
From Regular Expressions to Parsing Expression
Grammars

Sérgio Medeiros1, Fabio Mascarenhas2, Roberto Ierusalimschy3

1 Department of Computer Science – UFS – Aracaju – Brazil
sergio@ufs.br

2 Department of Computer Science – UFRJ – Rio de Janeiro – Brazil
fabiom@dcc.ufrj.br

3 Department of Computer Science – PUC-Rio – Rio de Janeiro – Brazil
roberto@inf.puc-rio.br

Abstract. Regular expressions are a formalism for expressing regular
languages. Regex pattern matching libraries borrow the syntax of regular
expressions, but introduce ad-hoc extensions that cannot be expressed
within the regular expression formalism, and whose efficiency is difficult
to estimate. PEGs are a formalism that can describe all deterministic
context-free languages and that has a simple computational model. We
present a new formalization of regular expressions via transformation to
PEGs, and show that this formalization easily accommodates some of
the extensions, and helps estimate the efficiency of expressions.

Keywords: regular expressions, parsing expression grammars, natural
semantics, pattern matching

1 Introduction

Regular expressions are a concise way for describing regular languages by using
an algebraic notation. Their syntax has seen wide use in pattern matching li-
braries for programming languages, where they are known as regexes and used
to specify the pattern that a user is trying to match a string against, or, more
commonly, the pattern to search for in a string.

Regexes may look like regular expressions, but they can have syntactical and
semantical extensions that are difficult, or even impossible, to express through
pure regular expressions. As these extensions do not have a formal model, the
meaning of regex patterns that use the extensions is not clear, and may vary
among different regex libraries [5], or even among different implementations of
the same regex library [4].

Regexes not only do not have a formal model of their behavior but also do
not have a cost model of their operation, which makes it difficult for users to
determine the efficiency of regex patterns. Simple modifications can make the
time complexity of a pattern go from linear to exponential [2, 1].

Another consequence of the lack of a formal model for regexes is making the
implementation of a regex library a complex task, further causing problems of
different behavior among implementations of regex libraries.

Parsing Expression Grammars (PEGs) [3] are a formalism that can express
all deterministic context-free languages, which means that PEGs can also express
all regular languages. The syntax of PEGs also borrows from regular expressions,
and they can be used as an alternative for regexes in pattern matching libraries
that is easier to reason about [7].

In this paper, we want to show that we do not need to abandon regexes to gain
the benefits of having a clear formal model that PEGs have. We can describe the
meaning of regex patterns by conversion to PEGs, which helps reasoning about
the behavior of complex regexes. Moreover, PEGs can be efficiently executed by
a parsing machine that has a clear cost model that we can use to reason about
the time complexity of matching a given pattern [7, 10]. We believe that the
combination of the regex to PEG conversion and the PEG parsing machine can
be used to build implementations of regex libraries that are simpler than the
current ones.

The main contribution of this paper is the formalization of a translation from
plain regular expressions to PEGs. We present formalizations of both regular
expressions and PEGs in the framework of natural semantics [8], and use these
to show the similarities and differences between regular expressions and PEGs.
We then define a transformation that converts a regular expression to a PEG, and
prove its correctness. Finally, we show how this transformation can be adapted
to accommodate four regex extensions: independent expressions, possessive and
lazy repetition, and lookahead.

In the next section, we present our formalizations of regular expressions and
PEGs, and discuss when a regular expression has the same meaning when in-
terpreted as a PEG, along with the intuition behind our transformation. In
Section 3, we formalize our transformation from regular expressions to PEGs
and prove its correctness. In Section 4 we show how our transformation can ac-
commodate some regex extensions. Finally, in Section 5 we discuss some related
work and present our conclusions.

2 Regular Expressions and PEGs

Given a finite alphabet T , we can define a regular expression e inductively as
follows, where a ∈ T , and both e1 and e2 are also regular expressions:

e = ε
∣∣ a ∣∣ e1 e2 ∣∣ e1 | e2 ∣∣ e∗1

Traditionally, a regular expression can also be ∅, but we will not consider it,
as any expression with ∅ as a subexpression can either be rewritten without ∅
or reduces to ∅.

The language of a regular expression e, L(e), is traditionally defined through
operations on sets [6]. Intuitively, the languages of ε and a are singleton sets
with the corresponding symbols, the language of e1 e2 is given by concatenating
all strings of L(e1) with all strings of L(e2), the language of e1 | e2 is the union
of the languages of e1 and e2, and the language of e∗1 is the Kleene star of the
language of e1.

Empty String
ε x

RE
; x

(empty.1) Character
a ax

RE
; x

(char.1)

Concatenation
e1 xyz

RE
; yz e2 yz

RE
; z

e1 e2 xyz
RE
; z

(con.1)

Choice
e1 xy

RE
; y

e1 | e2 xy
RE
; y

(choice.1)
e2 xy

RE
; y

e1 | e2 xy
RE
; y

(choice.2)

Repetition
e∗ x

RE
; x

(rep.1)
e xyz

RE
; yz e∗ yz

RE
; z

e∗ xyz
RE
; z

, x 6= ε (rep.2)

Fig. 1. Natural semantics of relation
RE
;

Instead of defining the language of an expression e through operations on

sets, we will define a matching relation for regular expressions,
RE
;. Informally,

we will have e xy
RE
; y if and only if the expression e matches the prefix x of

input string xy. The set of strings that expression e matches will be the language

of e, that is, L(e) = {x | e xy RE
; y, xy ∈ T ∗}.

Formally, we define
RE
; via natural semantics, using the set of inference rules

in Figure 1. We have e xy
RE
; y if and only if we can build a proof tree for this

statement using the inference rules. The rules follow naturally from the expected
behavior of each expression: rule empty.1 says that ε matches itself and does
not consume the input; rule char.1 says that a symbol matches and consumes
itself if it is the beginning of the input; rule con.1 says that a concatenation
uses the suffix of the first match as the input for the next; rules choice.1 and
choice.2 say that a choice can match the input using either option; finally, rules
rep.1 and rep.2 say that a repetition can either match ε and not consume the
input or match its subexpression and match the repetition again on the suffix
that the subexpression left.

The following lemma proves that the set L(e) given by our relation
RE
; is the

same as the set L(e) given by the traditional definition of regular expressions for
a given expression e.

Lemma 1. Given a regular expression e and a string x, for any string y we

have that x ∈ L(e) if and only if e xy
RE
; y.

Proof. (⇒): By induction on the complexity of the pair (e, x). Given the pairs
(e1, x1) and (e2, x2), the first pair is more complex than the second one if and
only if either e2 is a proper subexpression of e1 or e1 = e2 and |x1| > |x2|. The
base cases are (ε, ε), (a, a), and (e∗, ε), and their proofs follow by application of
rules empty.1, char.1, or rep.1, respectively. Cases (e1 e2, x) and (e1 |e2, x) use

a straightforward application of the induction hypothesis on the subexpressions,
followed by application of rule con.1 or one of the choice rules. For case (e∗, x)
where x 6= ε, we know by the definition of the Kleene star that x ∈ Li(e) with
i > 0, where Li(e) is L(e) concatenated with itself i times. This means that we
can decompose x into x1x2 where x1 ∈ L(e) and x2 ∈ Li−1(e). Again by the
definition of the Kleene star this means that x2 ∈ L(e∗). The proof now follows
by the induction hypothesis on (e, x1) and (e∗, x2) and an application of rule
rep.2.

(⇐): By induction on the height of the proof tree for e xy
RE
; y. Most cases

are straightforward; the interesting case is when the proof tree concludes with
rule rep.2. By the induction hypothesis we have that x ∈ L(e) and y ∈ L(e∗).
By the definition of the Kleene star we have that y ∈ Li(e), so xy ∈ Li+1(e)
and, again by the Kleene star, xy ∈ L(e∗), which concludes the proof.

Parsing expression grammars borrow the syntax of regular expressions (leav-
ing out the ∅ expression) and add two new expressions: A for a non-terminal,
and !e for a not-predicate of expression e. A PEG G is a tuple (V, T, P, pS) where
V is the set of non-terminals, T is the alphabet (set of terminals), P is a function
from V to expressions and pS is the expression that the PEG matches. We will
use the notation G[p] for a grammar derived from G where pS is replaced by p
while keeping V , T , and P the same.

While the syntax of the expressions of a PEG are a superset of regular ex-
pressions, the behavior of the choice and repetition operators is very different.
Choice in PEGs is ordered; a PEG will only try to match the right side of a
choice if the left side cannot match any prefix of the input. Repetition in PEGs
is greedy; a repetition will always consume as much of the input as it can match4.
To formally define ordered choice and greedy repetition we also need a way to
express that an expression does not match a prefix of the input, so we need to
introduce fail as a possible outcome of a match.

Figure 2 gives the definition of
PEG
; , the matching relation for PEGs. As with

regular expressions, we say that G xy
PEG
; y to express that the grammar G

matches the prefix x of input string xy. We mark with a ∗ the rules that have
been changed from Figure 1, and mark with a + the rules that were added.
Unmarked rules are unchanged from Figure 1.

We have six new rules, and two changed rules. New rules char.2 and char.3
generate fail in the case that the expression cannot match the symbol in the
beginning of the input. New rule con.2 says that a concatenation fails if its left
side fails. New rule var.1 says that to match a non-terminal we have to match
the associated expression. New rules not.1 and not.2 say that a not predicate
never consumes input, but fails if its subexpression matches a prefix of the input.

The change in rule con.1 is trivial and only serves to propagate fail, so we
do not consider it an actual change. The changes to rules choice.2 and rep.1
are what actually implements ordered choice and greedy repetition, respectively.

4 Greedy repetition is a consequence of ordered choice, as e∗ is the same as expression
A where A is a fresh non-terminal and P (A) = eA | ε.

Empty String
G[ε] x

PEG
; x

(empty.1) Non-terminal
G[P (A)] x

PEG
; X

G[A] x
PEG
; X

(var.1)
+

Terminal
G[a] ax

PEG
; x

(char.1)
G[b] ax

PEG
; fail

, b 6= a (char.2)
+

G[a] ε
PEG
; fail

(char.3)
+

Concatenation
G[p1] xy

PEG
; y G[p2] y

PEG
; X

G[p1 p2] xy
PEG
; X

(con.1)
G[p1] x

PEG
; fail

G[p1 p2] x
PEG
; fail

(con.2)
+

Ordered Choice
G[p1] xy

PEG
; y

G[p1 | p2] xy
PEG
; y

(choice.1)
G[p1] x

PEG
; fail G[p2] x

PEG
; X

G[p1 | p2] x
PEG
; X

(choice.2)
∗

Repetition
G[p] x

PEG
; fail

G[p∗] x
PEG
; x

(rep.1)
∗ G[p] xyz

PEG
; yz G[p∗] yz

PEG
; z

G[p∗] xyz
PEG
; z

(rep.2)

Not Predicate
G[p] x

PEG
; fail

G[!p] x
PEG
; x

(not.1)
+ G[p] xy

PEG
; y

G[!p] xy
PEG
; fail

(not.2)
+

Fig. 2. Definition of Relation
PEG
; through Natural Semantics

Rule choice.2 says that we can only match the right side of the choice if the left
side fails, while rule rep.1 says that a repetition only stops if we try to match
its subexpression and fail.

It is easy to see that PEGs are deterministic; that is, a given PEG G can
only have a single result (either fail or a suffix of x) for some input x, and
only a single proof tree for this result. There can still be cases where no result
is possible, such as left recursion or a repetition e∗ where e matches the empty
string. If the PEG G always yields a result for any input in T ∗ then we say that
G is complete [3]. From now on we will assume that any PEG we consider is
complete unless stated otherwise.

The syntax of the expressions that form a PEG are a superset of the syntax of
regular expressions, so syntactically any regular expression e has a corresponding
PEG Ge = (V, T, P, e), where V and P can be anything. We can prove that

L(Ge) ⊆ L(e) by a simple induction on the height of proof trees for Ge xy
PEG
; y,

but it is easy to show examples where L(Ge) is a proper subset of L(e), so the
regular expression and its corresponding PEG have different languages.

For example, expression a | ab has the language {a, ab} as a regular expression
but {a} as a PEG, because on an input with prefix ab the left side of the choice
always matches and keeps the right side from being tried. The same happens
with expression a (b | bb), which has language {ab, abb} as a regular expression
and {ab} as a PEG, and on inputs with prefix abb the left side of the choice
keeps the right side from matching.

A different situation happens with expression (a | aa) b. As a regular expres-
sion, its language is {ab, aab} while as a PEG it is {ab}, but the PEG fails on
an input with prefix aab.

If we change a | ab and a (b | bb) so they have the prefix property5, by adding
an end-of-input marker $, we have the expressions (a | ab) $ and a (b | bb) $. Now
their languages as regular expressions are {a$, ab$} and {ab$, abb$}, respec-
tively, but the first expression fails as a PEG on the input abb and the second
expression fails on the input abb. But now we have a pattern (e1 | e2) e3 on all
three expressions. If we distribute e3 over the choice we have e1 e3 | e2 e3.

If we do the above operation on all three expressions we have a$ | ab$,
a (b$ | bb$), and ab | aab, respectively, and all three expressions have the same
language when interpreted either as a regular expression or as a PEG.

We will say that a PEG G and a regular expression e over the same alphabet
T are equivalent if the following conditions hold for every input string xy:

G xy
PEG
; y ⇒ e xy

RE
; y (1)

e xy
RE
; y ⇒ G xy 6PEG; fail (2)

That is, a PEG G and a regular expression e are equivalent if L(G) ⊆ L(e)
and G does not fail for any string with a prefix in L(e). In the examples above,
regular expressions a | ab, a (b | bb), a$ | ab$, a (b$ | bb$), and ab | aab are all equiv-
alent with their corresponding PEGs, while (a | ab) $, a (b | bb) $, and (a | aa) b are
not.

Equivalence together with the prefix property yields the following lemma:

Lemma 2. If a regular expression e with the prefix property and a PEG G are
equivalent then L(G) = L(e).

Proof. We just need to prove that L(e) ⊆ L(G). Suppose there is a string x ∈
L(e); this means that e xy

RE
; y for any y. But from equivalence this means

that G xy 6PEG; fail. As G is complete, we have G xy
PEG
; y′. By equivalence,

the prefix of xy that G matches is in L(e). Now y cannot be a proper suffix of
y′ neither y′ a proper suffix of y, or the prefix property would be violated. This
means that y′ = y, and x ∈ L(G), completing the proof.

We can now present an overview on how we will transform a regular expres-
sion e to a PEG that recognizes the same language. We first need to guarantee
that e has the prefix property, which is easily done by adding an end-of-input
marker to e to get e$. We then need to transform subexpressions of the form
(e1 | e2) e3 to e1e3 | e2e3. The end result will be a regular expression that is equiv-
alent to itself when viewed as a PEG.

Transforming repetition is trickier, but we just have to remember that e∗1e2 ≡
(e1 e

∗
1 |ε) e2 ≡ (e1 e

∗
1 e2) |e2. Naively transforming the first expression to the third

does not work, as we end up with e∗1e2 in the expression again, but we can add

5 There are no distinct strings x and y in the language such that x is a prefix of y.

a non-terminal A to the PEG with P (A) = e1A | e2 and then replace e∗1e2 with
A in the original expression.

As an example, let us consider the regular expression b∗b$. Its language is
{b$, bb$, . . .}, but when interpreted as a PEG the language is ∅. This expression
gets rewritten as A with P (A) = bA | b$. This PEG has the same language as
the original regular expression; for example, given the input bb$, this grammar
matches the first b through subexpression b of bA, and then A tries to match the
rest of the input, b$. So, once more subexpression b of bA matches b and then A
tries to match the rest of the input, $. Since both bA and b$ fail to match $, A
fails, and thus bA fails for input b$. Now we try b$, which successfully matches
b$, and the complete match succeeds.

The next section formalizes our transformation, and proves that for any reg-
ular expression e it will give a PEG that is equivalent to e, which by extension
yields a PEG that recognizes the same language as e if it has the prefix property.

3 Transforming Regular Expressions to PEGs

This section presents function Π, a formalization of the transformation we out-
lined in the previous section. The function Π transforms a regular expression e
using a PEG Gk that is equivalent to a regular expression ek to yield a PEG
that is equivalent to the regular expression e ek.

The intuition behind Π is that Gk is a continuation for the regular expression
e, being what should be matched after matching e. We use this continuation when
transforming choices and repetitions to do the transformations of the previous
section; for a choice, the continuation is distributed to both sides of the choice.
For a repetition, it is used as the right side for the new non-terminal, and the left
side of this non-terminal is the transformation of the repetition’s subexpression
with the non-terminal as continuation.

For a concatenation, the transformation is the result of transforming the right
side with Gk as continuation, then using this as continuation for transforming
the left side. This lets the transformation of (e1 | e2) e3 works as expected: we
transform e3 and then use the PEG as the continuation that we distribute over
the choice.

We can transform a standalone regular expression e by passing a PEG with ε
as starting expression as the continuation; this gives us a PEG that is equivalent
to the regular expression e ε, or e.

Figure 3 has the definition of function Π. Notice how repetition introduces
a new non-terminal, and the transformation of choice has to take this into ac-
count by using the set of non-terminals and the productions of the result of
transforming one side to transform the other side, so there will be no overlap.

We will show how Π works using some examples. In the following dis-
cussion, we use the alphabet T = {a, b, c}, and the continuation grammar
Gk = (∅, T, ∅, ε) that is equivalent to the regular expression ε. In our first
example, we use the regular expression (a | b | c)∗ a (a | b | c)∗, which matches an
input that has at least one a.

Π(ε, Gk) = Gk Π(a, Gk) = Gk[a pk] Π(e1 e2, Gk) = Π(e1, Π(e2, Gk))

Π(e1 | e2, Gk) = G2[p1 | p2], where G2 = (V2, T, P2, p2) = Π(e2, (V1, T, P1, pk)) and

G1 = (V1, T, P1, p1) = Π(e1, Gk)

Π(e∗1, Gk) = G , where G = (V1, T, P1 ∪ {A→ p1 | pk}, A) and

(V1, T, P1, p1) = Π(e1, (Vk ∪ {A}, T, Pk, A)) with A /∈ V1

Fig. 3. Definition of Function Π, where Gk = (Vk, T, Pk, pk)

We first transform the second repetition by evaluating Π((a | b | c)∗, Gk); we
first transform a | b | c with a new non-terminal A as continuation, yielding the
PEG aA | bA | cA, then combine it with ε to yield the PEG A where A has the
production below:

A→ aA | bA | cA | ε

Next is the concatenation with a, yielding the PEG aA. We then use this
PEG as continuation for transforming the first repetition. This transformation
uses a new non-terminal B as a continuation for transforming a | b | c, yielding
aB | bB | cB, then combines it with aA to yield the PEG B with the productions
below:

B → aB | bB | cB | aA A→ aA | bA | cA | ε

When the original regular expression matches a given input, we do not know
how many a’s the first repetition matches, because the semantics of regular
expressions is non-deterministic. Implementations usually resolve ambiguities
by the longest match rule, where the first repetition will match all but the last
a of the input. PEGs are deterministic by construction, and the PEG generated
by Π obeys the longest match rule. The alternative aA of non-terminal B will
only be tried if all the alternatives fail, which happens in the end of the input.
The PEG then backtracks until the last a is found, where it matches the last a

and proceeds with non-terminal A.
The regular expression (b | c)∗ a (a | b | c)∗ defines the same language as the

regular expression of the first example, but without the ambiguity.
Now Π with continuation Gk yields the following PEG B:

B → bB | cB | aA A→ aA | bA | cA | ε

Although the productions of this PEG and the previous one recognize the
same language, the second PEG is more efficient, as it will not have to reach the
end of the input and then backtrack until finding the last a. This is an example
on how we can use our semantics and the transformation Π to reason about the
behavior of a regular expression.

The expressions in the two previous examples are well-formed. A regular ex-
pression e is well-formed if it does not have a subexpression e∗i where ε ∈ L(ei).

If e is a well-formed regular expression and Gk is a complete PEG then Π(e, Gk)
is also complete. In Section 3.1 we will show how to obtain a well-formed reg-
ular expression that recognizes the same language as a non-well-formed regular
expression.

We will now prove that our transformation Π is correct, that is, if e is a well-
formed regular expression and Gk is a PEG equivalent to a regular expression
ek then Π(e, Gk) is equivalent to e ek. The proofs use a small technical lemma:
each production of PEG Gk is also in PEG Π(e, Gk), for any regular expression
e. This lemma is straightforward to prove by structural induction on e.

We will prove each property necessary for equivalence separately; equivalence
will then be a direct corollary of those two proofs. To prove the first property we
need an auxiliary lemma that states that the continuation grammar is indeed a
continuation, that is if the PEG Π(e, Gk) matches a prefix x of a given input
xy then we can split x into v and w with x = vw and Gk matching w.

Lemma 3. Given a regular expression e, a PEG Gk, and an input string xy, if

Π(e, Gk) xy
PEG
; y then there is a suffix w of x such that Gk wy

PEG
; y.

Proof. By induction on the complexity of the pair (e, xy). The interesting case
is e∗. In this case Π(e∗, Gk) gives us a grammar G = (V1, T, P, A), where

A → p1 | pk. By var.1 we know that G[p1 | pk] xy
PEG
; y. There are now two

subcases to consider, choice.1 and choice.2.

For subcase choice.2, we have G[pk] xy
PEG
; y. But then we have that

Gk[pk] xy
PEG
; y because any non-terminal that pk uses to match xy is in both G

and Gk and has the same production in both. The string xy is a suffix of itself,
and pk is the starting expression of Gk, closing this part of the proof.

For subcase choice.1 we have Π(e, Π(e∗, Gk)) xy
PEG
; y, and by the induc-

tion hypothesis Π(e∗, Gk) wy
PEG
; y. We can now use the induction hypothesis

again, on the length of the input, as w must be a proper suffix of x. We conclude

that Gk w′y
PEG
; y for a suffix w′ of w, and so a suffix of x, ending the proof.

The following lemma proves that if the first property of equivalence holds
between a regular expression ek and a PEG Gk then it will hold for e ek and
Π(e, Gk) given a regular expression e.

Lemma 4. Given regular expressions e and ek and a PEG Gk, where Gk wy
PEG
;

y ⇒ ek wy
RE
; y, if Π(e, Gk) vwy

PEG
; y then e ek vwy

RE
; y.

Proof. By induction on the complexity of the pair (e, vwy). The interesting
case is e∗. In this case, Π(e∗, Gk) gives us a PEG G = (V1, T, P, A), where

A → p1 | pk. By var.1 we know that G[p1 | pk] vwy
PEG
; y. There are now two

subcases, choice.1 and choice.2 of
PEG
; .

For subcase choice.2, we can conclude that Gk vwy
PEG
; y because pk is the

starting expression of Gk and any non-terminals it uses have the same production

both in G and Gk. We now have ek vwy
RE
; y. By choice.2 of

RE
; we have

e e∗ ek | ek vwy
RE
; y, but e e∗ ek | ek ≡ e∗ ek, so e∗ ek vwy

RE
; y, ending this part

of the proof.

For subcase choice.1, we have Π(e, Π(e∗, Gk)) vwy
PEG
; y, and by Lemma 3

we have Π(e∗, Gk) wy
PEG
; y. The string v is not empty, so we can use the

induction hypothesis and Lemma 3 again to conclude e∗ ek wy
RE
; y. Then

we use the induction hypothesis on Π(e, Π(e∗, Gk)) vwy
PEG
; y to conclude

e e∗ ek vwy
RE
; y. We can now use rule choice.1 of

RE
; to get e e∗ ek |ek vwy

RE
; y,

but e e∗ ek | ek ≡ e∗ ek, so e∗ ek vwy
RE
; y, ending the proof.

The following lemma proves that if the second property of equivalence holds
between a regular expression ek and a PEG Gk then it will hold for e ek and
Π(e, Gk) given a regular expression e.

Lemma 5. Given regular expressions e and ek and a PEG Gk, where Lemma 4

holds and we have ek wy
RE
; y ⇒ Gk wy 6PEG; fail, if e ek vwy

RE
; y then

Π(e, Gk) vwy 6PEG; fail.

Proof. By induction on the complexity of the pair (e, vwy). The interesting
case is e∗. We will use again the equivalence e∗ ek ≡ e e∗ ek | ek. There are two

subcases, choice.1 and choice.2 of
RE
;.

For subcase choice.1, we have that e matches a prefix of vwy by rule con.1.

As e∗ is well-formed this prefix is not empty, so e∗ ek v′wy
RE
; y for a proper suffix

v′ of v. By the induction hypothesis we have Π(e∗, Gk) v′wy 6PEG; fail, and we

use the induction hypothesis again to conclude Π(e, Π(e∗, Gk)) vwy 6PEG; fail.

This PEG is complete, so we can conclude Π(e∗, Gk)[p1 |pk] vwy 6PEG; fail using

rule choice.1 of
PEG
; , and then Π(e∗, Gk) vwy 6PEG; fail by rule var.1, ending

this part of the proof.
For subcase choice.2, we can assume that there is no proof tree for the

statement e e∗ ek vwy
RE
; y, or we could reduce this subcase to the first one by

using choice.1 instead of choice.2. Because Π(e, Π(e∗, Gk)) is complete we can

use modus tollens of Lemma 4 to conclude that Π(e, Π(e∗, Gk)) vwy
PEG
; fail.

We also have ek vwy
RE
; y, so Gk vwy 6PEG; fail. Now we can use rule choice.2

of
PEG
; to conclude G[p1 | pk] vwy 6PEG; fail, and then Π(e∗, Gk) vwy 6PEG; fail

by rule var.1, ending the proof.

The correctness lemma for Π is a corollary of the two previous lemmas:

Lemma 6. Given regular expressions e and ek and a PEG Gk, where ek and
Gk are equivalent, then Π(e, Gk) and e ek are equivalent.

Proof. The proof that first property of equivalence holds for Π(e, Gk) and e ek
follows from the first property of equivalence for ek and Gk plus Lemma 4.
The proof that the second property of equivalence holds follows from the first
property of equivalence for Π(e, Gk) and e ek, the second property of equivalence
for ek and Gk, plus Lemma 5.

A corollary of the previous lemma combined with Lemma 2 is that L(e $) =
L(Π(e, $)), proving that our transformation can yield a PEG that recognizes
the same language as any well-formed regular expression e just by using an
end-of-input marker, even if the language of e does not have the prefix property.

We still need to show that any regular expression can be made well-formed
without changing its language. This is the topic of the next section, where we
give a transformation that rewrites non-well-formed repetitions so they are well-
formed with minimal changes to the structure of the original regular expression.

3.1 Transformation of Repetitions e∗ where ε ∈ L(e)

A regular expression e that has a subexpression e∗i where ei can match the empty
string is not well-formed. As ei can succeed without consuming any input one
outcome of e∗i is to stay in the same place of the input indefinitely. Pattern
matching libraries that rely on backtracking may enter an infinite loop with
non-well-formed expressions unless they take measures to avoid it [12].

When e is not well-formed, the PEG we obtain through transformation Π
is not complete. A PEG that is not complete can make a PEG library enter an
infinite loop. To show an example on how a non-well-formed regular expression
leads to a PEG that is not complete, let us transform (a | ε)∗ b using Π. Using ε
as continuation this yields the following PEG A:

A → aA | A | b

The PEG above is left recursive, so it is not complete. In fact, this PEG
does not have a proof tree for any input, so it is not equivalent to the regular
expression (a | ε)∗ b.

Transformation Π is not correct for non-well-formed regular expressions, but
we can make any non-well-formed regular expression well-formed by rewriting
repetitions e∗i where ε ∈ L(ei) as e′i

∗
where ε 6∈ L(e′i) and L(e′i

∗
) = L(e∗i).

The regular expression above would become a∗ | b, which Π transforms into an
equivalent complete PEG.

This section presents a transformation that does this rewriting. We use a
pair of functions to rewrite an expression, fout and fin . Function fout recursively
searches for a repetition that has ε in the language of its subexpression, while
fin rewrites the repetition’s subexpression so it is well-formed, does not have ε
in its language, and does not change the language of the repetition. Both fin
and fout use two auxiliary predicates, empty and null , that respectively test if
an expression can be reduced to ε and if an expression has ε in its language.
Figure 4 has inductive definitions for the empty and null predicates.

Function fout is simple: for the base expressions it is the identity, for the
composite expressions fout applies itself recursively to subexpressions unless the
expression is a repetition where the repetition’s subexpression matches ε. In this
case fout reduces the repetition to ε if the subexpression reduces to ε (as ε∗ ≡ ε),
or uses fin to rewrite the subexpression. Figure 5 has the inductive definition of
fout . It obeys the following lemma:

empty(ε) = true empty(a) = false empty(e∗) = empty(e)

empty(e1 e2) = empty(e1) ∧ empty(e2) empty(e1 | e2) = empty(e1) ∧ empty(e2)

null(ε) = true null(a) = false null(e∗) = true

null(e1 e2) = null(e1) ∧ null(e2) null(e1 | e2) = null(e1) ∨ null(e2)

Fig. 4. Definition of predicates empty and null

fout(e) = e, if e = ε or e = a

fout(e1 e2) = fout(e1) fout(e2)

fout(e1 | e2) = fout(e1) | fout(e2)

fout(e
∗) =

fout(e)

∗ if ¬null(e)
ε if empty(e)
fin(e)∗ otherwise

Fig. 5. Definition of Function fout

Lemma 7. If fin(ek) is well-formed, ε 6∈ L(fin(ek)), and L(fin(ek)∗) = L(e∗k)
for any ek with ε ∈ L(ek) and L(ek) 6= ε then, for any e, fout(e) is well-formed
and L(e) = L(fout(e)).

Proof. By structural induction on e. Inductive cases follow directly from the
induction hypothesis, except for e∗ where ε ∈ L(e), where it follows from the
properties of fin .

Function fin does the heavy lifting of the rewriting. If its argument is a rep-
etition it throws away the repetition because it is superfluous. Then fin applies
fout or itself to the subexpression depending on whether it matches ε or not. If
the argument is a choice fin throws away one of the sides if it reduces to ε, as it
is superfluous because of the repetition, and rewrites the remaining side using
fout or fin depending on whether it matches ε or not. In case both sides do not
reduce to ε fin rewrites both. If the argument is a concatenation fin rewrites it
as a choice and applies itself to the choice. This works because both subexpres-
sions need to match ε for fin ’s argument to match ε, and (AB)∗ = (A ∪ B)∗

if ε ∈ A and ε ∈ B. Figure 6 has the inductive definition of fin . It obeys the
following lemma:

Lemma 8. If fout(ek) is well-formed and L(fout(ek)) = L(ek) for any ek then,
for any e with ε ∈ L(e) and L(e) 6= {ε}, ε /∈ L(fin(e)), L(e∗) = L(fin(e)∗), and
fin(e) is well-formed.

Proof. By structural induction on e. Most cases follow directly from the induc-
tion hypothesis and the properties of fout . The subcases of choice where the

fin(e1 e2) = fin(e1 | e2)

fin(e1 | e2) =

fin(e2) if empty(e1) and null(e2)
fout(e2) if empty(e1) and ¬null(e2)
fin(e1) if null(e1) and empty(e2)
fout(e1) if ¬null(e1) and empty(e2)
fout(e1) | fin(e2) if ¬null(e1) and ¬empty(e2)
fin(e1) | fout(e2) if ¬empty(e1) and ¬null(e2)
fin(e1) | fin(e2) otherwise

fin(e∗) =

{
fin(e) if null(e)
fout(e) otherwise

Fig. 6. Definition of Function fin(e), where ¬empty(e) and null(e)

Π(?〉e1, Gk) = (V1, T, P1, p1 pk), where (V1, T, P1, p1) = Π(e1, Gk[ε])

Π(e∗+1 , Gk) = Π(?〉e∗, Gk)

Π(e∗?1 , Gk) = G , where G = (V1, T, P1 ∪ {A→ pk | p1}, A) ,

(V1, T, P1, p1) = Π(e1, (Vk ∪ {A}, T, Pk, A)), and A /∈ Vk

Π(?!e1, Gk) = (V1, T, P1, !p1 pk), where (V1, T, P1, p1) = Π(e1, Gk[ε])

Π(?=e1, Gk) = (V1, T, P1, !!p1 pk), where (V1, T, P1, p1) = Π(e1, Gk[ε])

Fig. 7. Adapting Function Π to Deal with Regex Extensions

result is also a choice use the Kleene star property (A ∪ B)∗ = (A∗ ∪ B∗)∗ to-
gether with the induction hypothesis and the properties of fout . Concatenation
reduces to a choice using the property mentioned above this lemma.

As an example, let us use fout and fin to rewrite the regular expression
((a | ε) b∗)∗ into a well-formed regular expression. We show the sequence of steps
below:

fout(((a | ε) b∗)∗) = fin((a | ε) b∗)∗ = fin((a | ε) | b∗)∗

= (fin(a | ε) | fin(b∗))∗ = (fout(a) | fout(b))∗ = (a | b)∗

4 Transforming Regex Extensions

Regexes add several ad-hoc extensions to regular expressions. We can easily
adapt transformation Π to deal with some of these extensions, and will show
here how to use Π with independent expressions, possessive repetitions, lazy rep-
etitions, and lookahead. An informal but broader discussion of regex extensions
in the context of translation to PEGs was published by Oikawa et al. [11].

The regex ?〉e1 is an independent expression (also known as atomic grouping).
It matches independently of the expression that follows it, so a failure when

matching the expression that follows ?〉e1 does not force a backtracking regex
matcher to backtrack to ?〉e1’s alternative matches. This is the same behavior as
a PEG, so to transform ?〉e1 we first transform it using an empty continuation,
then concatenate the result with the original continuation.

The regex e∗+1 is a possessive (or greedy) repetition. It always matches as
most as possible of the input, even if this leads to a subsequent failure. It is the
same as ?〉e∗ if the longest-match rule is used. The semantics of Π guarantees
longest match, so it uses this identity to transform e∗+1 .

The regex e∗?1 is a lazy repetition. It always matches as little of the input as
necessary for the rest of the expression to match (shortest match). The trans-
formation of this regex is very similar to the transformation of e∗1, we just flip
p1 and pk in the production of non-terminal A. Now the PEG tries to match the
rest of the expression first, and will only try another step of the repetition if the
rest fails.

The regex ?!e1 is a negative lookahead. The regex matcher tries to match the
subexpression; it it fails then the negative lookahead succeeds without consum-
ing any input, and if the subexpression succeeds the negative lookahead fails.
Negative lookahead is also an independent expression. Transforming this regex
is just a matter of using PEGs negative lookahead, which works in the same way,
on the result of transforming the subexpression as an independent expression.

Finally, the regex ?= e1 is a positive lookahead, where the regex matcher
tries to match the subexpression and fails if the subexpression fails and suc-
ceeds if the subexpression succeeds, but does not consume any input. It is also
an independent expression. We transform a positive lookahead by transforming
the subexpression as an independent expression and then using PEGs negative
lookahead twice.

We cannot provide formal proofs that the extended transformation Π cor-
rectly captures the ad-hoc semantics of these regex extensions, as their behavior
cannot be expressed using the semantics of regular expressions. But we believe
that the transformation and the semantics of PEGs is a correct formalization of
these regex extensions.

5 Conclusion

We presented a new formalization of regular expressions that uses natural se-
mantics and a transformation Π that converts a given regular expression into
an equivalent PEG. If the regular expression’s language has the prefix property,
easily guaranteed by using an end-of-input marker, the transformation yields a
PEG that recognizes the same language as the regular expression.

Moreover, we have shown how this transformation can be easily adapted to
accommodate several extensions used by pattern matching libraries: independent
expressions, possessive and lazy repetition, and lookahead. Our transformation
gives a precise semantics to what were ad-hoc extensions with behavior specified
in terms of how regex matchers are implemented.

Another approach to establish the correspondence between regular expres-
sions and PEGs was suggested by Ierusalimschy [7]. In this approach we con-
vert Deterministic Finite Automata (DFA) into right-linear LL(1) grammars.
Medeiros [9] proves that an LL(1) grammar has the same language when inter-
preted as a CFG and as a PEG. But this approach cannot be used with regex
extensions, as they cannot be expressed by a DFA.

The transformation Π is a formalization of the continuation-based conversion
presented by Oikawa et al. [11]. That work only presents an informal discussion
of the correctness of the conversion, while we proved our transformation correct
with regards to the semantics of regular expressions and PEGs.

We can also benefit from the LPEG parsing machine [10, 7], a virtual ma-
chine for executing PEGs. We can use the cost model of the parsing machine
instructions to estimate how efficient a given regular expression or regex is. The
parsing machine has a simple architecture with just nine basic instructions and
four registers, and implementations of our transformation coupled with imple-
mentations of the parsing machine can be the basis for simpler implementations
of regex libraries.

References

1. Abigail: Reduction of 3-CNF-SAT to Perl regular expression matching. http://
perl.plover.com/NPC/NPC-3SAT.html

2. Aho, A.V.: Algorithms for finding patterns in strings, pp. 255–300. MIT
Press, Cambridge, MA, USA (1990), http://portal.acm.org/citation.cfm?id=
114872.114877

3. Ford, B.: Parsing expression grammars: A recognition-based syntactic foundation.
In: POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. pp. 111–122. ACM, New York, USA (2004)

4. Fowler, G.: An interpretation of the POSIX regex standard. http://www2.

research.att.com/~gsf/testregex/re-interpretation.html (2003), [Visited
on May 2011]

5. Friedl, J.: Mastering Regular Expressions. O’Reilly Media, Inc. (2006)
6. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley Longman Publishing Co., Inc., Boston, USA (1979)
7. Ierusalimschy, R.: A text pattern-matching tool based on parsing expression gram-

mars. Software - Practice & Experience 39(3), 221–258 (2009)
8. Kahn, G.: Natural semantics. In: STACS ’87: Symposium on Theoretical Aspects

of Computer Science. pp. 22–39. Springer-Verlag, Londres, Reino Unido (1987)
9. Medeiros, S.: Correspondência entre PEGs e Classes de Gramáticas Livres de Con-

texto. Ph.D. thesis, PUC-Rio (2010)
10. Medeiros, S., Ierusalimschy, R.: A parsing machine for PEGs. In: DLS ’08: Dynamic

languages Symposium. pp. 1–12. ACM, New York, USA (2008)
11. Oikawa, M., Ierusalimschy, R., Moura, A.: Converting regexes to Parsing Expres-

sion Grammars. In: Brazilian Symposium on Programming Languages (2010)
12. perldoc.perl.org — official documentation for the Perl programming language.

http://perldoc.perl.org/perlre.html, [Visited on May 2011]

