invalid because anonymous functions need to be
converted to a concrete delegate type
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5.7
C++ and Rust

All the presented languages up until this point have garbage collection,
so the lifetime of captured variables is automatically managed and it does
not concern the programmer. In this section, we present C++ and Rust, two
languages that, due to their focus on performance and control, do not have
garbage collection. However, they have anonymous functions with closures. We
will present how each of these languages accomplishes that.

5.7.1
Languages Presentation

C++ is a programming language that focuses on performance, emphasiz-
ing low-cost abstractions and avoiding overhead that wasn’t explicitly asked by
the user—“what you don’t use, you don’t pay” (29). It introduced anonymous
functions in its C++11 revision, which effectively added support for nested
functions with lexical scoping—before that, functions were first-class values,
like in C, but they couldn’t be nested.

Rust is another language focused on performance and low-cost abstrac-
tions, following the similar principles to C++ in this regard, but it also em-
phasizes the safety and correctness of the programs, as well as concurrency.
It introduces mechanisms that allow the compiler to statically ensure that a
variable will not be accessed after its lifetime ends. These checks are applied
to the outer variables accessed by an anonymous function as well.

Their design of anonymous functions are different, but one important
aspect they have in common is giving the programmer control over how the
outer variables referenced by the functions are captured.

5.7.2
C++

5.7.2.1
Capturing Variables

In garbage collected programming languages, the capture of the actual
reference to an outer variable by a function’s closure is transparent to the
programmer. Since memory management is not visible (or is an advanced
feature), the programmer doesn’t need to care where in the memory a variable
is and how it is going to be disposed of.

In C++, on the other hand, memory has to be explicitly handled. For this
reason, making the capture of variables entirely transparent would go against
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that, since each variable in C++ might require a different kind of handling
depending on when it’s used and who owns what. The concept of ownership
of resources is key when managing memory in C++, so the programmer needs
to be able to determine who owns what. This is why, in C++ anonymous
functions, the programmer can explicitly determine how variables are going to
be captured.

Every anonymous function in C++ has a capture list which determines
how the variables referenced by the function are going to be captured. The
capture list is a bracket-delimited list containing the variables that are going
to be captured and how they are going to be captured; optionally, it is also
possible to determine a default capture that determines how any variable
referenced by the function is going to be captured. Listing 5.25 shows an
anonymous function capturing an external variable by reference.

Some examples of capture lists:

– [=] captures all variables by value

– [&] captures all variables by reference

– [foo, &bar] captures foo by value and bar by reference

– [=, &foo] captures all variables by value except for foo

– [&, bar] captures all variables by reference except for bar

# include <iostream >

int main () {
int c = 0;
auto c_plus = [&]( int x) { c += x; };

c_plus (5); c_plus (2);
std :: cout << c << "\n"; // 7

}

Listing 5.25: The capture list of c_plus determines that c is capture by
reference
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5.7.2.2
Example: Counter

To create the counter example in C++ using anonymous functions, the
counter function needs to capture an outer count variable and keep it after its
scope ends. One way to do that is to, inside the counter constructor, allocate
the count number dynamically, using a reference-counted pointer to refer to
it, then return an anonymous function that refers to the pointer and captures
it by copy (Listing 5.26). This pointer is made in such a way that copying it
ensures that the memory to which it points will remain alive until there are
no longer references to it.

# include <iostream >
# include <memory >

auto mk_counter () {
auto count = std :: make_shared <int >(0);
return [=](){ return (* count )++; };

}

int main () {
auto c = mk_counter ();
std :: cout << c() << "\n"; // 0
std :: cout << c() << "\n"; // 1
std :: cout << c() << "\n"; // 2

}

Listing 5.26: Making a reference-counted pointer ensures count will remain
valid after mk_count ends

Since we do not share the count variable with anyone else in this example,
another solution is to make count as an int variable (instead of a pointer)
and copy it, capturing it by value. By default, variables captured by value are
immutable but that can be changed by adding the mutable keyword to the
anonymous function (Listing 5.27). The advantage is that the indirection of
dealing with a pointer is gone and so is the overhead of memory management
incurred by the reference counting.

auto mk_counter () {
int count = 0;
return [=]() mutable { return count ++; };

}

Listing 5.27: It’s possible to modify variables copied by value with the mutable
keyword
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For the split counter example, however, the shared pointer is necessary,
because both functions need to point to the same count (Listing 5.28). Copying
the pointer to both anonymous functions will ensure the value they point to
will only be deleted after both functions no longer exist.

# include <iostream >
# include <memory >
# include <utility >

auto mk_counter () {
auto count = std :: make_shared <int >(0);
return std :: make_pair (

[=]() { (* count )++; },
[=]() { return *count ;}

);
}

int main () {
auto c = mk_counter ();
c.first ();
c.first ();
std :: cout << c.second () << "\n"; // 2

}

Listing 5.28: std::make_shared is now necessary because both the incre-
menter and the accessor function need to point to the same count variable

5.7.2.3
The Type of an Anonymous Function

The auto keyword is used for type inference: when it is at the return
type of a function, it means the return type will be deduced from the body of
the function; when it appears at a variable declaration, it means the type of
the variable will be deduced from the value of the right hand side expression.

In Listing 5.26, the mk_counter function is declared with auto. In main,
the c variable where the counter function is stored is also declared with auto.
This is not just for convenience. The only way we can make a function that
returns an anonymous function or a variable that holds it is by the use of
inference, because anonymous functions don’t have an expressible type. While
they do have a concrete type, the programmer is unable to explicitly express
it in the code.

C++ inherited C’s function types and still has function pointers, but
these pointers only refer to the global function definitions; function pointers
and anonymous functions are completely different kinds of function values.
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If we need to explicitly express an anonymous function as an object of
some type, we can use std::function. However, that’s not the concrete type
of an anonymous function: it is a wrapper that uniformizes many different
function values into the same type and it’s able to wrap anonymous functions as
well as named functions. Such a wrapper incurs some non-negligible overhead,
which might not be desired if, for example, the anonymous function is called
several times.

# include <functional >
std :: function <int()> mk_counter () {

auto count = std :: make_shared <int >(0);
return [=](){ return (* count )++; };

}

Listing 5.29: Anonymous functions are convertible to std::function, but
that’s not their actual type

5.7.2.4
Function Objects

To understand why each anonymous function has its own unique type,
we have to learn about function objects.

As stated before, C++ has function pointers. While these function
pointers are first-class function values, there’s no way to refer to non-global
outer variables with function pointers, since functions cannot be nested—so
something like the counter example would not be possible with them.

To allow “function-like” objects that can carry context data with them,
C++ makes it possible for any class to overload operator() (read “operator
call”). Functions that do that are called function objects4 and it is possible to
use the same call syntax used to call functions on them. We can even create a
new version of our counter by creating a CounterFunction class that contains
count as a variable and overloads operator() by making it increment count
and return its new value (Listing 5.30).

This ties in with anonymous functions because their concrete type is
exactly that: an anonymous, internal class with an overloaded operator();
the captured variables are turned into variables inside the class. What we
do in the mk_counter function in Listing 5.26 is equivalent to defining a
CounterFunction class inside mk_counter containing a reference-counted
pointer and defining the operator() overload as the body of the anonymous
function (Listing 5.31).

4They used to be called functors by the C++ community, until they realized this would
confuse people with a background in functional programming.
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# include <iostream >

class CounterFunction {
int count = 0;

public:
int operator ()() { return count ++; }

};

int main () {
CounterFunction c;
std :: cout << c() << "\n"; // 0
std :: cout << c() << "\n"; // 1
std :: cout << c() << "\n"; // 2

}

Listing 5.30: An object of type CounterFunction can be called like a function

auto mk_counter () {
auto count = std :: make_shared <int >(0);

class CounterFunction {
public:

std :: shared_ptr <int > count;
int operator ()() { return (* count )++; }

};

return CounterFunction {count };
}

Listing 5.31: This example is sematically equivalent to Listing 5.26

This pattern of creating function objects to emulate closures is pretty
common in the C++ community, so the C++11 standard just used it as the
backbone of C++’s anonymous functions; this prevented the effort of trying to
design something new and made anonymous functions compatible with existing
code that expects function objects.

5.7.3
Rust

To recapitulate: Rust, like C++, is a language with a focus on perfor-
mance and low-cost abstractions, has no garbage collection and it has anony-
mous functions with closures. Additionally, Rust has a strong focus on memory
safety and concurrency, so it has features in its type system that prevent un-
safe use of memory (that may lead to double-frees or leaks) and data races in
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compile time.

Terms Anonymous functions in Rust are called closures.

5.7.3.1
Borrow Checker

One of the most important features that prevents misuse of memory in
Rust is the borrow checker, which is the mechanism that checks if all references
to any variable are made when the variable is still alive.

By default, passing an argument to a function moves the value inside the
function, making it no longer available after the function is done (Listing 5.32).
To allow passing arguments to functions without losing them, Rust has two
types of pointers: immutable (denoted by an &) and mutable (denoted by &
mut). Passing a pointer to a function is called a borrow in Rust, because the
idea is that a function borrows a reference to a variable, then gives it back
when it’s done (Listing 5.33).

fn hello(name: String) {
println !("Hello , {}", name)

}

fn main () {
let name = String :: from("Romário");
hello(name );
// println !("{}" , name);
// ^ ‘name ’ no longer available

}

Listing 5.32: Values are moved by default in functions

The main rules are: there can be any number of immutable borrows, but
only one mutable borrow at any given time; the borrower should not outlive the
borrowed variable. If there’s any violation of these rules, the borrow checker
fails and there’s a compilation error.

5.7.3.2
Capturing Variables

Like C++, Rust also allows the programmer to determine how a variable
referenced in the body of an anonymous function will be captured, but
anonymous functions do not have capture lists like in C++. Instead, there are
two kinds of anonymous functions: borrowing and moving. They have the same
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fn hello(name: &String) {
println !("Hello , {}", &name)

}

fn change_name (name: &mut String) {
name. push_str (" Rios")

}

fn main () {
let mut name = String :: from("Romário");
change_name (& mut name );
hello (& name );

}

Listing 5.33: Immutable and mutable borrows

syntax, but the difference is that moving anonymous functions are prefixed
with move.

The concept of borrowing is relevant to anonymous functions in Rust
because capturing outer variables has similar semantics to those of taking
function arguments, so the borrow rules also apply to captures.

5.7.3.3
Example: Counter

fn mk_counter () -> impl FnMut () -> u64 {
let mut count = 0u64;
move || -> u64 {

count += 1;
count

}
}

fn main () {
let mut c = mk_counter ();
println !("{}", c()); // 1
println !("{}", c()); // 2
println !("{}", c()); // 3

}

Listing 5.34: count is moved inside the counter

In our counter example (Listing 5.34), we define a count variable and
then return a moving anonymous function in the body of mk_counter. External
variables will be captured by moving them inside the closure. A borrowing
anonymous function would not work in this case because borrowing count
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would mean than the anonymous function would outlive it, violating the
borrow checker (Listing 5.35).

fn mk_counter () -> impl FnMut () -> u64 {
let mut count = 0u64;
|| -> u64 { // may outlive ’count ’

count += 1;
count

}
}

Listing 5.35: The function being returned borrows count, but will outlive it,
violating the borrow checker

5.7.3.4
Typing of Anonymous Functions

In Listing 5.34, the return type of mk_counter is impl FnMut() -> u64.
FnMut is called a function trait and it encompasses all functions that modify
the variables they take either by argument (borrowing) or by capture.

We have to use a trait (and not a concrete type) in the return value
because, like in C++, anonymous functions in Rust do not have expressible
types. The impl keyword means that mk_counter will return a concrete type
that is of the trait FnMut() -> u64; this concrete type will be determined at
compile time for the expression of the anonymous function being returned.
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Conclusion

Seeing functions as regular values is a very powerful concept and allows
many forms of abstractions. This power is what made some languages, like
Lua (Section 5.2), Go (Section 5.3), and many others, to follow the focus on
functions set by languages like Scheme. However, each programming language
can follow a different paradigm, have different constraints and have some
history that leads them to different choices regarding the design of functions.

This survey, as it contrasted a wide range of languages, drew many
parallels between them that help justify the variety of different function
designs among imperative programming languages. It’s a demonstration that
the design of functions in a programming language depends on the interaction
of the features already present in it.

The Intersection of Roles between Closures and Objects The goal of the
counter factory example (Section 2.3) is to have a way of constructing some
value that, when called repeatedly, produces a sequence of numbers. To do
that, such a value needs to keep its state, i.e. the value to be returned in the
next call. In Scheme, we create a function that returns a nested anonymous
function that, in turn, accesses an outer variable created in its same scope,
taking advantage of closures to create a function with an associated state. But,
in object-oriented languages, classes can take that role: each class has a set of
functions and their associated state is an object of that class. This is evidenced
by languages that support object-orientation had anonymous functions added
later in their life, like Java (Section 5.6) and C++ (Section 5.7), used their
previous existing class infrastructure to implement closures for anonymous
functions. This could also be why programmers of object-oriented languagens
didn’t see the need for functions with proper closures: classes already cover
that usecase.

Fitting Anonymous Functions into Later Versions of a Language Three
of the languages studied in this survey, Java, C#, and C++ didn’t have
anonymous functions initially, since objects partially cover the roles anonymous
functions would perform. They were a late addition and this means they had to
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accomodate the design of these entities to what was already in place, mainly
because they need to avoid incompatibilities between anonymous functions,
a new element, and all the other elements in these languages. That’s why
anonymous function values in Java are just an instance of an anonymous class,
as well as in C++.

Closures vs. Garbage Collection From Section 5.1 to Section 5.6, all pre-
sented programming languages are garbage collected. It’s clear that not having
to worry about the lifetime of captured variables, making the capture process
completely transparent, makes handling functions that capture external vari-
ables much more straightforward, as the programmer only needs to worry about
passing the function value around—disposing of the closure is a concern of the
language. That, however, doesn’t mean that it’s impossible to have closures
without garbage collection, as we’ve seen in C++ and Rust in Section 5.7. The
caveat is that now the capture of variables is a concern of the programmer, and
that has to be taken into consideration while passing function values around.
But while garbage collection is not mandatory for closures, some form of auto-
matic memory management definitely is, in practice: all these languages have
one or more forms of reference counted pointers, for example.

6.1
Future Work

In Section 4.2, it’s implied that programming languages use different
terms for the same feature. A big problem while talking about functions in
programming language is which definition to use and what each term exactly
means. For example: the term "closure" is used by many languages to denote
what we refer to by "function value". We believe a survey on the terminology
of programming languages, tracking points of divergence and the etymology of
each term would be very relevant in clearing that up.

Another potentitally relevant venue of research is the history of func-
tions in imperative programming languages and how they gradually adopted
functional patterns over time. We touched on this in Chapter 3, especially in
Section 3.1, where we discussed the timeline of a small number of languages,
but the chapter only glosses over the history to discuss the general trend of
growing acceptance of functional features in imperative languages. A more
comprehensive look at the timeline of the evolution of functions is necessary
to understand some questions that were left unanswered—for example, why
the early 2010s were such a turning point for functions.
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